Cumulative Evidence of Randomized Controlled and Observational Studies on Catheter-Related Infection Risk of Central Venous Catheter Insertion Site in ICU Patients: A Pairwise and Network Meta-Analysis

Kostoula Arvaniti, MD¹; Dimitrios Lathyris, MD²; Stijn Blot, PhD^{3,4}; Fani Apostolidou-Kiouti, MD⁵; Despoina Koulenti, MD^{4,6}; Anna-Bettina Haidich, PhD⁵

Background: Selection of central venous catheter insertion site in ICU patients could help reduce catheter-related infections. Although subclavian was considered the most appropriate site, its preferential use in ICU patients is not generalized and questioned by contradicted meta-analysis results. In addition, conflicting data exist on alternative site selection whenever subclavian is contraindicated. **Objective:** To compare catheter-related bloodstream infection and

colonization risk between the three sites (subclavian, internal jugular, and femoral) in adult ICU patients.

¹Critical Care Department, General Hospital Papageorgiou, Thessaloniki, Greece.

²Critical Care Department, General Hospital G. Gennimatas, Thessaloniki, Greece.

³Department of Internal Medicine, Faculty of Medicine and Health Science, Ghent University, Belgium.

⁴Burns Trauma and Critical Care Research Centre Medical School, University of Queensland, Brisbane, Australia.

⁵Department of Hygiene and Epidemiology, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece.

⁶2nd Critical Care Department, Attikon University Hospital, Medical School, University of Athens, Greece.

Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's website (http://journals.lww.com/ ccmjournal).

Guarantor of this article is Dimitrios Lathyris.

Dr. Arvaniti contributed to study concept. Drs. Lathyris, Arvaniti, and Haidich contributed to study design. Dr. Lathyris contributed to organization and surveillance. Drs. Lathyris, Arvaniti, and Haidich contributed to acquisition of data. Drs. Haidich, Apostolidou-Kiouti, Lathyris, and Blot contributed to data analysis. Drs. Arvaniti, Lathyris, Blot, Haidich, Koulenti, and Apostolidou-Kiouti contributed to interpretation of data. Drs. Arvaniti, Lathyris, Blot, Haidich, Koulenti, and Apostolidou-Kiouti contributed to writing of the article.

The authors have disclosed that they do not have any potential conflicts of interest.

For information regarding this article, E-mail: arvanitik@hotmail.com

Copyright ${\rm \textcircled{C}}$ 2016 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

DOI: 10.1097/CCM.000000000002092

Data Source: We searched MEDLINE, EMBASE, Cochrane Central Register of Controlled trials, CINAHL, and clinicaltrials.gov. **Study Selection:** Eligible studies were randomized controlled trials and observational ones.

Data Extraction: Extracted data were analyzed by pairwise and network meta-analysis.

Data Synthesis: Twenty studies were included; 11 were observational, seven were randomized controlled trials for other outcomes, and two were randomized controlled trials for sites. We evaluated 18,554 central venous catheters: 9,331 from observational studies, 5,482 from randomized controlled trials for other outcomes, and 3,741 from randomized controlled trials for sites. Colonization risk was higher for internal jugular (relative risk, 2.25 [95% CI, 1.84–2.75]; $f^2 = 0\%$) and femoral (relative risk, 2.92 [95% CI, 2.11–4.04]; $f^2 = 24\%$), compared with subclavian. Catheter-related bloodstream infection risk was comparable for internal jugular and subclavian, higher for femoral than subclavian (relative risk, 2.44 [95% CI, 1.25–4.75]; $f^2 = 61\%$), and lower for internal jugular than femoral (relative risk, 0.55 [95% CI, 0.34–0.89]; $f^2 = 61\%$). When observational studies that did not control for baseline characteristics were excluded, catheter-related bloodstream infection risk was comparable between the sites.

Conclusions: In ICU patients, internal jugular and subclavian may, similarly, decrease catheter-related bloodstream infection risk, when compared with femoral. Subclavian could be suggested as the most appropriate site, whenever colonization risk is considered and not, otherwise, contraindicated. Current evidence on catheter-related bloodstream infection femoral risk, compared with the other sites, is inconclusive. (*Crit Care Med* 2016; XX:00–00) **Key Words:** catheter-related infections; central venous catheter; insertion site; intensive care unit; meta-analysis; network meta-analysis

nsertion of central venous catheters (CVCs) in ICUs is associated with infectious (1, 2), mechanical (3, 4), and thrombotic (5, 6) complications. Catheter-related bloodstream

Critical Care Medicine

www.ccmjournal.org

infection (CRBSI) and colonization are the commonest adverse outcomes among catheter-related infections (CRIs), raising mortality and cost of hospitalization (7, 8). Preventive efforts have been undertaken to reduce their occurrence rate (9-11), combining inexpensive measures with costly devices and materials (12). Insertion site selection integrated in a preventive bundle may contribute to CRI reduction (9, 11). In 2011, published guidelines for CRI prevention hospital-wide, proposed subclavian as the site with the lowest CRI risk (13). Ever since, the recommended site was not commonly chosen in ICUs (14–16). Two meta-analyses of randomized controlled trials (RCTs) and observational trials were published in 2012. The first evaluated the CRI risk and supported the protective effect of subclavian when compared with the other sites (17), whereas the second found comparable CRBSIs between femoral and subclavian and favored internal jugular in comparison with femoral (18). In 2013, a secondary analysis of data retrieved from two RCTs, not randomized for CVC site, presented comparable CRBSI and colonization risk of femoral and internal jugular (19). In 2014, an update of Infectious Diseases Society of America and Society for Healthcare Epidemiology of America's practice recommendations on Central-Line Associated Bloodstream Infections prevention, based on studies published before 2011, proposed avoiding femoral in obese patients, recommendation that was contradicted (19, 20). In 2015, intention to treat analysis of an RCT for the site reported lower colonization risk of subclavian compared with the other sites and of jugular compared with femoral. Subclavian was associated with lower CRBSI risk when compared with femoral and similar when compared with internal jugular. In per-protocol CRBSI risk analysis, subclavian was favored when compared with femoral and internal jugular, whereas, in sensitivity analysis of one random catheter per patient, no CRBSI risk difference was observed between sites (21). Overall, in four studies (17-19, 21) published after 2011 guidelines, discrepant data were reported regarding CRBSI risk, two evaluated colonization (19, 21), and one compared the three sites with each other (21).

