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Impact of Antibiotics on Expression of Virulence-
Associated Exotoxin Genes in Methicillin-Sensitive
and Methicillin-Resistant Staphylococcus aureus
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Extracellular protein toxins contribute to the pathogenesis of a wide variety of Staphylococcus aureus infections.
The present study investigated the effects that cell-wall active antibiotics and protein-synthesis inhibitors have
on transcription and translation of genes for Panton-Valentine leukocidin, alpha-hemolysin, and toxic-shock
syndrome toxin 1, in both methicillin-sensitive and methicillin-resistant S. aureus. Subinhibitory concentra-
tions of nafcillin induced and prolonged mRNA for Panton-Valentine leukocidin, alpha-toxin, and toxic-shock
syndrome toxin 1 and increased toxin production. In contrast, clindamycin and linezolid markedly suppressed
translation, but not transcription, of toxin genes. These results suggest (1) that protein-synthesis inhibition
is an important consideration in the selection of antimicrobial agents to treat serious infections caused by
toxin-producing gram-positive pathogens and (2) that, by inducing and enhancing toxin production, inad-
vertent use of beta-lactam antibiotics to treat methicillin-resistant S. aureus infections may contribute to worse
outcomes.

There is clear evidence that alpha-hemolysin plays a

significant role in local tissue necrosis in animal models

of staphylococcal infection [1]. In addition, toxic-shock

syndrome toxin 1 (TSST-1) and staphylococcal entero-

toxin B (SEB) play important roles in menstruation-

and surgery-associated staphylococcal toxic-shock syn-

drome (STSS), respectively (reviewed in [2]). Recently,

an epidemic of community-acquired methicillin-re-

sistant S. aureus (CA-MRSA) infections has emerged

throughout the United States. These strains have an

SCCmec type IV cassette conferring resistance to meth-

icillin [3], and 77% of them harbor genes for Panton-
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Valentine leukocidin (PVL) [4, 5]. In addition, the prev-

alence of the genes for alpha-toxin and SEB is higher

in CA-MRSA than in hospital-acquired MRSA (HA-

MRSA), suggesting that strains circulating in the com-

munity are more virulent than hospital-associated

strains [6]. Recent reports of necrotizing pneumonia

and necrotizing fasciitis caused by CA-MRSA strains

harboring PVL genes support this conclusion [7–9]. In

addition, STSS caused by MRSA strains producing SEB,

staphylococcal enterotoxin (SEC), or TSST-1 has been

reported from many parts of the world [3, 10–15].

Remarkably, in a few short years, MRSA has spread

globally, causing more severe infections, which are due,

in part, to an increase in their toxin armamentarium.

The effect on toxin production is an important con-

sideration in the selection of an antimicrobial agent to

treat staphylococcal infections. Despite the emergence

of MRSA, nafcillin remains a potentially valuable an-

tibiotic for methicillin-sensitive S. aureus (MSSA) in-

fections since beta-lactam antibiotics are bactericidal by

blocking penicillin-binding protein (PBP)–mediated

cell-wall synthesis. Yet, at concentrations at or above

the MIC, nafcillin actually increases TSST-1 concen-
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Table 1. Characteristics of strains used in the present study.

Strain
Response

to methicillin
mecA
type

agr
type

MIC, mg/mL
Toxin profile

(by gene probe)

Nafcillin Vancomycin Clindamycin Linezolid PVL TSST-1
Alpha-

hemolysin

04-014 Resistant IVc ND 6.4 Sa Sa Sa � + +
MRSA 1560 Resistant IV III 6.4 2.0 0.2 2.0 + � +
04-002 Sensitive NA ND 0.8 1.0 0.1 4.0 � + +
ATCC 18032 Sensitive NA ND 1.6 ND ND ND � � +
ATCC 29213b Sensitive NA ND 0.4 2.0 0.1 4.0 ND ND ND

NOTE. NA, not applicable; ND, not done; PVL, Panton-Valentine leukocidin; TSST-1, toxic-shock syndrome toxin 1; �, negative; +, positive.
a Antibiotic sensitivity, verified by disk diffusion in the Veterans Administration Medical Center Clinical Microbiology Laboratory.
b Control strain of Staphylococcus aureus. The MICs shown were obtained in our laboratory and are within the defined ranges for this strain.

