Persistent lung inflammation after clinical resolution of community-acquired pneumonia as measured by ¹⁸FDG-PET/CT

Vicente F. Corrales-Medina, MD, MSc, Robert A. deKemp, PhD, Julio A. Chirinos, MD, PhD, Wanzhen Zeng, MD, Jerry Wang, BSc, Grant Waterer, MD, Rob S.B. Beanlands, Girish Dwivedi, MD, PhD

PII: S0012-3692(21)00448-7

DOI: https://doi.org/10.1016/j.chest.2021.02.048

Reference: CHEST 4075

To appear in: CHEST

- Received Date: 19 October 2020
- Revised Date: 17 February 2021
- Accepted Date: 19 February 2021

Please cite this article as: Corrales-Medina VF, deKemp RA, Chirinos JA, Zeng W, Wang J, Waterer G, Beanlands RSB, Dwivedi G, Persistent lung inflammation after clinical resolution of community-

acquired pneumonia as measured by ¹⁸FDG-PET/CT, *CHEST* (2021), doi: https://doi.org/10.1016/ j.chest.2021.02.048.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2021 Published by Elsevier Inc under license from the American College of Chest Physicians.

1	TITLE: Persistent lung inflammation after clinical resolution of community-
2	acquired pneumonia as measured by ¹⁸ FDG-PET/CT
3	
4	Authors: Vicente F. Corrales-Medina, MD, MSc ^{1,2} ; Robert A. deKemp, PhD ^{3,4} ; Julio A.
5	Chirinos, MD, PhD ⁵ ; Wanzhen Zeng, MD ² ; Jerry Wang, BSc ^{3,4} ; Grant Waterer, MD ^{6,7} ;
6	Rob S. B. Beanlands ^{3,4} ; Girish Dwivedi, MD, PhD ^{3,4,7,8,9}
7	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	 The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Department of Medicine, University of Ottawa, Ontario, Canada National Cardiac PET Centre, University of Ottawa Heart Institute, Ottawa, Ontario, Canada Division of Cardiology, Department of Medicine, University of Ottawa, Ontario, Canada University of Pennsylvania, Philadelphia, Pennsylvania, United States Royal Perth Hospital, Victoria Square, Perth WA, Australia School of Medicine, University of Western Australia, Australia Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Australia Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
23	Short title: Persistent lung inflammation after pneumonia.
24	
25 26 27	Corresponding author:
28 29 30 31 32 33 34	Professor Girish Dwivedi MD, PhD (UK), MRCP (UK), FASE, FESC, FRACP Wesfarmers Chair in Cardiology and Consultant Cardiology & Adjunct Professor at University of Ottawa Heart Institute (Canada) Harry Perkins Institute of Medical Research, University of Western Australia Fiona Stanley Hospital, Murdoch Phone: +61-861510000 Email: girish.dwivedi@perkins.uwa.edu.au

1 ABSTRACT

23

2 Background: Survivors of community-acquired pneumonia (CAP) are at increased risk 3 of cardiovascular disease, cognitive and functional decline, and death but the mechanisms remain unknown. 4 Research Question: Do CAP survivors have evidence of increased inflammatory 5 activity in their lung parenchyma on ¹⁸FDG-PET/CT after clinical resolution of infection? 6 Study Design and Methods: We performed ¹⁸FDG-PET/CT scans in 22 CAP-survivors 7 8 during their hospitalization with pneumonia (acute-CAP) and 30-45 days after the hospital discharge (post-CAP). We assessed the lungs for foci of increased ¹⁸FDG uptake by 9 10 visual interpretation and by the total pulmonary glycolytic activity (tPGA), a backgroundcorrected measure of total metabolic activity (as measured by ¹⁸FDG uptake) of the 11 lungs on both scans. We also measured the glycolytic activity of lung areas of volumes 12 exactly similar to the areas of increased ¹⁸FDG uptake in the post-CAP studies of CAP 13 participants in 28 matched historical controls without pneumonia. 14 Results: Overall, (68%, confidence interval 45% to 85%) CAP-survivors had distinct 15 residual areas of increased ¹⁸FDG uptake in their post-CAP studies. tPGA decreased 16 17 from 821.5 (standard deviation [SD], 1140.2) in the acute-CAP period to 80.0 (SD, 81.4) in the post-CAP period (p=0.006). The tPGA post CAP was significantly higher than that 18 19 in lung areas of similar volume in controls (80.0 [SD, 81.4] versus -19.4 [SD, 5.9]; p<0.001). 20 21 Interpretation: An important proportion of CAP survivors have persistent pulmonary 22 foci of increased inflammatory activity beyond resolution of their infection. As

inflammation contributes to cardiovascular disease, cognitive decline, functional waning