In the present analysis, we aimed to evaluate CRBSI and colonization risk related to the insertion site of short-term, nontunnelled CVCs exclusively in ICU patients. We reappraised available data and compared sites using pairwise and network meta-analysis (NMA). Relevant RCTs and observational studies were included. PRISMA and MOOSE statements were followed (22, 23).

METHODS

2

Data Sources

We searched MEDLINE (1966 to May 2016), EMBASE (1977 to May 2016), Cochrane Central Register of Controlled trials (CENTRAL) (1948 to May 2016), CINAHL (1982 to May 2016), and clinicaltrials.gov (May 2016). For additional studies, we manually searched bibliographies of relevant reviews and meta-analyses (8, 12, 17, 18, 24–26) and reference lists of eligible articles. No restrictions to calendar day or language were adopted. Search was conducted in September 2015, and analyzed data were retrieved. Additional search was conducted in May 2016 to identify any recent studies eligible for inclusion (**Supplement Table 1**, Supplemental Digital Content 1, http:// links.lww.com/CCM/C171).

Study Selection

Studies referring to adult ICU patients with short-term, noncuffed, nontunnelled CVCs inserted in the ICU were included. RCTs for sites or other outcomes and observational studies were selected. Observational trials were included whether or not they provided multivariable analyses' results. We excluded studies with animals, volunteers, pediatric, or burn patients, crossover studies, studies with zero events in all arms (27), studies using exclusively guidewire-exchange technique and data from abstracts, conference proceedings, reviews, or comments. We excluded peripherally inserted central catheters, pulmonary artery catheters, and hemodialysis catheters. For studies not reporting CRBSI or colonization per site, corresponding authors were contacted and, if data were not provided, studies were excluded. Initial screening by study title and abstract (phase 1) plus full-text screening (phase 2) and data retrieval were performed separately by two investigators (K.A., D.L.); disagreements were resolved by consensus.

Outcome Selection

We prespecified two primary outcomes, colonization and CRBSI. Secondary outcomes were mechanical complications and CVC-related thrombosis.

Definitions

U.S. and French definitions were applied for primary outcomes (28–31). Definitions for colonization, CRBSI, and CVC-related thrombosis are presented in the **Supplement-Only_online material** (Supplemental Digital Content 2, http://links.lww. com/CCM/C172).

Data Extraction

For every eligible study, we extracted study-related data (authorship, study design, number of centers, and sample size), CVC characteristics (type, number of lumens, number of CVCs per patient, and guidewire exchange), CVC-oriented infection prevention strategy, definitions used, CRBSI and colonization per site, insertion-related complications, duration of catheterization, and microorganisms.

Individual Study Quality Assessment

The risk of bias for each study was evaluated with the Cochrane Collaboration's risk of bias tool (32) for RCTs and Newcastle-Ottawa Scale (33) for observational studies. RCTs were evaluated regardless if there were randomized for the site or other outcomes. We used GRADE approach to rate the quality of treatment effect estimates from pairwise meta-analyses (34).

Quantitative Data Synthesis

The risk of colonization and CRBSI per site was compared with the risk associated with the other two sites by pairwise meta-analysis. Subgroup analyses were conducted according to study design. Data from RCTs for other outcomes were treated as those from observational studies. We conducted pairwise analysis of studies published after 2011 guidelines and after exclusion of observational studies that did not control for baseline characteristics. Cumulative meta-analysis was performed to evaluate the potential influence of publication year on each effect estimate. Catheter-related thrombosis risk between femoral and subclavian was evaluated by pairwise meta-analysis.

For each comparison of binary outcomes, we calculated pooled effect sizes with the Der Simonian and Laird random effects model (35) and relative risks (RRs) with their 95% CIs. We used random-effects models because of the obvious heterogeneity (different study design) across included trials.

Heterogeneity was assessed with Cochrane Q statistic and estimated with I^2 measure; published guidelines were used to

define not important ($I^2 = 0-40\%$), moderate ($I^2 = 30-60\%$), substantial ($I^2 = 50-90\%$), or high/considerable ($I^2 \ge 75\%$) heterogeneity (36, 37).

Sensitivity analysis was conducted to evaluate potential confounding variables (number of centers, number of CVCs per patient, CRBSI and colonization definitions used, use of guidewire technique, administration of parenteral nutrition or blood products through catheters, full barrier precautions, CVC insertion and maintenance protocol, skin antisepsis type, impregnated CVCs, dressing type, and studies, with an increased risk of bias) and explain heterogeneity.

Additional Analyses

We compared the mean duration of CVC catheterization between the sites by calculating mean differences and 95% CIs. The inverse-variance method was used to obtain summary

Figure 1. Flowchart of included studies. CRBSI = catheter-related bloodstream infection, CVC = central venous catheter, ED = emergency department, PAC = pulmonary artery catheter.

mean differences (37). The units of analysis were mean and sp per study.