trations in culture supernatant fluid, likely because of rupture

of the cell wall and release of toxin into the external milieu

[16]. At subinhibitory concentrations, nafcillin increases alpha-

toxin production via induction of mRNA production [17]. The

present study compared the effects of nafcillin and vancomycin

versus those of 2 protein-synthesis inhibitors, clindamycin and

linezolid, on production of alpha-toxin, TSST-1, and PVL and

on the temporal expression of toxin-specific mRNA in both

MSSA and MRSA.

MATERIAL AND METHODS

Strains and culture conditions. Several strains of MSSA and

MRSA were used in the present study (table 1). MSSA strain

04-002 was isolated from the abdominal wound of a patient

with STSS and was found to produce high levels of TSST-1

[18]. The other clinical isolate, strain 04-014, was obtained from

the Centers for Disease Control and Prevention (CDC strain

368-04). This strain was isolated from a case of CA-MRSA

infection and produces SEC, TSST-1, and alpha-hemolysin but

is negative for PVL. No multilocus sequence typing or agr

analysis was done on this strain. Pulse-field gel electropho-

resis (PFGE) analysis was performed but did not yield a match

(within 80%) to any known USA type; it was most closely

related to strains of the USA 600 type (R. Carey, personal com-

munication). The MSSA laboratory strain—Wood 46, which

produces high levels of alpha-hemolysin—was purchased from

the American Type Culture Collection VA (ATCC strain 18032).

Last, MRSA strain 1560 was a provided by Dr. Francoise Per-

dreau-Remington, University of California, San Francisco [19].

This CA-MRSA strain was isolated from a wound and belongs

to ST1 (USA 400); its PFGE pattern is similar, but not identical,

to that of MW2; and it is PVL positive and contains SCCmec

IV and agr III (table 1).

All strains of staphylococcus were maintained in cation-sup-

plemented Mueller-Hinton II broth. When the effects that

antibiotics have on alpha-hemolysin, TSST-1, and PVL pro-

duction were examined, S. aureus was cultured in beef-heart

infusion (BHI) medium supplemented with 16.5 mmol/L

glucose, 25 mmol/L NaHCO3, 34 mmol/L NaCl, 6 mmol/L

Na2HPO4, 1.35 mmol/L l-glutamine, and 20 mmol/L Mg2SO4

(complete BHI [cBHI]). This medium supports maximal TSST-

1 production [20–23] and permits alpha-hemolysin and PVL

production. To initiate cultures, single bacterial colonies were

picked from sheep-blood/agar plates, and cultures were grown

at 37�C in 5% CO2 with shaking (100 rpm).

Antibiotics. The antibiotics used in the present study were

nafcillin (Bristol-Meyers-Squibb), vancomycin (Sigma), line-

zolid (Pfizer), and clindamycin HCl (Pfizer). MICs of these

antibiotics were determined by a microdilution broth method

used according to NCCLS guidelines [24], except that cBHI

medium was used instead of cation-supplemented Mueller-

Hinton broth; these MICs are provided in table 1.

Antibiotics’ effects on toxin production. Experiments de-

signed to test the effects that antibiotics have on TSST-1, alpha-

hemolysin, and PVL production required that high starting

concentrations of inocula be used to obtain detectable levels

of toxin; specifically, cultures were initiated with washed S.

aureus at cfu/mL and were allowed to grow for ∼4 h75 � 10

(mid-log phase), at which point, designated as time 0, anti-

biotics were added. To compensate for the increased inoculum

size, vancomycin, linezolid, and clindamycin were added such

that the final concentration was 5 times the MIC; this concen-

tration was chosen on the basis of our previous work on an-

tibiotic-induced toxin suppression in Clostridium perfringens

[25] and group A streptococcus (authors’ unpublished data).

Nafcillin was used at a concentration of 0.01–8 mg/mL. Samples

were removed at time 0 and at various times after antibiotic

administration and were placed on ice. The number of viable

bacteria at each time point was determined by plating duplicate

10-mL samples (or 10-fold dilutions thereof) onto blood/agar

plates. The remaining sample was rendered bacteria free by

centrifugation and filter sterilization and then was frozen at
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Table 2. Primers used in the present study.