		T			
ourn		Р	re-	.nrc	\mathbf{n}
oun	uı				

1	and mortal	ity risk in the general population, this finding provides a plausible mechanism
2	for the incr	eased morbidity and mortality that has been observed post-CAP.
3		
4	Keywords	: Pneumonia; inflammation; pneumonia-survivors; CAP-survivors
5		
6	Abbreviati	ons :
7	CAP:	Community-Acquired Pneumonia
8	COPD:	Chronic Obstructive Pulmonary Disease
9	CRP:	C-reactive protein
10	CT:	Computed Tomography
11	FDG:	18-Fluorine-2-Deoxy-D-Glucose
12	PGA:	Pneumonia Glycolytic Activity
13	PSI:	Pneumonia Severity Index
14	SD:	Standard Deviation
15	SUV:	Standardized Uptake Value
16	tPGA:	total Pulmonary Glycolytic Activity
17		
18		

1 INTRODUCTION

2 Survivors of community acquired pneumonia (CAP) remain at increased risk of 3 cardiovascular disease, cognitive decline, functional waning and death for months after 4 clinical resolution of their infection but the mechanisms for this increased morbidity and mortality post-CAP are unknown.¹⁻⁵ In the general population, increased inflammatory 5 activity has been implicated in the progression of all these outcomes (cardiovascular 6 disease, cognitive and functional decline, and death).⁶ Therefore, lingering increased 7 inflammatory activity beyond clinical resolution of CAP has been proposed as a 8 9 plausible mechanism for the heightened morbidity and mortality that follows this infection.⁷ However, an objective source for enduring increased inflammatory activity 10 11 post-CAP has never been demonstrated. Radiographic lung infiltrates that can persist for weeks and, in some cases, months after resolution of pneumonia in a significant 12 proportion of CAP survivors are well described but the biologic significance of this 13 observation is unknown.⁸⁻¹⁰ In this study, we used positron emission tomography 14 (PET)/Computed tomography (CT) with 18-fluorine-2-deoxy-D-glucose (¹⁸FDG-PET/CT) 15 to investigate whether CAP survivors have persistent foci of increased inflammatory 16 activity in their lung parenchyma after their infection has clinically resolved. 17

18

19 STUDY DESIGN AND METHODS

20 This study was approved by the Ottawa Health Science Network Research Ethics Board

21 (reference 20130822-01H), and all participants provided written informed consent.

22 We enrolled consecutive ambulatory community-dwelling adults ≥65 years-old

- admitted to The Ottawa Hospital (Ontario, Canada) between August, 2015 and January,
- 24 2018 who had (1) No hospitalizations in the previous 14 days; (2) At least one respiratory

1 symptom consistent with pneumonia (new or worsening cough, new or worsening 2 dyspnea, new or worsening sputum production, change in the guality of baseline 3 sputum production, or chest pain made worse with inspiration) of ≤2-week duration (to 4 avoid inclusion of more chronic forms of pneumonia); (3) A chest radiograph with a new infiltrate consistent with pneumonia; and (4) A serum C-reactive protein (CRP) ≥15 mg/L 5 (drawn in the first 72h of hospitalization). The latter criterion was aimed at minimizing the 6 7 inclusion of cases whose clinical presentation was not secondary to an acute infectious process (i.e. COPD exacerbation or heart failure).¹¹⁻¹⁴ In addition, we excluded patients 8 9 that (1) Had a baseline (pre-CAP) functional status that would make it difficult for them to 10 return for follow-up examinations after hospital discharge; (2) Showed no clinical improvement after 48h of CAP guideline-concordant antibiotic therapy;¹⁵ or (2) Had any 11 known immuno-deficiency or active malignancy. The latter two criteria were aimed at 12 13 minimizing the enrolment of patients at high risk of not surviving the acute CAP episode. We selected patients ≥65 years-old because this is the age-group with the highest burden 14 of CAP¹⁶⁻¹⁸ and its post-infectious complications (increased risk of cardiovascular 15 disease, cognitive decline, functional waning and death, among others).¹⁻⁵ Thus, any 16 17 demonstration of persistent lung inflammation after CAP would have the highest clinical implications in this age-group. Patients also had to be stable enough to be transported to 18 the ¹⁸FDG/PET/CT suite safely and endure the technical requirements of this test. As a 19 result, patients that were hemodynamically unstable, requiring vasopressors, or needing 20 21 high O2 supplements or mechanical ventilation were not included.