Meta-regression analysis was performed to explore the potential effect of publication year, patient age, and Acute Physiology and Chronic Health Evaluation (APACHE) score (38, 39).

Publication bias was assessed with the Harbord test and visually inspected with the counter-enhanced plots for asymmetry (40).

NMA was performed to estimate every possible comparison's effect in a network combining all three sites. We included RCTs and observational studies to evaluate the largest possible data sample, and we used naive pooling methodology that does not differentiate between the two study designs (41, 42). We calculated the surface under the cumulative ranking curve (SUCRA) to estimate cumulative probability for each site to rank in each place (first, second, and third) (38). Femoral was considered as the reference site.

Pairwise analyses were performed using Review (RevMan Manager version 5.3. Copenhagen: the Cochrane Centre, Nordic The Cochrane Collaboration, and replicated by 2008)

STATA, version 12.0. STATA, version 12.0, was used for NMA. We considered p value less than or equal to 0.05 (two sided) as significant.

RESULTS

Study Selection

Twenty studies were included in quantitative synthesis (**Fig. 1**). Of them, 11 were observational (43–53), seven RCTs for other outcomes (19, 54, 55), and two RCTs for sites (21, 56). We evaluated 18,554 CVCs: 9,331 from observational studies, 5,482 from RCTs for other outcomes, and 3,741 from RCTs for sites (**Supplement-Digital Content-Table 1**,

Internal lugular Eemoral

Supplemental Digital Content 2, http://links.lww.com/CCM/ C172; and **Supplement-Table 2**, Supplemental Digital Content 3, http://links.lww.com/CCM/C173). Nine studies presented data for CRBSI (43, 44, 48–53, 55), six for colonization (46, 47, 57–60), and five for both outcomes (19, 21, 45, 54, 56). In 18 studies, protocols for CVC insertion and maintenance, as well as reasons for catheter removal, were reported (Supplement-Table 2, Supplemental Digital Content 3, http:// links.lww.com/CCM/C173). All studies reported colonization and CRBSI definitions, only five CRBSI definitions in the case of coagulase-negative staphylococci (19, 21, 44, 54, 58) (Supplement-Digital Content-Table 1, Supplemental Digital Content 2, http://links.lww.com/CCM/C172).

Quality of Included Studies

Only three studies provided adjusted hazard ratios (19, 21, 54). Two RCTs had a high risk of bias (55, 59). Six of 11 observational studies did not control for baseline characteristics (46, 47, 49, 51–53) (**Supplement-Tables 2–4**, Supplemental Digital Content 2, http://links.lww.com/CCM/ C172).

Primary Outcomes and Subgroup Analysis

Colonization. Colonization risk was higher for internal jugular (RR, 2.25 [95%] CI, 1.84–2.75]; $I^2 = 0\%$) and femoral (RR, 2.92 [95% CI, 2.11-4.04]; $I^2 = 24\%$), compared with subclavian. There was no significant difference between internal jugular and femoral (Fig. 2). Comparing the subgroups of study designs, there was no significant difference in any of the pooled estimates (χ^2 = 3.78; p = 0.15, $\chi^2 = 0.62$; p =0.73, and $\chi^2 = 2.23$; p = 0.33, respectively). Discrepancy between study designs was observed in internal jugularfemoral comparison in two observational studies with increased risk of bias (Fig. 2; and Supplement-Fig. 1A, Supplemental Digital Content 2, http://links.lww.com/ CCM/C172).