Gene

Oligonucleotide

Sense Antisense

tst GCTACAGATTTTACCCCTGTTCCCTTA TGATATGTGGATCCGTCATTCATTG
hla CCAATCGATTTTATATCTTTCTGAAGAACG ATTGCTAGGTTCCATATTAATGAATCCTGT
lukS GATAACAATATTGAGAAT AAGTGAAAGGACATAATTGA

�70�C until it was tested, as described below, for the presence

of toxins.

Toxin assays. The TSST-1 ELISA followed procedures de-

scribed elsewhere [26]. In brief, a 96-well microplate was

coated, overnight at 4�C, with 10 mg/mL rabbit polyclonal anti–

TSST-1 (Toxin Technology) in Dulbecco’s PBS (DPBS), after

which the wells were washed and blocked with 3% bovine

serum albumin in DPBS. Either bacterial culture–supernatant

fluid or recombinant TSST-1 (Toxin Technology) containing

1% normal rabbit serum to block nonspecific binding of an-

tibodies by protein A was added, in duplicate, to the plate,

followed by rabbit anti–TSST-1 horseradish-peroxidase con-

jugate (diluted 1:300) (Toxin Technology) and the colorimet-

ric substrate, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic

acid) (ABTS; Zymed). After 20 min, absorbance was read at

405 nm. The concentration of TSST-1 in the culture sample

was extrapolated, by linear regression, from a standard curve

prepared by use of recombinant TSST-1. The assay was linear

over the range of 1.0–62.5 ng/mL, with 0.5 ng/mL as the lower

limit of detection.

Alpha-hemolysin activity was measured by hemolysis of rab-

bit erythrocytes, as described elsewhere [1, 17, 27]. In brief,

sterile filtered culture-supernatant fluid was diluted 2-fold in

DPBS in a microtiter plate, and an equal volume of a washed,

rabbit-erythrocyte suspension (2% in DPBS) was added. Sterile

deionized water served as the 100% hemolysis control. After 1

h at 37�C, the plate was centrifuged, the supernatant removed

to a fresh microtiter plate, and absorbance was read at 550 nm.

Activity, in hemolytic units per milliliter, was defined as the

inverse of the dilution causing 50% hemolysis, multiplied by 2.

The presence of PVL was determined by western blotting

using a leukocidin F (LukF)–PV–specific polyclonal rabbit an-

tiserum that was prepared as follows: A 27-aa peptide—RYT-

NFWNQLHWIGNNYKDENRATHTSI—corresponding to aa

275–301 of mature LukF-PV, was selected for anti-PVL anti-

body production because this region is the most divergent from

the F-components of the other homologous bicomponent tox-

ins (i.e., LukF, gamma-hemolysin component B, and LukE) in

S. aureus and is not present in the S-components (reviewed in

[28]). Antipeptide antibody was commercially prepared (Phoe-

nix Phamaceuticals) by repeated immunization of rabbits with

a KHL-peptide conjugate, and titers were followed by western

blotting of recombinant LukF-PV. The LukF-PV peptide an-

tiserum recognized recombinant LukF-PV but showed no

cross-reactivity, by western blot, either with recombinant LukS-

PV or with culture-supernatant fluid from strain ATCC 31889,

which produces LukF and gamma-hemolysin but is LukF-PV

negative [28] (data not shown).

Northern blotting. Approximately S. aureus were91 � 10

collected by centrifugation at 13,000 g in a microfuge tube.

