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Gut integrity in critical illness
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Abstract

Background: The gut is hypothesized to be the “motor” of critical illness. Under basal conditions, the gut plays a
crucial role in the maintenance of health. However, in critical illness, all elements of the gut are injured, potentially
worsening multiple organ dysfunction syndrome.

Main body: Under basal conditions, the intestinal epithelium absorbs nutrients and plays a critical role as the first-
line protection against pathogenic microbes and as the central coordinator of mucosal immunity. In contrast, each
element of the gut is impacted in critical illness. In the epithelium, apoptosis increases, proliferation decreases, and
migration slows. In addition, gut barrier function is worsened via alterations to the tight junction, resulting in
intestinal hyperpermeability. This is associated with damage to the mucus that separates the contents of the
intestinal lumen from the epithelium. Finally, the microbiome of the intestine is converted into a pathobiome, with
an increase in disease-promoting bacteria and induction of virulence factors in commensal bacteria. Toxic factors
can then leave the intestine via both portal blood flow and mesenteric lymph to cause distant organ damage.

Conclusion: The gut plays a complex role in both health and critical illness. Here, we review gut integrity in both
health and illness and highlight potential strategies for targeting the intestine for therapeutic gain in the intensive
care unit.

Keywords: Gut, Intestine, Bacteria, Sepsis, Intensive care unit, Microbiome, Critical illness, Epithelium, Pathobiome,
Apoptosis

Background
The gut has long been hypothesized to be the “motor” of
critical illness [1–6]. The original biological explanation
behind this theory is that critical illness induces intes-
tinal hyperpermeability, leading to bacterial translocation
via the portal circulation, leading to subsequent systemic
infection and distant organ damage. In addition, studies
over the past 20 years have demonstrated multiple add-
itional methods in which the intestine can drive both
local and distant injury.
In isolation, each component of the gut is severely

compromised by critical illness, leading to both local
and distant organ damage. Further, crosstalk between
components of the gut and distant organs exacerbates
cellular and organ injury. This review describes gut in-
tegrity in health and in critical illness, and potential ways

in which the gut integrity can potentially be targeted as
a therapeutic target in the ICU.

The gut in health
The intestinal epithelium
The gut is covered by a single-cell layer epithelium with a
surface area of 30 m2, similar in size to half a badminton
court [7]. The intestinal epithelium plays a role in managing
host homeostasis and plays a critical role as the first-line
protection against pathogenic microorganisms and as the
central coordinator of mucosal immunity [8]. The intestinal
epithelium also communicates with gut-associated lymph
tissue and produces hormones, cytokines, and antimicrobial
peptides. The single-cell layer intestinal epithelium is cov-
ered by a mucus layer which prevents direct contact be-
tween the epithelium and luminal contents [9].
The gut is a continuously renewing organ with the

majority of cells turning over within 1 week. Intestinal
stem cells reside near the base of crypts of Lieberkühn
and can be identified by staining for the biomarker
leucine-rich repeat-containing G protein-coupled recep-
tor (Lgr) 5, which is present in stem cells but not the
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surrounding Paneth cells. Renewal and differentiation of
Lgr5+ intestinal stem cells is modulated by clusters of
differentiation (CD) 4+ T helper cells [10], whereas their
apoptosis and regeneration are mediated by the protein
ARTS (a Septin-4 isoform) which induces cell death by
translocating from the mitochondria to the cytosol where
it binds to and antagonizes the X-linked inhibitor of apop-
tosis [11]. In addition, intestinal stem cells express the
transmembrane protein toll-like receptor (TLR) 4, which
regulates their proliferation and apoptosis through activa-
tion of p53-upregulated modulator of apoptosis (PUMA),
which interacts with anti-apoptotic factors, thereby allow-
ing pro-apoptotic signaling to the mitochondria [12].
Intestinal stem cells migrate up the crypt where they

divide into daughter cells. Upon leaving the crypt, small
intestinal epithelial cells enter the villus where they dif-
ferentiate into (a) absorptive enterocytes (by far the most
numerous cell type); (b) mucus-producing goblet cells,
which also secrete anti-microbial proteins, chemokines,
and cytokines [13]; (c) hormone-producing enteroendo-
crine cells; and (d) tuft cells which initiate mucosal im-
munity against parasitic infections [14]. As cells reach
the tip of the villus, they either die by apoptosis or are
exfoliated whole into the lumen. In contrast to other
intestinal epithelial cell types, Paneth cells migrate
downwards to the base of the crypts. Paneth cells secrete
several antimicrobial peptides such as defensin [15] and
are longer lived than other gut epithelial cells.