~	Study or Subgroup	Events	Total	Events	Total	Weight	IV Random 95% Cl	Year	IV. Random, 95% Cl	
-	1.1.1 RCT for other o	utcome	Total	LTOING	10141	Trongine	11,114114011,00700	Tour		
	Theaker 2002	74	186	19	36	16.8%	0 75 [0 53 1 08]	2002		
	Runn 2005	68	454	8	46	8.3%	0.86 [0.44, 1.68]	2002		
	Walz 2010	22	412	2	27	2.5%	0.72 [0.18, 2.91]	2010		
	Arvaniti 2012	18	89	34	213	11.6%	1.27 [0.76, 2.12]	2012		
	Timsit 2013	124	1127	122	1400	21.8%	1.26 [1.00, 1.60]	2013	-	
	Subtotal (95% CI)		2268		1722	61.0%	1.02 [0.78, 1.34]		◆	
	Total events	306		185						
	Heterogeneity: Tau ² =	0.04; Chi ² =	6.71, df =	= 4 (P = 0).15); l²	= 40%				
	Test for overall effect:	Z = 0.16 (P =	= 0.87)							
	1.1.2 RCT for CVC sit	e								
	Parienti 2015	121	1145	145	1140	22.2%	0.83 [0.66, 1.04]	2015	1	
	Subtotal (95% CI)		1145		1140	22.2%	0.83 [0.66, 1.04]			
	Total events	121		145						
	Heterogeneity: Not ap	DIICADIE	- 0 11)							
	rest for overall effect.	Z = 1.60 (P =	- 0.11)							
	1.1.3 Observational									
	Gil 1989	26	118	7	15	8.8%	0 47 10 25 0 891	1989		
	Deshpande 2005	2	191	4	139	1.7%	0.36 [0.07, 1.96]	2005		
	Traore 2005	19	160	7	56	6.2%	0.95 [0.42, 2.14]	2005		
	Subtotal (95% CI)		469		210	16.8%	0.59 [0.36, 0.98]		◆	
	Total events	47		18						
	Heterogeneity: Tau ² =	0.01; Chi ² =	2.11, df =	= 2 (P = 0).35); l²	= 5%				
	Test for overall effect:	Z = 2.04 (P =	= 0.04)							
	Total (95% CI)		3882		3072	100.0%	0.89 [0.71, 1.12]		•	
	Total events	474		348						
	Heterogeneity: Tau ² =	0.05; Chi ² =	15.73, df	= 8 (P =	0.05);	l² = 49%			0.01 0.1 1 10 10	00
	Test for overall effect:	Z = 1.01 (P =	= 0.31)	K - 0 (D	- 0.45	12 - 47 40	,		Favours Internal Jugular Favours Femoral	
	lest for subgroup diffe	rences: Chi	= 3.78, 0	if = 2 (P :	= 0.15),	, l² = 47.1%	6			
R				_						
	~	Internal Ju	ıgular	Femo	ral		Risk Ratio		Risk Ratio	
		Example	Tatal	E.c. atta	Tatal	Market and the	B/ Dandam OFN/ OI	Mana	IV Dandam OFM OL	
-	Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% Cl	
-	1.1.1 RCT for other of	Events utcome	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% Cl	
-	1.1.1 RCT for other of Theaker 2002	Events utcome 74	186	Events 19	Total 36	Weight 16.8%	IV, Random, 95% Cl 0.75 [0.53, 1.08]	Year 2002	IV, Random, 95% CI	
-	1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010	Events utcome 74 68 22	Total 186 454 412	Events 19 8 2	Total 36 46 27	Weight 16.8% 8.3% 2.5%	IV, Random, 95% CI 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91]	2002 2005 2010	IV, Random, 95% Cl	
-	1.1.1 RCT for other or Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012	Events utcome 74 68 22 18	Total 186 454 412 89	Events 19 8 2 34	Total 36 46 27 213	Weight 16.8% 8.3% 2.5% 11.6%	IV, Random, 95% CI 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12]	2002 2005 2010 2012	IV, Random, 95% Cl	
-	1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013	Events utcome 74 68 22 18 124	Total 186 454 412 89 1127	Events 19 8 2 34 122	Total 36 46 27 213 1400	Weight 16.8% 8.3% 2.5% 11.6% 21.8%	V, Random, 95% CI 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60]	2002 2005 2010 2012 2013	IV, Random, 95% Cl	
-	1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI)	Events utcome 74 68 22 18 124	Total 186 454 412 89 1127 2268	Events 19 8 2 34 122	Total 36 46 27 213 1400 1722	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34]	2002 2005 2010 2012 2013	IV, Random, 95% Cl	
-	1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events	Events utcome 74 68 22 18 124 306	Total 186 454 412 89 1127 2268	Events 19 8 2 34 122 185	Total 36 46 27 213 1400 1722	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34]	2002 2005 2010 2012 2013	IV, Random, 95% Cl	
-	1.1.1 RCT for other or Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% Cl) Total events Heterogeneity: Tau ² =	Events utcome 74 68 22 18 124 306 0.04; Chi ² = 1	Total 186 454 412 89 1127 2268 6.71, df =	Events 19 8 2 34 122 185 : 4 (P = 0	Total 36 46 27 213 1400 1722	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34]	2002 2005 2010 2012 2013	IV, Random, 95% Cl	
-	1.1.1 RCT for other or Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect.	Events utcome 74 68 22 18 124 306 0.04; Chi ² = 0 Z = 0.16 (P =	Total 186 454 412 89 1127 2268 6.71, df = = 0.87)	Events 19 8 2 34 122 185 : 4 (P = 0	Total 36 46 27 213 1400 1722	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34]	2002 2005 2010 2012 2013	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other or Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	Events utcome 74 68 22 18 124 306 0.04; Chi ² = 0 Z = 0.16 (P =	Total 186 454 412 89 1127 2268 6.71, df = = 0.87)	19 8 2 34 122 185 : 4 (P = 0	Total 36 46 27 213 1400 1722	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34]	2002 2005 2010 2012 2013	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CVC sit	Events utcome 74 68 22 18 124 306 0.04; Chi ² = (Z = 0.16 (P = e	Total 186 454 412 89 1127 2268 6.71, df = 0.87)	Events 19 8 2 34 122 185 4 (P = 0	Total 36 