1	We performed serial ¹⁸ FDG-PET/CT imaging using a Discovery 690 scanner (GE
2	Healthcare, Waukesha, WI) at 48h-96h after participants' hospitalization ("acute-CAP"
3	studies) and at 30-45 days after their hospital discharge ("post-CAP" studies).
4	¹⁸ FDG-PET/CT is used for the measurement of inflammation in the current study.
5	In the absence of other causes of increased metabolic activity including benign and
6	malignant lesions or an active infectious process, uptake of ¹⁸ FDG (a radio-labelled
7	glucose analogue) in lungs reflects increased inflammatory activity because of the
8	higher metabolic rate of inflammatory cells compared to vascular and parenchymal
9	cells. ⁸
10	PET/CT studies were analyzed by level-3 qualified experts. A first assessment
11	included the visual characterization of patterns of ¹⁸ FDG uptake in the lung parenchyma
12	of CAP-survivors from the acute to the post-CAP states (i.e. resolution, improvement but
13	still with distinct areas of increased ¹⁸ FDG uptake, and overall unchanged or worsening).
14	A background-corrected measure of total metabolic activity (similar to the total lesion
15	glycolysis used in cancer patients), the total pulmonary glycolytic activity (tPGA) was
16	calculated on ¹⁸ FDG-PET/CT studies. ^{19,20} A case of CAP of the right middle lung lobe in
17	shown in Figure 1. In short, we used the semi-automated program HERMES Hybrid
18	Viewer™ (Stockholm, Sweden) to define, from the co-registered images of the PET and
19	CT scans, the entire three-dimensional volume of each lung (right and left). Each lung
20	volume was then divided, when appropriate, into 2 separate sub-volumes: (1) the
21	distinct areas of increased ¹⁸ FDG uptake that corresponded with lung infiltrates on CT
22	imaging (VOL $_{PNA}$), and (2) the complementary lung with otherwise unremarkable (i.e.
23	"background") 18 FDG uptake (VOL _{BKG}). The mean 18 FDG standardized uptake value

1 (SUV) was measured in each sub-volume (SUV_{PNA} and SUV_{BKG}). The pneumonia 2 glycolytic activity (PGA) of each lung was then estimated as follows: $PGA = VOL_{PNA} \times$ 3 ($SUV_{PNA} - SUV_{BKG}$)

Depending on whether there were areas of pneumonia in only one or both lugs,
the tPGA for each ¹⁸FDG-PET/CT study was estimated by adding the PGAs of each
lung (right and left) in the said study. Post-CAP ¹⁸FDG-PET/CT studies in which no
apparent distinct area of increased ¹⁸FDG uptake was identified were arbitrarily
assigned a volume of 0 and accordingly, a tPGA value of also 0.

9 We prospectively calculated the Pneumonia Severity Index (PSI) score for each 10 patient at the time of their hospital presentation.²¹ We measured CRP serum levels within 11 the first 72h of hospitalization (24h to 48h before the first ¹⁸FDG-PET/CT study) and on 12 the same day of the post-CAP ¹⁸FDG-PET/CT studies.

We also identified historical controls matched to CAP-patients by age and sex. 13 These controls had clinically indicated ¹⁸FDG-PET/CT studies for evaluation of possible 14 malignancy but benign final diagnoses. Based on the average VOL_{PNA} volumes from the 15 post-CAP patient studies, spheres of half this volume were drawn at random central 16 locations in both lungs of each historical control. These spheres were treated the same 17 18 way as the 'pneumonia' areas in CAP-survivors and their glycolytic activity was 19 computed using the same method as described above. We did this to estimate the expected glycolytic activity of lung areas with volumes similar to the areas with 20 increased ¹⁸FDG uptake in the post-CAP studies of CAP participants but in patients that 21 do not have history of this infection. 22

About two-thirds of elderly CAP survivors exhibit persistent pneumoniaassociated radiographic infiltrates after CAP clinical resolution .^{10 18}FDG-PET/CT is a more sensitive technique for lung parenchymal abnormalities than x-rays. Our study was powered to detect a 65% prevalence of persistent inflammatory foci in lung parenchyma of elderly CAP survivors with a margin of error of 20% and a confidence level of 95%.

7 Using descriptive, chi-square and t-test (paired and independent-sample) 8 statistics, as appropriate, we compared baseline characteristics of CAP-patients versus 9 controls, and CAP-patients' tPGA and CRP serum levels in the acute-CAP versus post-10 CAP states. For comparisons between the post-CAP tPGA of CAP patients versus the lung volume-matched glycolytic activity of controls, we used simple linear regression 11 12 with the post-CAP tPGA values (for CAP patients) or the lung volume-matched 13 glycolytic activity values (for controls) as the outcome, pneumonia vs. control as the 14 exposure, and any baseline characteristic that differed between groups (with a P 15 significance level of <0.2) as covariate(s). We also explored correlations between CRP and PSI values with tPGA using the Pearson coefficient of correlation. Kappa statistics 16 was used to measure the concordance between tPGA values and visual interpretation 17 18 of scans. A two-tailed P value < 0.05 was considered statistically significant. Statistical 19 analyses were performed using the Matlab statistics and machine learning toolbox (Matlab 2016b, the Mathworks; Natwick, MA). 20

21

22 **RESULTS**

23 Participant Characteristics

A flow diagram of the recruitment process in our study is presented in **e-Figure 1**. We initially enrolled 28 patients in the acute phase of CAP. However, 6 declined to return for their post-CAP examinations and were subsequently excluded. As a result, 22 patients with completed acute and post-CAP examinations are included in this report. We also identified 28 matched historical controls. The baseline clinical characteristics of the pneumonia participants and controls are presented in **Table 1**.