The intestinal immune system
The intestinal immune system is a remarkably complex
and diverse ecosystem and has more lymphocytes than
any other location in the body. Recent years have
brought numerous new insights into crosstalk between
the mucosal immune system and both the intestinal epi-
thelium and the microbiota [16]. The intestine contains
the largest population of lymphocytes in the body. CD4+

T cells modulate intestinal epithelial function and en-
hance production of antimicrobial peptides during infec-
tion, leading to pathogen eradication [17]. Intraepithelial
lymphocytes are antigen-experienced T cells located
within the gut epithelium that have immediate access to
antigen in the gut lumen [18]. Secretive IgA, which rec-
ognizes and coats commensal bacteria, is derived from
plasma cells of the germinal center and is abundant in
the lamina propria, representing 80% of all immuno-
globulin produced in the body. In addition, innate
lymphoid cells, mucosa-associated invariant T cells, and
cells of the mononuclear phagocyte systems all play a
role in mucosal immunity [16].

Intestinal microbiota
Approximately 40 trillion microorganisms reside within
the intestine [19], and the number of genes within the

microbiome is exponentially larger than that of the hu-
man genome [20]. The gut microbiome contains ap-
proximately 1000 different species, weighs 1.5 kg, and
contains more DNA than every host organ combined
[21]. Recent advances in metagenomic sequencing and
mass spectrometry reveal that the microbiome plays a
pivotal role in maintaining health and homeostasis [22].

The gut in critical illness
Epithelial alterations and intestinal hyperpermeability
Apoptosis is upregulated in intestinal epithelial cells fol-
lowing both cecal ligation and puncture and Pseudo-
monas pneumonia in mice [23, 24]. Notably, prevention
of gut apoptosis by overexpression of B-cell lymphoma 2
(Bcl-2) improves survival in both of these models. In
contrast, sepsis induces a profound decrease in crypt
proliferation [25]. Migration up the crypt/villus axis is also
slowed by critical illness resulting in a marked diminution
of villus length [26, 27]. The molecular determinants
underlying this are complex with migration occurring
more rapidly in mice lacking TLR4 in necrotizing entero-
colitis but more slowly in septic mice lacking TLR4. In
addition, blocking phosphorylated focal adhesion kinase
(P-FAK) leads to a further slowing of enterocyte migra-
tion, whereas overexpression of gut-specific Bcl-2 prevents
sepsis-induced slowing of enterocyte migration.
Critical illness also induces hyperpermeability of the gut

barrier which begins as early as 1 h after the onset of sepsis
and lasts at least 48 h [28–32]. This impaired barrier func-
tion is mediated by changes in the tight junction and asso-
ciated proteins and allows outflow of luminal contents and
likely damages distant organs. Mechanistically, claudin-2
and junctional adhesion molecule (JAM)-A are increased
by sepsis, whereas claudin-5 and occludin are decreased by
sepsis. Zonula occludens (ZO)-1 is also variably decreased
depending on model system [30, 32–34]. In addition,
myosin light chain kinase (MLCK) phosphorylates the
myosin regulatory light chain, resulting in contraction of
the actin-myosin ring, increasing paracellular permeability.
MLCK activation is commonly found with bacterial infec-
tion [35, 36], and inhibition of MLCK improves survival in
a mouse model of sepsis [37] as well as improving barrier
function and tight junction rearrangement in a murine
model of burn injury [38]. Of note, changes to the gut epi-
thelium and barrier function are exacerbated in the pres-
ence of chronic co-morbidities such as cancer [39, 40] or
chronic alcohol use [41–43].
Mucus also plays a crucial role in host defense by pre-

venting bacteria and digestive enzymes from coming into
contact with the gut epithelium, and the hydrophobic prop-
erties of mucus significantly decrease the ability of posi-
tively charged, water-soluble toxic molecules to traverse the
surface [44]. The mucus layer is damaged during critical ill-
ness, which, in turn, results in epithelial cell dysfunction.

Otani and Coopersmith Journal of Intensive Care            (2019) 7:17 Page 2 of 7

John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel




Ischemia/reperfusion leads to a loss of hydrophobicity of
the mucus layer and altered intestinal permeability [44]. In
addition, after trauma/hemorrhagic shock, rats have de-
creased mucus and villus height loss with increased epithe-
lial apoptosis and hyperpermeability [28]. Notably, H2
blockers decrease gut mucus production and lead to barrier
dysfunction in vitro [45].