46 27 213 1400 1722	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34]	2002 2005 2010 2012 2013	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (85% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CVC sit Parienti 2015 Subtotal (85% CI)	Events utcome 74 68 22 18 124 306 0.04; Chi ² = 0 Z = 0.16 (P = e 121	Total 186 454 412 89 1127 2268 6.71, df = 0.87) 1145 145	Events 19 8 2 34 122 185 4 (P = 0 145	Total 36 46 27 213 1400 1722 .15); I ² 1140 1140	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40% 22.2% 23.2%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34]	2002 2005 2010 2012 2013 2013	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CVC sill Subtotal (95% CI)	Events utcome 74 68 22 18 124 306 0.04; Chi ² = 0 Z = 0.16 (P = e 121	Total 186 454 412 89 1127 2268 6.71, df = 0.87) 1145 1145	Events 19 8 2 34 122 185 4 (P = 0 145 145	Total 36 46 27 213 1400 1722 .15); I ² 1140 1140	Weight 16.8% 8.3% 2.5% 21.8% 61.0% = 40% 22.2% 22.2%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04]	Year 2002 2005 2010 2012 2013 2013	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: . 1.1.2 RCT for CVC sit Parienti 2015 Subtotal (95% CI) Total events	Events utcome 74 68 22 18 124 306 0.04; Chi ² = 0 Z = 0.16 (P = 121 121	Total 186 454 412 89 1127 2268 6.71, df = 0.87) 1145 1145	Events 19 8 2 34 122 185 4 (P = 0 145 145	Total 36 46 27 213 1400 1722 .15); I ² 1140 1140	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40% 22.2% 22.2% 22.2%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.16, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04]	Year 2002 2005 2010 2012 2013 2013	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CVC sit Parienti 2015 Subtotal (95% CI) Total events Heterogeneity: Not app Total events	Events vitcome 74 68 22 18 124 306 0.04; Chi ² = 1 2 = 0.16 (P = e 121 122 121 Dicable 2 = 1.6 (P =	Total 186 454 89 1127 2268 6.71, df = 0.87) 1145 1145 1145	Events 19 8 2 34 122 185 4 (P = 0 145 145	Total 36 46 27 213 1400 1722 .15); I ² 1140 1140	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40% 22.2% 22.2%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04]	2002 2005 2010 2012 2013 2013	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CVC sit Parienti 2015 Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect:	Events utcome 74 68 22 18 124 306 0.04; Chi² = I 2 121 121 121 121 22 18 120	Total 186 454 412 89 1127 2268 6.71, df = 0.87) 1145 1145 = 0.11)	Events 19 8 2 34 122 185 : 4 (P = 0 145 145	Total 36 46 27 213 1400 1722 15); I ² 15); I ² 1140 1140	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40% 22.2% 22.2%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04]	2002 2005 2010 2012 2013 2013	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CCC sit Parienti 2015 Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: 1.1.3 Observational	Events utcome 74 68 22 18 124 306 0.04; Chi² = 2 12 121 121 121 121 121 000b 2 1.60 (P =	Total 186 454 412 89 1127 2268 6.71, df = 0.87) 1145 1145 = 0.11)	Events 19 8 2 34 122 185 4 (P = 0 145 145	Total 36 46 27 213 1400 1722 .15); I ² 1140 1140	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40% 22.2%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04]	2002 2005 2010 2012 2013 2015	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CVC sit Parienti 2015 Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: 1.1.3 Observational Gii 1989	Events utcome 74 68 22 18 124 306 0.04; Chi² = 2 121 121 2 121 2 18 2 306 0.04; Chi² = 121 122 2 2 2 2 2 2 2 2 2 2 306 2 306 2 306 307 308 309 300 300 300 300 300 300 300 300 300 300 300 300 300 <td>Total 186 454 412 89 1127 2268 6.71, df = 0.87) 1145 1145 = 0.11) 118</td> <td>Events 19 8 2 34 122 185 4 (P = 0 145 145 7</td> <td>Total 36 46 27 213 1400 1722 .15); I² 1140 1140</td> <td>Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40% 22.2% 22.2% 8.8%</td> <td>IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04]</td> <td>Year 2002 2005 2010 2012 2013 2015</td> <td>IV, Random, 95% Cl</td> <td></td>	Total 186 454 412 89 1127 2268 6.71, df = 0.87) 1145 1145 = 0.11) 118	Events 19 8 2 34 122 185 4 (P = 0 145 145 7	Total 36 46 27 213 1400 1722 .15); I ² 1140 1140	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40% 22.2% 22.2% 8.8%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04]	Year 2002 2005 2010 2012 2013 2015	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CVC sit Parienti 2015 Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: 1.1.3 Observational Gii 1989 Deshpande 2005	Events utcome 74 68 22 18 124 306 0.04; Chi² = (2 121 121 121 22 2 121 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Total 186 454 412 89 1127 2268 6.71, df = 0.87) 1145 1145 = 0.11) 118 191	Events 19 8 2 34 122 185 4 (P = 0 145 145 7 4	Total 36 46 27 213 1400 1722 .15); I ² 1140 1140	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40% 22.2% 8.8% 1.7%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.47 [0.25, 0.89] 0.36 [0.07, 1.96]	Year 2002 2005 2010 2012 2013 2015 1989 2005	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: . 