Total RNA was purified by use of a RiboPure-Bacteria kit (Am-

bion), according to the manufacturer’s instructions. The RNA

yield and its quality were assessed by UV absorbance and by

agarose-gel electrophoresis, respectively. Two micrograms of to-

tal RNA in an ∼4-mL volume was mixed with 10 mL of RNA

loading buffer (catalog number R-4268; Sigma), and the sample

was heated at 55�C for 15 min. The sample was loaded onto

a 1% denaturing agarose gel and was run under 100 V for 90

min. RNA was transferred, by capillary action, to a nylon

membrane (Hybond-N; Amersham Life Science) by use of 20�

standard saline citrate (SSC) buffer. The membrane was air-

dried, baked at 80�C for 2 h, and prehybridized in Ultrahyb

solution (Ambion) at 42�C for 1 h, followed by hybridization

with random labeled (Invitrogen) 32P probes (described below),

at a concentration of counts/mL, for 18 h at 42�C. The61 � 10

membrane was washed twice, at 60�C for 15 min, with 2� SSC

and 1% SDS and twice, at 60�C for 15 min, with 0.2� SSC

and 0.5% SDS and then was exposed to Kodak BioMax light

film (Sigma).

Gene-specific probes for TSST-1, alpha-hemolysin, and the

S-component of PVL were prepared by polymerase chain re-

action (PCR) amplification and random labeling of the oligo-

nucleotides listed in table 2. The resultant PCR products cover

the TSST-1 and Hla molecules from aa 72–629 and aa 25–933,

respectively. The PVL primers amplified the entire LukS-PV gene.

RESULTS

Antibiotics’ effects of on growth and PVL mRNA expression

in MRSA. Addition of nafcillin, vancomycin, clindamycin, or

linezolid during the mid-log phase had different effects on the

growth of MRSA strain 1560 (figure 1A). Specifically, low (0.2

or 2 mg/mL) doses of nafcillin had little effect on growth, such

that by 10 h there was no difference between the bacterial

concentration in these cultures and that in untreated control

cultures. In contrast, both linezolid and clindamycin imme-
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Figure 1. Effect of antibiotics on growth and PVL production in methicillin-resistant Staphylococcus aureus (MRSA) strain 1560. Antibiotics were
added, at the final concentrations indicated, at the mid-log phase of growth; this time is designated Time 0. Samples were obtained at Time 0 and
at various times up to 34 h after antibiotic treatment for quantitation of MRSA (A), detection of PVL mRNA by northern blotting (B), and detection
of PVL protein by western blotting (C), as described in Materials and Methods. The panel beneath the northern blot shows ethidium bromide–stained
RNA that was transferred to the nylon membrane and photographed to illustrate that equivalent amounts of RNA were loaded per lane. Naf-1 and
Naf-2 in the northern blot (B) denote nafcillin at 2.0 and 0.2 mg/mL, respectively. Data shown are from 1 representative experiment of 2 that were
performed with this community-acquired MRSA strain. Data for MRSA concentration represent the means of duplicate plate counts at each time
point; the discrepancy between replicates is too small to be visible. Cln, clindamycin; Lin, linezolid; Naf, nafcillin; rLukF-PV, recombinant Panton-
Valentine leukocidin F component.

diately inhibited growth: in clindamycin-treated cultures, bac-

terial viability remained static for 24 h, after which time a slow

killing ensued; linezolid was slowly bacteriocidal from 4 to 24

h, after which time growth resumed such that the bacterial

concentration at 34 h was only slightly less than that in un-

treated control cultures. Vancomycin decreased bacterial via-

bility by 10 h, after which time near log-phase growth resumed.

mRNA for PVL was strongly expressed in mid-log–phase

cultures before the addition of antibiotics (i.e., time 0 h) (figure

1B). In untreated control cultures, production of PVL mRNA

continued at 10 h but disappeared by 24 h. In contrast, van-

comycin decreased PVL mRNA expression by 10 h. However,

when this culture resumed near-log growth (at 10–24 h), PVL

mRNA was again strongly expressed; by 34 h, mRNA expression

remained detectable although significantly reduced. At 10 h,

the amount of PVL mRNA in the nafcillin-, clindamycin-, and

linezolid-treated cultures was not significantly different from

that in the untreated control culture; however, by 24 h, when

mRNA was no longer apparent in the untreated control culture,

it remained significantly expressed in the vancomycin-treated

culture and modestly expressed in the linezolid-, clindamycin-,

and 2-mg/mL–nafcillin-treated cultures. By 34 h, mRNA in

these cultures had waned but was still discernible in all but the

untreated control culture.