The pathobiome
The density and composition of the microbiota are dras-
tically altered within hours of the onset of critical illness
with the conversion of the health-inducing microbiome
into a disease-promoting pathobiome [46]. Significant
emerging data suggests a link between critical illness
and the microbiome. The largest study in the field of
critical care examined microbiota in the skin, tongue,
and stool of 115 intensive care unit (ICU) patients
within 48 h of ICU admission and ICU discharge or 10th
ICU day to over 1000 patients from the American Gut
Project [47]. Alpha-diversity (within group) of stool and
skin was considerably decreased at ICU admission. At
the phylum level, the relative abundance of Firmicutes
and Bacteroidetes was decreased, whereas Proteobacteria
was increased in the stool of ICU patients. At the genus
level, Faecalivacterium, which has anti-inflammatory prop-
erties, was massively decreased, but common pathogens
Enterobacter and Staphylococcus were increased. Comple-
mentary results were demonstrated in a prospective study
of 34 ICU patients that showed a significant decrease in
Firmicutes and Bacteroidetes and an increase in Proteobac-
teria compared to 15 healthy controls at the phyla level
[48]. At the genus level, Faecalibacterium, Blautia, Rumi-
nococcus, Subdoligranulum, and Pseudobutyrivibrio were
all significantly decreased, and overall microbiota diversity
was significantly impaired. A loss of microbiota diversity
was also observed in a smaller study of 14 septic ICU pa-
tients where remarkably 35% of patients had only 1 to 4
bacterial taxa in their stool [49]. Overall, Proteobacteria
was dominant in the ICU, and the number of Firmicutes
decreased, whereas Enterococcus, Staphylococcus, and En-
terobacter all increased in septic patients. Of note, under
basal conditions, the taxa within the gut microbiome are
relatively temporally stable although may be impacted by
diet and environmental factors [50]. In contrast, the transi-
tion to a pathobiome occurs nearly immediately in ICU pa-
tients [51]. Dysbiosis progression has also been observed in
pediatric ICU patients [52].
The etiology of the instability in the microbiome in crit-

ical illness is multifactorial. Critical illness, in isolation,
causes profound alterations to the gut microbiota, likely
caused by the overall alterations in host milieu. Notably,
bacteria can become newly virulent in the setting of critical
illness by expressing ancestral or newly acquired genes [53,
54]. In addition, numerous treatments delivered to patients

in the ICU have off-target effects that directly alter the
microbiome. Drugs that have been shown to impact the
microbiome include antibiotics, proton pump inhibitors,
and opioids [55, 56]. In addition, nutrition components
(carbohydrates, lipid, and protein) and route (enteral/par-
enteral) alter the microbiome in health [57–59]. Little in-
formation is available as to the role nutrition plays on the
microbiome in critical illness [60], although a murine study
demonstrated increased Bacteroidetes and impaired barrier
function following parenteral nutrition, which was reversed
by enteral nutrition supplementation [61].

Gut lymph hypothesis
The gut lymph hypothesis states that noxious mediators
originating from the intestinal lumen travel via the mesen-
teric lymph to the lung where they cause tissue damage.
Several pieces of research support this hypothesis. Ligating
the mesenteric lymph duct decreases lung injury and at-
tenuates neutrophil activation in rodent models of critical
illness with improved survival [62, 63]. Further, injecting
mesenteric lymph from trauma-hemorrhage induces lung
hyperpermeability and lung injury [64]. Complementary
to this is the gut-lung axis of critical illness [65]. Lung
communities are dominated by gut-associated bacteria fol-
lowing murine sepsis, and ecological analysis revealed the
gut as the likely source of lung bacteria. This is consistent
with the abundance of gut-specific bacteria in ICU pa-
tients with acute respiratory distress syndrome [66].

Therapeutic approaches targeting the intestine
Gut epithelial integrity and permeability—basic research
No current therapy exists to target the gut epithelium, per-
meability, or mucus at the bedside of critically ill patients.
However, multiple pre-clinical strategies exist that may be
potential targets in the future. For example, epidermal
growth factor (EGF) has been shown to improve gut
apoptosis, proliferation, and permeability following either
cecal ligation and puncture or Pseudomonas pneumonia
even if started 24 h after the onset of sepsis [42, 67–69].
Additionally, a membrane permeant inhibitor of MLCK im-
proves intestinal permeability and prevents occludin and
ZO-1 reduction following acute alcohol intoxication and
burn injury in mice [70]. Administration of a mucus surro-
gate also prevents trauma/hemorrhagic shock-induced gut
injury [71]. In addition, treatment with a pharmacologic
vagus nerve agonist attenuates lung injury caused by toxic
mesenteric lymph following trauma/hemorrhagic shock in
rats [72].