7

8 Patterns of progression of ¹⁸FDG uptake after clinical resolution of CAP

9 Representative patterns of ¹⁸FDG uptake in lung parenchyma from the acute- to the
10 post-CAP studies are presented in Figure 2. Overall, 15 (<u>68.2%</u>, confidence interval
11 45.1% to 85.2%) of CAP-survivors still showed distinct areas of <u>increased</u> ¹⁸FDG uptake
12 (improved, unchanged or worsened from previous) in their <u>post-CAP studies</u>.

13

14 tPGA during and after CAP and comparison with controls

Strong agreement (kappa=0.80) was found between the expert reader's visual 15 interpretation of direction and magnitude of change of FDG uptake from acute to post-16 pneumonia scan and the difference in tPGA values between the two scans. The 17 progression of tPGA from the acute- to the post-CAP in each CAP patient is depicted in 18 19 e-Figure 2. tPGA decreased significantly from 821.5 (standard deviation [SD], 1140.2) 20 to 80.0 (SD, 81.4) in the acute- and post-CAP periods, respectively (p=0.006). However, 21 post-CAP tPGA values in CAP-survivors were still significantly higher than zero (p<0.001), and also higher than glycolytic activity values of volume matched lung areas 22 in controls (80.0 [SD, 81.4] versus -19.4 [SD, 5.9]; adjusted p<0.001) (Figure 3). 23

1	
2	Associations of PSI and CRP with tPGA
3	PSI score values did not correlate with acute- or post-CAP tPGA values (r ² , 0.007;
4	p=0.701; and r ² , 0.002; p=0.817, respectively). Serum CRP values decreased
5	significantly from the acute-CAP to the post-CAP periods (112.5 [SD, 60.2] mg/L vs. 7.8
6	[SD, 12.3] mg/L, respectively; p <0.001). Acute-CAP CRP levels correlated directly with
7	acute-CAP tPGA values (r ² =0.34; p=0.002) but not with post-CAP tPGA values
8	(r ² =0.0009; p=0.893). Post-CAP CRP values did not correlate with acute- or post-CAP
9	tPGA values (r^2 , 0.003; p=0.800; and r^2 , 0.0002; p=0.940, respectively). The difference
10	in CRP levels between acute-CAP and post-CAP values correlated with the difference
11	in tPGA between acute-CAP and post-CAP values (r^2 , 0.39; p=0.002).
12	
13	DISCUSSION
14	To the best of our knowledge, this is the first series of CAP survivors investigated
15	with ¹⁸ FDG PET/CT. Herein, we demonstrated that a significant proportion of CAP
16	survivors (68.2% in our study) continue having distinct foci of increased inflammatory
17	activity in their lung parenchyma for several weeks after the clinical resolution of their
18	infection. While persistent radiographic lung parenchymal infiltrates after clinical
19	resolution of pneumonia are well described among CAP survivors, ^{8,9} we are not aware
20	of any previous report (in humans or otherwise) documenting residual biologically active
21	parenchymal abnormalities in the lungs of such patients.
22	Increased uptake of ¹⁸ FDG (a glucose analogue) denotes increased cellular
23	metabolic activity. In tissues of mostly uniform cellular metabolic activity with no

1	meaningful glucose storage capacity such as the lung parenchyma, ²² focal increased
2	⁸ FDG uptake in PET images reflects malignancy or infectious/inflammatory activity. ²³ In
3	our population of CAP survivors, their initial syndromic presentation consistent with
4	pneumonia, their acutely elevated CRP levels, their clinical response to pneumonia-
5	directed therapy, and the dynamic change of ¹⁸ FDG uptake over time make it all but
6	certain that the residual areas of focal increased ¹⁸ FDG uptake seen in their lung
7	parenchyma in the post-CAP studies represent residual foci of inflammatory activity
8	related to the -by then treated- index infection. However, the clinical significance of this
9	finding and the nature of the local inflammatory cells and humoral mediators that
10	contribute to this residual inflammation remain unknown.
11	Our estimation of tPGA is similar to the estimation of total lesion glycolysis for
12	lung cancer lesions. ^{19,20} In our study, tPGA is a background-corrected measure of the
13	total metabolic activity (as measured by ¹⁸ FDG uptake) of lung areas seemingly
14	affected by pneumonia. tPGA allowed us to estimate not only the magnitude of
15	decrease in metabolic activity associated with -presumed- pneumonia lesions from the
16	acute-CAP to the post-CAP periods but also the magnitude of the residual increased
17	pneumonia-associated metabolic activity in affected lung areas in CAP-survivors
18	relative to volume-matched lung areas in controls without recent pneumonia (about 4-
19	fold higher in our study). Currently however, we can make no inference about the
20	clinical significance of these differences.
21	The lack of association between PSI and tPGA (both at the acute-CAP and post-
22	CAP periods) is not unexpected. While tPGA is an approximation of the total metabolic