Production of PVL in untreated control cultures was mea-

surable by western blot as bacteria approached stationary phase

(at 4 h) (figure 1C), with little additional toxin accumulation

in the supernatant thereafter. In contrast, clindamycin and li-
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nezolid markedly suppressed PVL production such that no

toxin was detectable at times up to 12 h after antibiotic ad-

ministration (not shown). Furthermore, the maximal amount

of PVL that had accumulated by 24 h in the clindamycin- and

linezolid-treated cultures was barely discernible by western blot-

ting (figure 1C). Suppression of PVL production occurred de-

spite the prolongation of mRNA expression induced by these

2 antibiotics. In contrast, nafcillin at 2 mg/mL stimulated con-

tinued toxin production beyond 10 h, as evidenced by stronger

bands on the western blot at 24 and 34 h. Last, the level of

PVL production in vancomycin-treated cultures was compa-

rable to that in the untreated control cultures and was higher

than that in clindamycin- or linezolid-treated cultures.

Nafcillin-induced changes in S. aureus TSST-1 and alpha-

hemolysin gene expression. The results of the studies using

MRSA strain 1560 (figure 1) suggested that nafcillin increased

toxin production by inducing and prolonging toxin-gene tran-

scription. To determine whether this was a general phenome-

non, nafcillin-induced mRNA expression and toxin production

were similarly evaluated in 3 additional strains of S. aureus

producing TSST-1 and/or alpha-hemolysin.

In untreated MRSA and MSSA cultures, TSST-1 mRNA

peaked during the postexponential phase of growth (i.e., 10–

12 h) and virtually disappeared during the stationary phase (24

h) (figure 2A and 2B, lower panels). In contrast, nafcillin at a

concentration of 2, 4, or 8 mg/mL prolonged TSST-1 mRNA

expression into the stationary phase (24 h), both in the MRSA

strain (i.e., strain 04-014) (figure 2A) and the MSSA clinical

strain (i.e., strain 04-002) (figure 2B). Nafcillin at a concen-

tration of 0.2 mg/mL also sustained TSST-1 mRNA in the MRSA

strain (figure 2A). The nafcillin-induced prolongation of gene

transcription was independent of the antibiotic’s effects (or lack

thereof) on bacterial growth (figure 2A and 2B, upper panels).

Similarly, nafcillin prolonged the expression of alpha-he-

molysin mRNA in both the MRSA strain (i.e., strain 04-014)

(figure 3A) and the MSSA laboratory strain (i.e., ATCC strain

18032) (figure 3B). Specifically, in the MRSA strain, nafcillin

concentrations from 0.2 to 8 mg/mL prolonged alpha-hemolysin

mRNA expression; the greatest effect was observed with the

highest concentration of the antibiotic (figure 3A). In contrast,

for the MSSA laboratory strain, a bell-shaped relationship was

observed, in that the mid-level concentration (i.e., 0.2 mg/mL)

of nafcillin was most effective at up-regulating (at 4 and 12 h)

and prolonging (at 24 h) alpha-hemolysin mRNA (figure 3B).

Nafcillin’s effect on production of TSST-1 and alpha-

hemolysin. In all cases, up-regulation of mRNA expression

by nafcillin was associated with increased and prolonged toxin

production, irrespective of the specific strain studied. Specifi-

cally, in both MRSA and MSSA, TSST-1 production was in-

creased at 24 h (figure 4A) and continued to increase at 34 h

in the MRSA strain (data not shown). Similarly, enhanced al-

pha-hemolysin production at 24 h was induced by low-dose

(0.2 mg/mL) nafcillin, in both the MRSA strain and the MSSA

laboratory strain (figure 4B). Interestingly, for the MSSA lab-

oratory strain, the 0.2-mg/mL dose of nafcillin also both induced

the greatest mRNA expression and was the optimal concen-

tration for its prolongation (figure 3, lower panel). For both

strains, nafcillin concentrations �2 mg/mL resulted in reduced

alpha-hemolysin production (figure 4B), despite prolonged

mRNA expression at these concentrations, which suggests that

saturation of the presumed target PBPs play an as-yet-unde-

fined role in either synthesis regulation or toxin release from

the cell.