Microbiome—clinical research
Conceptually, the microbiome can be targeted by increas-
ing “health-promoting” bacteria, decreasing “disease-pro-
moting” bacteria or preventing an alteration in bacterial
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virulence factors. Many of these have been tried in pa-
tients with variable results.
Probiotics are exogenous live bacteria administered to

the host and have been extensively studied in critical ill-
ness. Meta-analyses have demonstrated a decrease in
ventilator-associated pneumonia following administra-
tion of probiotics, but this has not been accompanied by
alterations in mortality or length of stay [73–75]. The
evidence is not high quality, however, as the studies have
been limited by significant heterogeneity in terms of
types of bacteria used, timing of administration, and
quality of the studies as well as the fact that the majority
of these studies were performed prior to more recent
breakthroughs in microbiome analysis. Notably, 4-week
administration of probiotics to healthy volunteers does
not alter gut microbiota [76]. However, there are ques-
tions about sustainability after probiotic administration
as well as geographic variation in the intestine whereby
the microbiota might resist or enhance colonization based
upon probiotic effects [77]. Furthermore, when humans
(and mice) are given antibiotics and then given autologous
microbiome transplantation (pre-antibiotic stool) or pro-
biotics, one’s own stool rapidly reconstituted a normal
microbiome but probiotics were associated with a marked
delay in return to normal microbiome [78].
Unlike the selective approach of probiotics, fecal micro-

bial transplantation (FMT) is a strategy in which the entire

microbiome is transplanted from a healthy donor, with the
goal of reconstructing normal commensal flora in the dis-
eased gut. FMT has been demonstrated to be remarkably
successful in the treatment of recurrent Clostridium diffi-
cile infection with a 92% response rate to treatment [79].
FMT is also increasingly being used for dysbiosis caused
by other intestinal pathology (such as inflammatory bowel
disease). The intermediate long-term effects of FMT on
the microbiome are not clear as studies to date have
shown conflicting results [80, 81]. To date, data on FMT
in the ICU is limited to case reports [82], and its safety
and efficacy are currently unknown. Further, many ICU
patients receive antimicrobial therapy, which would be ex-
pected to alter the microbiome after FMT is performed.
As such, FMT should be considered experimental in crit-
ical illness currently.
Selective decontamination of the digestive tract (SDD)

takes the opposite to probiotics and FMT by targeting
pathogenic gut bacteria. SDD has been shown to be ef-
fective at improving mortality in multiple studies and
meta-analyses originating from environments with low
anti-microbial resistance [83]. SDD continues to be con-
troversial because of theoretical concerns that it could
induce multidrug resistance [84]. Importantly a recent
study randomized over 8000 patients on mechanical
ventilation in 13 ICUs with moderate to high levels of
antibiotic resistance to (a) a modified version of SDD

A B

Fig. 1 The gut in health and critical illness. In conditions of health (a), intestinal stem cells proliferate in the crypt (gray and orange), divide into
daughter cells, and migrate up in a single-cell layer to the top of the villus. The majority of epithelial cells are enterocytes (white and orange), although
there are also goblet cells, enteroendocrine cells, and tuft cells present. The epithelium is surrounded by a continuous mucus layer (gray). This acts as a
barrier to luminal microbes (red and green) which are also recognized by secretive IgA (light red). Permeability is also mediated via the tight junction
(inset) where a complex machinery between epithelial cells acts as a selective barrier allowing solutes and water through but preventing movement
of larger molecules. In critical illness (b), proliferation is decreased and apoptosis is increased leading to a shorter villus length. The mucus layer is
damaged and no longer uniform. Along with changes in the tight junction resulting in hyperpermeability, gut barrier function is compromised and
bacteria are able to translocate (red rods representing bacteria are present in the lamina propria)
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(without a 4-day course of intravenous antibiotics), (b)
selective oropharyngeal decontamination, and (c) chlor-
hexidine mouthwash and compared them to a baseline
period [85]. No reduction in ICU-acquired bloodstream
infection or mortality was detected in any of the groups
compared to baseline.

Microbiome—basic research
No bedside therapy exists to prevent induction of new
virulence factors in bacteria. However, bench research
suggests that bacterial sense intraluminal phosphate, and
a lack of phosphate, plays a critical role in the induction
of virulence [86]. As such, repletion of intraluminal (not
intravenous) phosphate has the potential to trick bac-
teria into “believing” that a diseased host is healthy. Pre-
clinical data demonstrates that enterally administered
polyethylene glycol-conjugated phosphate improves sur-
vival in murine intraabdominal sepsis [86].

Conclusions
All elements of the gut—the epithelium, mucus, the im-
mune system, and the microbiome—are profoundly al-
tered by critical illness compared to health (Fig. 1).
Insults to the gut can, in turn, lead to local and distant in-
jury and multiple organ dysfunction syndrome. While
therapeutic approaches targeting most of these are several
years away from the bedside, several therapeutic ap-
proaches currently exist to target the pathobiome. How-
ever, none of these is currently standard of care in the
ICU, and further research is needed to determine how to
target intestinal injury in critical illness.
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