23 activity associated with discrete pneumonia lesions, PSI is a validated 20-item (3

1 demographic criteria, 5 pre-existing co-morbidities, 5 physical-examination findings, and 7 selected laboratory and radiographic findings) score built to predict 30-day mortality of 2 patients presenting with CAP to an emergency department.²¹ Thus, any putative 3 4 association of tPGA with clinical outcomes (short or longer-term) will require confirmation 5 with dedicated investigations. 6 Serum CRP is an acute phase reactant that is widely used as unspecific marker of inflammation.²⁴ Serum CRP elevations have been broadly associated with the activity 7 of infections and inflammatory rheumatological conditions.^{25,26} In response to an acute 8 inflammatory insult, CRP levels peak in the early phase of the inflammatory response.²⁴ 9 10 Predictably, serum **CRP** values correlated with tPGA at the acute-CAP period. 11 However, at the post-CAP period, not such association was demonstrated. Inflammation is one of the most dynamic and multifaceted biological processes with a variety of 12 triggers, cellular and humoral actors, and regulatory pathways.^{24,27} CRP, therefore, may 13 not be a suitable biomarker for the post-infectious inflammatory activity in lung 14 parenchyma demonstrated our study and dedicated investigations will be needed to 15 identify more accurate biomarkers of this occurrence. Such investigations, along with 16 the development of animal models of this observation should assist in the elucidation of 17 18 the biological processes governing this phenomenon. Radiographic lung infiltrates that outlive the clinical resolution of CAP have been 19 well described.^{8,9} It intuitively follows that such residual radiographic abnormalities post-20 CAP should correspond to the areas of persistent inflammatory activity demonstrated in 21

- 22 our study. However, the validity and strength of such association will also need to be
- 23 tested in dedicated studies.

1	Inflammatory activity is associated with the progression of cardiovascular
2	disease, cognitive and functional decline, and mortality risk in the general population. ⁶
3	The risk of these outcomes also increases after CAP and remains elevated for months
4	after resolution of the infection. ¹⁻⁵ Our novel finding of lingering foci of inflammatory
5	activity in the lung parenchyma of CAP-survivors provides a plausible mechanism for
6	this increased morbidity and mortality post-CAP and its contribution to this phenomenon
7	needs to be further investigated in experimental and clinical studies. ¹⁻⁵ Such
8	investigations, along with the elucidation of the biological pathways driving post-CAP
9	lung inflammation, could then inform therapeutic interventions targeting this
10	phenomenon to improve post-CAP outcomes. This is especially relevant to post-CAP
11	cardiovascular risk since directed anti-inflammatory interventions have already proven
12	beneficial in other (non-CAP) high-cardiovascular-risk groups.28,29
13	Our study is limited by its relatively small sample size. In addition, we were
14	unable to determine the full duration of increased lung FDG uptake, as we did not
15	perform further ¹⁸ F-FDG beyond the 4-6 weeks post-CAP. Because of our sample size,
16	we could not explore associations with incident adverse clinical events known to be
17	associated with CAP in the medium- and long-term. ¹⁻⁵ We only enrolled patients aged
18	>65 years who were clinically stable enough to endure the technical requirements for
19	the performance of a ¹⁸ FDG-PET/CT scan in the acute phase of CAP, and had a
20	baseline (pre-CAP) functional level that would make it likely for them to return for their
21	convalescent examinations. Therefore, it is unknown whether our observations apply to
22	younger age-groups, individuals with worse systemic compromise from CAP or worse
23	baseline functional status. We used the PSI as a surrogate for severity of CAP, as

1	previously reported. ²¹ However, PSI is highly age-dependent and it has been suggested
2	that other tools like the IDSA/ATS criteria for severe CAP are better measures of
3	disease severity. ³⁰ Unfortunately, we did not evaluate those other tools. As the serum
4	CRP measurements used for inclusion in our study (i.e. CRP ≥15 mg/L) were not drawn
5	at the time of patients' presentation to hospital but within 72h of hospital admission, it is
6	possible that we selected for patients prone to more prolonged inflammatory responses
7	(as opposed to patients with tendency to resolve their acute inflammatory responses
8	quickly). Finally, while we assessed associations between lung FDG uptake and CRP,
9	we did not evaluate other more specific inflammatory pathways that could be linked to
10	persistent lung inflammation after CAP.
11	
12	INTERPRETATION
13	In conclusion, an important proportion of CAP-survivors demonstrate persistently
14	increased inflammatory activity in their lung parenchyma well beyond clinical resolution
15	of their infection. This novel finding provides a plausible mechanism that might
16	contribute to the adverse morbidity and mortality that follows CAP.
17	
18	
19	
20	
21	REFERENCES

Mortensen EM, Kapoor WN, Chang CC, Fine MJ. Assessment of mortality after
 long-term follow-up of patients with community-acquired pneumonia. *Clin Infect Dis.*

1 2003;37(12):1617-1624.