1.1.2 RCT for CVC and Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: . 1.1.3 Observational Gil 1989 Deshpande 2005	Events utcome 74 68 22 18 124 306 0.04; Chi² = I 2 = 0.16 (P = e 121 Joicable Z = 1.60 (P = 26 2 19	Total 186 454 412 89 1127 2268 6.71, df = = 0.87) 1145 1145 = 0.11) 118 191 160	Events 19 8 2 34 122 185 : 4 (P = 0 145 145 145 7 4 7 4 7	Total 36 46 27 213 1400 1722 1140 1140 1140 15 139 56	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40% 22.2% 22.2% 8.8% 1.7% 6.2%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.47 [0.25, 0.89] 0.36 [0.07, 1.96]	Year 2002 2005 2010 2012 2013 2015 1989 2005 2005 2005 2015	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CVC sit Parienti 2015 Subtotal (95% CI) Total events Heterogeneity: Not ap; Test for overall effect: 1.1.3 Observational Deshpande 2005 Traore 2005 Subtotal (95% CI)	Events 1tcome 74 68 22 18 124 3066 0.04; ChiP = 2 0.16 (P) = e 121 122 121 121 122 16able Z 2 1.60 (P) = 26 2 19 19	Total 186 454 412 89 9127 2268 6.71, df = 0.87) 1145 1145 1145 = 0.11) 118 191 169	Events 19 8 2 34 122 185 4 (P = 0 145 145 145 7 4 7 4 7	Total 366 46 27 213 1400 1722 1.15); I ² 1140 1140 115 139 56 210	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% 22.2% 22.2% 22.2% 8.8% 1.7% 6.2% 16.8%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.85 [0.36, 0.89]	2002 2005 2010 2012 2013 2015 2015	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (85% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CVC sit Parienti 2015 Subtotal (85% Cl) Total events 1.1.3 Observational Gil 1989 Deshpande 2005 Traore 2005 Subtotal (95% Cl) Total events	Events utcome 74 68 22 18 124 306 0.04; Chi² = (2 121 121 121 22 18 2 121 121 22 2 121 22 2 121 22 2 2 2 2 2 3 <	Total 186 454 412 89 1127 2268 6.71, df = = 0.87) 1145 1145 = 0.11) 118 191 160 469	Events 19 8 2 34 122 185 4 (P = 0 145 145 145 7 4 7 18	Total 36 46 27 213 1400 1722 1.15); I ² 1140 1140 1140 1140 1140 210	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% 22.2% 22.2% 8.8% 1.7% 6.2% 16.8%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.36 [0.07, 1.96] 0.36 [0.07, 1.96] 0.95 [0.42, 2.14]	2002 2005 2010 2012 2013 2015 2015	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: : 1.1.2 RCT for CVC sill Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: : 1.1.3 Observational Gil 1989 Deshpande 2005 Subtotal (95% CI) Total events Heterogeneity: Tau ² =	Events utcome 74 68 22 18 124 306 0.04; Chi² = : 2 = 0.16 (P = e 121 scabe 2 = 1.60 (P = 2 19 47 0.01; Chi² = :	Total 186 454 412 89 1127 2268 6.71, df = 0.87) 1145 1145 1145 = 0.11) 118 191 160 469 2.11, df =	Events 19 8 2 34 122 185 4 (P = 0 145 145 145 2 2 8 2 3 4 2 3 4 2 3 4 7 4 7 4 7 4 7 8 2 2 2 8 5 5 4 (P = 0 19 19 19 19 10 10 10 10 10 10 10 10 10 10	Total 36 46 27 213 1400 1722 1140 115 15 15 15 210 3.55); P	Weight 16.8% 8.3% 2.5% 11.6% 61.0% = 40% 22.2% 22.2% 8.8% 1.7% 6.2% 16.8% = 5%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.47 [0.25, 0.89] 0.36 [0.07, 1.96] 0.95 [0.36, 0.98]	2002 2005 2010 2012 2013 2015 2015	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CVC sit Parienti 2015 Subtotal (95% CI) Total events Heterogeneity: Not ap; Test for overall effect: 1.1.3 Observational Gil 1989 Deshpande 2005 Traore 2005 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	Events 1tcome 74 68 22 18 124 306 0.41; Chi² = 2 2 121 122 121 121 121 121 122 16able 2 19 0.01; Chi² = 2 2.04 (P = 2 2.044 (P = 3 3.045 (P = 3 3.045 (P = 3 3.045 (P = 3 3.046 (P = 3 3.047 (P = 3 <tr< td=""><td>Total 186 454 412 89 1127 2268 6.71, df = 0.87) 1145 1145 = 0.11) 118 191 160 469 2.11, df = 0.04)</td><td>Events 19 8 2 122 185 145 145 145 7 4 7 8 2 (P = 0 0 145 145 145 145 145 145 145 145</td><td>Total 36 46 27 213 1400 1722 115); l² 1140 1140 1140 115 39 56 210 </td><td>Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40% 22.2% 8.8% 1.7% 6.2% 16.8% = 5%</td><td>IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04]</td><td>2002 2005 2010 2012 2013 2015 2015 2015 2005</td><td>IV, Random, 95% Cl</td><td></td></tr<>	Total 186 454 412 89 1127 2268 6.71, df = 0.87) 1145 1145 = 0.11) 118 191 160 469 2.11, df = 0.04)	Events 19 8 2 122 185 145 145 145 7 4 7 8 2 (P = 0 0 145 145 145 145 145 145 145 145	Total 36 46 27 213 1400 1722 115); l ² 1140 1140 1140 115 39 56 210 	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40% 22.2% 8.8% 1.7% 6.2% 16.8% = 5%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04]	2002 2005 2010 2012 2013 2015 2015 2015 2005	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (85% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CVC sit Parienti 2015 Subtotal (85% Cl) Total events Heterogeneity: Not app Test for overall effect: 1.1.3 Observational Gil 1989 Deshpande 2005 Traore 2005 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect:	Events utcome 74 68 22 18 124 306 0.04; Chi ² = (121 121 121 121 121 22 18 24 