Interestingly, for the MRSA strain 04-014, the nafcillin con-

centration associated with the greatest TSST-1 production was

10-fold higher (i.e., 2 mg/mL) than that required for optimal

alpha-hemolysin production (i.e., 0.2 mg/mL) in this strain. This

discrepancy occurred despite the fact that mRNA for the 2

toxins was equally prolonged by nafcillin (compare figures 2

and 3). It is also of interest that, for all strains of S. aureus,

high concentrations of nafcillin decreased toxin production de-

spite prolongation of mRNA expression at 24 h.

DISCUSSION

Treatment of S. aureus infections changed dramatically with the

emergence of methicillin resistance among strains causing hos-

pital-associated infections (i.e., HA-MRSA strains). More re-

cently, clones of MRSA (e.g., USA300 and USA400) have emerged

in the community [9, 29, 30], and these CA-MRSA are re-

sponsible for severe infections, including toxic shock, necro-

tizing fasciitis, and necrotizing pneumonia [7, 9]. These strains

have a unique mecA cassette (type IV) [3, 9, 31] and, at present,

have greater antibiotic susceptibility than do the HA-MRSA

strains [29]. Compared with the HA-MRSA strains, CA-MRSA

strains also have a higher prevalence of toxin genes, including

the enterotoxins, TSST-1, and PVL [32]. PVL causes tissue

necrosis in experimental animals [33] and has been implicated,

at least epidemiologically, in severe infections in humans, such

as necrotizing fasciitis and necrotizing pneumonia [7, 8, 19,

34]; at present, however, no data exist that define a role for

PVL in the pathogenesis of CA-MRSA infections.

We and others have shown that suppression of toxin pro-

duction improves outcomes in animal models and human cases

of severe necrotizing infections caused by group A streptococ-

cus and clostridial species [35–37]. Given the strong association

between toxin-producing CA-MRSA and severe necrotizing in-

fections in humans, such agents may also prove beneficial in

the treatment of these infections. Indeed, the present study

demonstrates that both clindamycin and linezolid suppress PVL

production in CA-MRSA. Similarly, others have demonstrated

that protein-synthesis inhibitors suppress virulence factors of

MSSA (e.g., TSST-1, alpha-hemolysin, and coagulase) [16, 38–
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Figure 2. Effects of nafcillin on growth and toxic-shock syndrome toxin 1 (TSST-1) mRNA expression in methicillin-resistant Staphylococcus aureus
(MRSA) and methicillin-sensitive S. aureus (MSSA) strains. Nafcillin was added at the indicated concentrations at the mid-log phase of growth (time
0), and samples were taken at various times for bacterial quantitation and analysis of TSST-1 gene expression by northern blotting. Data shown are
from 1 representative experiment of 3 for MRSA strain 04-014 (A) and of 4 for MSSA strain 04-002 (B). Data for MRSA and MSSA concentrations
represent the means of duplicate plate counts at each time point; the discrepancy between replicates is too small to be visible.
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Figure 3. Effects of nafcillin on growth and alpha-hemolysin mRNA expression in methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-
sensitive S. aureus (MSSA) strains. Nafcillin-treated cultures were sampled at various times over 34 h, for quantitation of bacterial growth and analysis
of alpha-hemolysin gene expression by northern blotting, as described in Materials and Methods. Data shown are from 1 representative experiment
of 3 for MRSA strain 04-014 (A) and of 4 for MSSA strain ATCC 18032 (B). Data for MRSA and MSSA concentrations represent the means of duplicate
plate counts at each time point; the discrepancy between replicates is too small to be visible.

 by guest on M
arch 24, 2011

jid.oxfordjournals.org
D

ow
nloaded from

 

http://jid.oxfordjournals.org/


Antibiotic Effects on Production of S. aureus Toxin • JID 2007:195 (15 January) • 209

Figure 4. Dose-dependent effects of nafcillin on toxic-shock syndrome toxin 1 (TSST-1) and alpha-hemolysin production in methicillin-resistant
Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA). Nafcillin at the indicated final concentrations was added to mid-log–phase
cultures of MRSA and MSSA strains. Production of alpha-hemolysin and of TSST-1 24 h after nafcillin treatment was measured by rabbit red-cell
hemolysis assay and ELISA, respectively. Data shown are from 1 representative experiment of 3 or 4 with each strain and are presented as the mean
� SD of duplicate measurements of a single sample per time point. An asterisk (*) denotes that, for the nafcillin concentration indicated, the value
for the treated sample was statistically greater (i.e., , by Student’s t test) than that for the untreated control sample.P ! .05

41], and we have recently shown that suppression of TSST-1

by clindamycin and linezolid is associated with an excellent

clinical response in a patient with STSS due to MSSA [18].