Davydow DS, Hough CL, Levine DA, Langa KM, Iwashyna TJ. Functional
 disability, cognitive impairment, and depression after hospitalization for pneumonia. *Am J Med.* 2013;126(7):615-624 e615.

Corrales-Medina VF, Alvarez KN, Weissfeld LA, et al. Association between
 hospitalization for pneumonia and subsequent risk of cardiovascular disease. *JAMA*.
 2015;313(3):264-274.

8 4. Corrales-Medina VF, Taljaard M, Yende S, et al. Intermediate and long-term risk
9 of new-onset heart failure after hospitalization for pneumonia in elderly adults. *Am Heart*10 *J.* 2015;170(2):306-312.

Shah FA, Pike F, Alvarez K, et al. Bidirectional relationship between cognitive
 function and pneumonia. *Am J Respir Crit Care Med.* 2013;188(5):586-592.

Jenny NS, French B, Arnold AM, et al. Long-term assessment of inflammation
 and healthy aging in late life: the Cardiovascular Health Study All Stars. *J Gerontol A Biol Sci Med Sci.* 2012;67(9):970-976.

Yende S, D'Angelo G, Kellum JA, et al. Inflammatory markers at hospital
 discharge predict subsequent mortality after pneumonia and sepsis. *Am J Respir Crit Care Med.* 2008;177(11):1242-1247.

19 8. Jay SJ, Johanson WG, Jr., Pierce AK. The radiographic resolution of

20 Streptococcus pneumoniae pneumonia. *N Engl J Med.* 1975;293(16):798-801.

9. Bruns AH, Oosterheert JJ, Prokop M, Lammers JW, Hak E, Hoepelman AI.
 Patterns of resolution of chest radiograph abnormalities in adults hospitalized with
 severe community-acquired pneumonia. *Clin Infect Dis.* 2007;45(8):983-991.
 10. El Solh AA, Aquilina AT, Gunen H, Ramadan F. Radiographic resolution of

5 community-acquired bacterial pneumonia in the elderly. J Am Geriatr Soc.

6 2004;52(2):224-229.

11. Bafadhel M, Clark TW, Reid C, et al. Procalcitonin and C-reactive protein in
hospitalized adult patients with community-acquired pneumonia or exacerbation of
asthma or COPD. *Chest.* 2011;139(6):1410-1418.

12. Justo D, Lachmi S, Saar N, et al. C-reactive protein velocity following antibiotics
in patients with chronic obstructive pulmonary disease exacerbation and community
acquired pneumonia. *Eur J Intern Med.* 2009;20(5):518-521.

13. Bobylev A, Rachina S, Avdeev S, Mladov V. Diagnosis on community-acquired
pneumonia (CAP) in patients with congestive heart failure (CHF). *Eur Respir J.*2017;50(suppl 61):PA4521.

14. Pereira J, Ribeiro A, Ferreira-Coimbra J, et al. Is there a C-reactive protein value
beyond which one should consider infection as the cause of acute heart failure? *BMC Cardiovasc Disord.* 2018;18(1):40.

19 15. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of
 20 America/American Thoracic Society consensus guidelines on the management of

1	community-acquired pneumonia in adults. Clin Infect Dis. 2007;44 Suppl 2:S27-72.
2	16. Heo JY, Song JY. Disease Burden and Etiologic Distribution of Community-
3	Acquired Pneumonia in Adults: Evolving Epidemiology in the Era of Pneumococcal
4	Conjugate Vaccines. Infect Chemother. 2018;50(4):287-300.
5	17. File TM, Jr., Marrie TJ. Burden of community-acquired pneumonia in North
6	American adults. Postgrad Med. 2010;122(2):130-141.
7	18. Fry AM, Shay DK, Holman RC, Curns AT, Anderson LJ. Trends in
8	hospitalizations for pneumonia among persons aged 65 years or older in the United
9	States, 1988-2002. JAMA. 2005;294(21):2712-2719.
10	19. Larson SM, Erdi Y, Akhurst T, et al. Tumor Treatment Response Based on Visual
11	and Quantitative Changes in Global Tumor Glycolysis Using PET-FDG Imaging. The
12	Visual Response Score and the Change in Total Lesion Glycolysis. Clin Positron
13	Imaging. 1999;2(3):159-171.
14	20. Mayerhoefer ME, Staudenherz A, Kiesewetter B, et al. Pre-Therapeutic Total
15	Lesion Glycolysis on [(18)F]FDG-PET Enables Prognostication of 2-Year Progression-
16	Free Survival in MALT Lymphoma Patients Treated with CD20-Antibody-Based
17	Immunotherapy. Mol Imaging Biol. 2019;21(6):1192-1199.