0.04; Chi ² = (26 2 19 47 0.01; Chi ² = (2 2 0.01; Chi ² = (Total 186 454 412 89 1127 2268 6.71, df = 0.87) 1145 1145 = 0.11) 118 191 160 4.69 2.11, df =	Events 19 8 2 34 122 185 2 4 4 (P = 0 145 145 145 7 4 7 18 2 2 (P = 0 19 19 19 19 19 19 19 19 19 19	Total 36 46 27 213 1400 1722 1140 1155; P 1140 1140 1140 115 396 210 .355; P	Weight 16.8% 8.3% 2.5% 21.8% 61.0% 21.8% 61.0% 22.2% 22.2% 22.2% 8.8% 1.7% 6.2% 16.8% = 5%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.47 [0.25, 0.89] 0.36 [0.07, 1.96] 0.95 [0.42, 2.14] 0.59 [0.36, 0.98]	2002 2005 2010 2012 2013 2015 2015	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CVC sit Parienti 2015 Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: 1.1.3 Observational Gil 1989 Deshpande 2005 Tratore 2005 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI)	Events utcome 74 68 22 18 124 306 0.04; Chi² = I 2 = 0.16 (P = e 121 122 18 121 121 22 = 1.60 (P = 26 2 19 0.01; Chi² = ; 2 = 2.04 (P =	Total 186 454 412 89 1127 2268 6.71, df = 0.87) 1145 1145 1145 1145 2.11, df = 0.04) 3882	Events 19 8 2 34 122 185 145 145 145 7 7 18 2 (P = 0 18 2 (P = 0) 145 145 145 145 18 19 19 19 19 19 19 19 19 19 19	Total 36 46 27 213 1400 1722 1140 1140 1140 1140 1140 305 210 3072	Weight 16.8% 8.3% 2.5% 61.0% 21.8% 61.0% 22.2% 22.2% 22.2% 8.8% 1.7% 6.2% 16.8% = 5% 100.0%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.47 [0.25, 0.89] 0.36 [0.07, 1.96] 0.95 [0.36, 0.98] 0.89 [0.71, 1.12]	2002 2005 2010 2012 2013 2015 1989 2005 2005	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CVC sit Parienti 2015 Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: 1.1.3 Observational Bil 1989 Deshpande 2005 Traore 2005 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI) Total events	Events 1tcome 74 68 22 18 124 306 0.04; ChiP = 1 22 121 121 121 122 18 124 306 2 0.4; ChiP = 1 2 121 122 121 2 2 10 2	Total 186 454 412 89 1127 2268 6.71, df = 0.87) 1145 1145 1145 1145 2011) 118 191 160 469 2.11, df = 0.04) 38822	Events 19 8 2 34 122 185 145 145 145 7 4 7 18 2 (P = 0 2 (P = 0 348 8 2 (P = 0 348 2 (P = 0 348 348 348 348 348 348 348 348	Total 36 46 27 213 1400 1722 .15); l ² .115); l ² .1140 1140 1140 .15 .210 .35); l ² .3072 .0072	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% = 40% 22.2% 8.8% 1.7% 6.2% 16.8% = 5% 100.0%	V, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.83 [0.71, 1.96] 0.95 [0.32, 2.14] 0.59 [0.71, 1.12]	2002 2005 2010 2012 2013 2015 1989 2005 2005	IV, Random, 95% Cl	
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2012 Timsit 2013 Subtotal (65% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CVC sit Parienti 2015 Subtotal (65% CI) Total events Heterogeneity: Not app Test for overall effect: 1.1.3 Observational Gil 1989 Deshpande 2005 Traore 2005 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.5 (195% CI) Total events Heterogeneity: Tau ² = Total (95% CI) Total events Heterogeneity: Tau ² = Total (95% CI)	Events utcome 74 68 22 18 124 306 0.04; Chi ² = (2 121 121 121 121 22 28 29 47 0.01; Chi ² = (2 2 47 0.05; Chi ² = (2 474 0.05; Chi ² = (2	Total 186 454 412 89 1127 200 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1004	Events 19 8 34 122 34 125 145 145 7 4 7 4 7 4 7 4 7 4 7 4 7 348 8 (P =	Total 36 46 27 213 1400 1722 .15); l ² .15); l ² .15); l ² .15); l ² .15); l ² .15); l ² .139 56 210 .35); l ² .3072 .0.05); l	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% 22.2% 22.2% 22.2% 22.2% 1.6.8% 8.8% 1.7% 6.2% 16.8% = 5% 100.0% P = 49%	V, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.47 [0.25, 0.89] 0.36 [0.07, 1.96] 0.95 [0.42, 2.14] 0.59 [0.36, 0.98]	2002 2005 2010 2012 2013 2015 1989 2005 2005	U, Random, 95% Cl	100
-	Study or Subgroup 1.1.1 RCT for other of Theaker 2002 Rupp 2005 Walz 2010 Arvaniti 2013 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 1.1.2 RCT for CVC sit Parienti 2015 Subtotal (95% Cl) Total events Heterogeneity: Not app Test for overall effect: 1.1.3 Observational Gii 1989 Deshpande 2005 Traore 2005 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: Total events Heterogeneity: Tau ² = Test for overall effect:	Events utcome 74 68 22 18 124 3060 0.04; Chi ² = 2 121 121 121 22 18 2 2 0.04; Chi ² = 2 2 121 121 22 2 2 19 47 0.05; Chi ² = 2 474 0.05; Chi ² = 2 474	Total 186 454 412 89 1127 2268 6.71, df = 0.87) 1145 1145 1145 2.11, df = 0.04) 3882 15.73, df 0.04)	Events 19 8 2 34 122 185 145 145 145 7 4 7 18 8 2 (P = 0 348 4 (P = 0 348 145 145 145 145 145 145 145 145	Total 36 46 27 213 1400 1722 .155; I ² 1140 1140 1140 1140 .155 210 .355; I ² 3072 0.055; I = 0.155	Weight 16.8% 8.3% 2.5% 11.6% 21.8% 61.0% 22.2% 22.2% 22.2% 8.8% 1.7% 6.2% 16.8% = 5% 100.0% P = 49% I ² = 47.4%	IV, Random, 95% Cl 0.75 [0.53, 1.08] 0.86 [0.44, 1.68] 0.72 [0.18, 2.91] 1.27 [0.76, 2.12] 1.26 [1.00, 1.60] 1.02 [0.78, 1.34] 0.83 [0.66, 1.04] 0.83 [0.66, 1.04] 0.47 [0.25, 0.89] 0.36 [0.07, 1.96] 0.95 [0.42, 2.14] 0.59 [0.36, 0.98] 0.89 [0.71, 1.12]	2002 2005 2010 2012 2013 2015 1989 2005 2005	U, Random, 95% Cl	100