In sharp contrast to the protein-synthesis inhibitors, beta-

lactam antibiotics may fail in infections caused by toxin-pro-

ducing organisms [35–37]. Several reasons for such failure have

been elucidated. First is the “Eagle effect,” which demonstrates

that beta-lactam antibiotics are ineffective during the stationary

phase of bacterial growth—or, conversely, that they are only

effective in rapidly growing organisms [42]. Eagle hypothesized,

and later demonstrated in mice, that such failure was related

to the unique “physiologic state of the organism” when large
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numbers of organisms were present in the tissue. Specifically,

he demonstrated that penicillin remained effective until the

organisms reach a point at which they no longer proliferated

(i.e., ∼108 cfu/g tissue). We subsequently showed that this pen-

icillin-refractory state occurs during stationary phase in vitro

and is due to down-regulation of PBPs [43]. Extrapolating this

in vitro phenomenon to actual infection, one can hypothesize,

for GAS infections at least, that organisms may not be rapidly

proliferating when a diagnosis of severe infection is made and

treatment is initiated. This may be one reason why source con-

trol or surgical debridement is profoundly important in deep

streptococcal, clostridial, and staphylococcal infections.

The second reason that beta-lactam antibiotics may fail in

infections associated with toxin-producing organisms is that

these cell-wall–active agents, in contrast to protein-synthesis

inhibitors, fail to suppress toxin production. The third reason

is that they can increase TSST-1 and alpha-hemolysin [16],

owing, in part, to lysis of the organism and release of intra-

cellular toxin. The fourth reason is that subinhibitory concen-

trations of beta-lactam antibiotics actually increase exotoxin-

gene expression [17, 44]. The present study substantiated this

finding for alpha-hemolysin and TSST-1 in MSSA and further

demonstrated that nafcillin also increased mRNA for alpha-

hemolysin, TSST-1, and PVL in MRSA. Not only was PVL

mRNA up-regulated by nafcillin, but its expression remained

elevated for up to 34 h after antibiotic treatment and was as-

sociated with continued toxin production. In contrast, van-

comycin had little effect on PVL production compared with

that in controls, despite its ability to up-regulate mRNA. These

data suggest that inhibition of cell-wall synthesis per se is not

the cause of increased toxin production. Although clindamy-

cin and linezolid also prolonged expression of mRNA of alpha-

toxin, TSST-1, and PVL, they dramatically curtailed toxin pro-

duction. Such toxin suppression is consistent with their known

mechanism of action—that is, inhibition of protein synthesis

at the ribosomal level.

Taken together, these data suggest that, for treatment of

staphylococcal infections that are clearly related to production

of potent extracellular toxins (e.g., STSS and scalded-skin

syndrome), protein-synthesis inhibitors such as linezolid or

clindamycin may have beneficial effects on outcomes by atten-

uating of virulence-factor expression by S. aureus. In the treat-

ment of MRSA infections—particularly necrotizing fasciitis and

necrotizing pneumonia, which may be attributable to PVL pro-

duction—linezolid and, potentially, clindamycin (in the ab-

sence of inducible resistance) may be useful and of more benefit

than is vancomycin. In contrast, inadvertent use of beta-lactam

antibiotics to treat TSST-1 or PVL-associated MRSA infections

may contribute to worse outcomes by inducing and prolonging

toxin production. This could, in part, explain the increased

morbidity and mortality associated with MRSA infections com-

pared with MSSA infections as reported by Cosgrove et al (6)

since up to 76% of MRSA infections had initially been treated

with inappropriate antibiotics (45, 46).
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