18 21. Fine MJ, Auble TE, Yealy DM, et al. A prediction rule to identify low-risk patients
19 with community-acquired pneumonia. *N Engl J Med.* 1997;336(4):243-250.

20 22. Young SL, Tierney DF. Metabolic activity of the lung. Int Anesthesiol Clin.

1 1977;15(4):1-17.

2 23. Vaidyanathan S, Patel CN, Scarsbrook AF, Chowdhury FU. FDG PET/CT in
 3 infection and inflammation--current and emerging clinical applications. *Clin Radiol.* 4 2015;70(7):787-800.

5 24. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to
6 inflammation. *New Engl J Med.* 1999;340(6):448-454.

7 25. Ticinesi A, Lauretani F, Nouvenne A, et al. C-reactive protein (CRP)
8 measurement in geriatric patients hospitalized for acute infection. *Eur J Intern Med.*9 2017;37:7-12.

26. Rhodes B, Furnrohr BG, Vyse TJ. C-reactive protein in rheumatology: biology
and genetics. *Nat Rev Rheumatol.* 2011;7(5):282-289.

12 27. Netea MG, Balkwill F, Chonchol M, et al. A guiding map for inflammation. *Nat*13 *Immunol.* 2017;18(8):826-831.

14 28. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with

15 Canakinumab for Atherosclerotic Disease. *New Engl J Med.* 2017;377(12):1119-1131.

16 29. Tardif JC, Kouz S, Waters DD, et al. Efficacy and Safety of Low-Dose Colchicine

after Myocardial Infarction. *New Engl J Med.* 2019;381(26):2497-2505.

Metlay JP, Waterer GW, Long AC, et al. Diagnosis and Treatment of Adults with
 Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American

2	Med. 2019 Oct 1;200(7) :e45-e67.
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	TAKE HOME POINTS

1

Journal Pre-proof

Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care

ourn		D	nr		
oun	aı				

1	Question: We investigated if community-acquired pneumonia (CAP) survivors have
2	evidence of increased inflammatory activity in their lung parenchyma on ¹⁸ FDG-PET/CT
3	after clinical resolution of infection?
4	Results: In this study of 22 CAP-survivors and 28 controls, 68% of CAP-survivors had
5	distinct residual areas of increased ¹⁸ FDG uptake in their post-CAP scans. Furthermore,
6	the post-CAP scans of the pneumonia survivors showed a significantly higher
7	inflammatory activity compared to controls.
8	Interpretation: Persistent pulmonary foci of increased inflammatory activity beyond
9	clinical resolution of the infection may provide a plausible mechanism for the increased
10	morbidity and mortality observed post-CAP.
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	Table 1 title: Clinical characteristics of patients with community-acquired pneumonia
22	(CAP) and controls

1	Table 1 legend: SD denotes standard deviation. PSI denotes pneumonia severity
2	index. NA denotes not applicable.
3	
4	Figure 1 title: Estimation of the total pulmonary glycolytic activity (tPGA) in a patient
5	with community-acquired pneumonia of the right middle lung lobe
6	Figure 1 legend: Using the semi-automated program HERMES Hybrid Viewer™
7	(Stockholm, Sweden) and the co-registered images PET and CT of the $^{18}{\rm FDG}$ PET/CT ,
8	the entire three-dimensional volumes of each lung (right and left) are defined. Each
9	lung volume is then divided, when appropriate, into 2 separate sub-volumes: (1) the
10	distinct areas of increased ¹⁸ FDG uptake corresponding to lung infiltrates on CT imaging
11	(VOL _{PNA}), and (2) the complementary lung with otherwise unremarkable (i.e
12	"background") ¹⁸ FDG uptake (VOL_{BKG}). The mean ¹⁸ FDG standardized uptake value
13	(SUV) is then measured in each sub-volume ($SUV_{pneumonia}$ and $SUV_{background}$). The
14	pneumonia glycolytic activity (PGA) of each lung is then estimated as follows:
15	$PGA = VOL_{PNA} \times (SUV_{PNA} - SUV_{BKG})$
16	the tPGA for the whole study is estimated by adding the PGAs of each lung (right and
17	left). In this case, as there was no obvious infiltrate in the left lung, the tPGA value will
18	be equal to the PGA value for the right lung.
19	
20	Figure 2 title: Visual patterns of progression of ¹⁸ FDG uptake in the lung parenchyma
21	of 22 survivors of community-acquired pneumonia (CAP)
22	Figure 2 legend: ¹⁸ FDG denotes 18-fluorine-2-deoxy-D-glucose. Added circles enclose
23	discrete areas of lung parenchyma with increased ¹⁸ FDG uptake.

21

Journal Pre-proof

	-1

1	
2	Figure 3 title: Glycolytic activity of lung areas affected by pneumonia in survivors of
3	community-acquired pneumonia (CAP) and in volume-matched lung areas of controls.
4	Figure 3 legend: Acute-CAP denotes measurement during hospitalization for CAP.
5	Post CAP denotes measurements at 3040-34 45 days after hospital discharge. tPGA
6	denotes total pulmonary glycolytic activity. The p value for the comparison between
7	post-CAP measurements and the measurements in controls is adjusted for the
8	difference in the prevalence of heart failure, stroke, hypertension and dyslipidemia
9	between the groups (see Table 1).
10	e-Figure 1 title: Flow diagram of the study recruitment process
11	e-Figure 1 legend: CAP denotes community-acquired pneumonia. ¹⁸ FDG-PET/CT
12	denotes positron emission tomography (PET)/Computed tomography (CT) with 18-
13	fluorine-2-deoxy-D-glucose
14	
15	e-Figure 2 title: Total pulmonary glycolytic activity (tPGA) in patients
16	e-Figure 2 legend: Progression of the total pulmonary glycolytic activity (tPGA) in
17	patients with community-acquired pneumonia (CAP) from the acute stage (acute CAP,
18	48h-96h after hospitalization for CAP) to the convalescent stage (30-45 days after
19	hospital discharge)
20	
21	

ACKNOWLEDGEMENTS 22

VFCM and GD led the project and are responsible for all content in the manuscript. All authors approved the analysis plan. RAD, WZ and JW performed the analyses. VFCM and GD drafted the manuscript. All authors contributed to interpretation of the results and revision of the manuscript for important intellectual content, and approved its submission.

This work was supported by funds received from the Heart and Stroke Foundation of 6 7 Canada (Grant G-16-00014187). VFC, WZ and JW have nothing to disclose. JAC has consulted for Sanifit, Bayer, Bristol-Myers Squibb, OPKO Healthcare, Ironwood, Akros 8 9 Pharma, Merck, Pfizer, Edwards Lifesciences, Microsoft and Fukuda-Denshi. He 10 received research grants from National Institutes of Health, American College of 11 Radiology Network, Fukuda-Denshi, Bristol-Myers Squibb and Microsoft. RdK reports 12 grants, consulting fees, and license revenues from Jubilant DraxImage and uOttawa Heart Institute (UOHI), outside the submitted work. RSB reports grants and honoraria 13 14 from Lantheus Medical Imaging, grants and honoraria from Jubilant DraxImage, and 15 grants from GE Healthcare, outside the submitted work. RB is a Career Investigator supported but the Heart and Stroke Foundation of Ontario and a Tier 1 Research Chair 16 17 supported by the University of Ottawa. JAC is supported by NIH grants R01-HL121510-01A1, R61-HL146390, R01-AG058969, 1R01HL104106, P01HL094307 and R56 18 19 HL136730. GD was supported by a CIHR new investigator salary support award while at UOHI. Currently he is Wesfarmers Chair in Cardiology at University of Western 20 Australia with an Adjunct Professor appointment at UOHI. The study was performed at 21 UOHI. GD reports 3 paid lectures from AstraZeneca, Pfizer, and Amgen not related to 22 23 the topic in the manuscript. GD provides consultancy services to Artrya Pty Ltd.

1 No funding source had any input in the development of the research and/or manuscript.

Figure 1.

Jonuly

Figure 2.

Patterns of progression	Acute-CAP (48h-96h post-admission)	Post-CAP (30d-45d post-discharge)	Number of patients (%)
A) Resolution	R L R L	R L R	7 (31.8 %)
B) Improvement but still persistent distinct areas of increased ¹⁸ FDG uptake		R L R L L	13 (59.1 %)
C) Overall no change or worsening			2 (9.1 %)

Table 1.

Baseline characteristics	CAP cases	Controls	P-value
	n = 22	n = 22	
Mean age ± SD	79 ± 9	77 ± 8	0.552
Male sex (%)	11 (50%)	15 (54%)	0.802
History of:			
Heart failure (%)	7 (32%)	1 (4%)	0.023
Coronary artery disease (%)	6 (27%)	7 (25%)	0.856
Stroke (%)	0 (0%)	6 (21%)	0.028
Hypertension (%)	7 (32%)	16 (57%)	0.074
Dyslipidemia (%)	9 (41%)	17 (61%)	0.164
Smoking (%)	8 (36%)	7 (25%)	0.384
Chronic obstructive pulmonary disease (%)	8 (36%)	8 (29%)	0.558
Diabetes (%)	6 (27%)	4 (14%)	0.254
End-stage renal disease (%)	0 (0%)	0 (0%)	NA
Mean PSI score ± SD	97 ± 26	NA	NA
Mean length of hospital stay \pm SD	4 ± 1	NA	NA