Bick Botio

Bick Botio

Figure 2. Central venous catheter colonization risk in studies comparing internal jugular to femoral (**A**), internal jugular to subclavian (**B**), and

www.ccmjournal.org

XXX 2016 • Volume XX • Number XXX

Figure 2. (*Continued*). femoral to subclavian insertion site (C). *Vertical lines* indicate no difference between the two intervention groups. Pooled risk ratios were calculated from random-effects models with Der Simonian and Laird method. IV = inverse variance.

CRBSI. No significant difference was found in CRBSI risk between internal jugular and subclavian and between study design estimates ($\chi^2 = 1.99$; p = 0.37). CRBSI risk was lower for internal jugular compared with femoral (RR, 0.55 95%) CI, 0.34–0.89]; $I^2 = 61\%$), and there seemed to be a significant difference in pooled estimates between study designs (observational studies: RR = 0.40, RCT for other outcomes: RR = 1.32, and RCT for CVC sites: 1.39; $\chi^2 = 13.77$; p = 0.001). CRBSI risk was higher for femoral compared with subclavian (RR, 2.44 [95% CI, 1.25–4.75]; $I^2 = 61\%$), and there was a borderline significance in the difference in pooled estimates between study designs (observational studies: RR = 2.94; RCT for other outcomes: RR = 0.07, and RCT for sites: RR = 2.61; $\chi^2 = 6.07$; p = 0.05) (Fig. 3). In internal jugular-femoral comparison, when observational studies that did not control for baseline characteristics were excluded, the point estimate was increased by 40% (from RR, 0.40 [0.27–0.59]; $I^2 = 25\%$ to RR, 0.56 [0.37-0.84]; $I^2 = 0\%$), whereas the overall point estimate was comparable between the two sites (RR, 0.79 [0.53–1.18]; $I^2 = 26\%$). Similarly, in femoral-subclavian comparison, CRBSI risk was comparable between the two sites in subgroup analysis of observational studies (from RR, 2.94 [1.38-6.25]; $I^2 = 65\%$ to RR, 1.51 [0.78–2.92]; $I^2 = 27\%$) and in the overall analysis (from RR, 2.44 [1.25–4.75]; $I^2 = 61\%$ to RR, 1.56 $[0.78-3.11]; I^2 = 40 \%;$ (Supplement-Table 7B, Supplemental Digital Content 2, http://links.lww.com/CCM/C172; and Supplement-Fig. 2, Supplemental Digital Content 2, http:// links.lww.com/CCM/C172). When only studies after 2011 guidelines and, also, studies that reported adjusted hazard ratios were analyzed, CRBSI risk was comparable between the sites (Supplement-Table 7B, Supplemental Digital Content 2, http://links.lww.com/CCM/C172).

dence was either low or very low for observational studies and RCTs for other outcomes and moderate for RCTs for the site, mainly because of the absence of blinding for patients and personnel. The overall quality of evidence for all observed outcomes was low for all comparisons (**Supplement-Table 8**, Supplemental Digital Content 2, http://links.lww.com/CCM/C172).

lww.com/CCM/C172).

to

approach, the quality of evi-

GRADE

According

Additional Analyses

Indwelling Time. The mean duration of catheterization was reported in 10 studies. Subclavian catheters were kept longer compared with internal jugular (mean difference: -1.76; 95% CI, -3.74 to 0.22) or femoral (mean difference: -0.43; 95% CI, -1.03 to 0.16). No difference in indwelling time was observed between internal jugular and femoral. Important heterogeneity was found in internal jugular-femoral ($I^2 = 88\%$) and internal jugular-subclavian ($I^2 = 92\%$) comparisons (**Fig. 4**).

Risk of Bias. Bias related to distribution of studies' effect estimate was observed only in femoral-subclavian comparison for colonization. No bias related to small study effects according to Harbord modified test was shown in any other comparison (**Supplement-Figs. 3–6**, Supplemental Digital Content 2, http://links.lww.com/CCM/C172).

Meta-regression showed a positive effect of publication year only on CRBSI risk (**Supplement-Figs. 7 and 8**) in internal jugular-femoral comparisons (p = 0.001). No effect of APACHE score was observed in either comparison (**Supplement-Figs. 9** and **10**, Supplemental Digital Content 2, http://links. lww.com/CCM/C172). The risk ratio of CRBSI risk in older ages was shown larger in internal jugular-femoral comparison (p = 0.009) (**Supplement-Figs. 11** and **12**, Supplemental Digital Content 2, http://links.lww.com/CCM/C172).

Critical Care Medicine

www.ccmjournal.org

Δ		Internal Ju	ugular	Femo	oral		Risk Ratio		Risk Ratio	
	Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% Cl	
	2.1.1 RCT for other outcome	me								
	Arvaniti 2012	1	90	1	214	2.7%	2.38 [0.15, 37.60]	2012		
	Timsit 2013	10	1127	10	1400	11.5%	1.24 [0.52, 2.97]	2013		
	Subiotal (95% CI)	4.4	121/	4.4	1014	14.2%	1.3∠ [0.57, 3.03]			
	Heterogeneity: Tou2 = 0.00	11 Chi² – 0.40) df = 1 (11 D = 0 ee). 12 - 0	0/_				
	Test for overall effect: Z = 0	0.65 (P = 0.19)	52) or = 1	r = 0.66), i+ = 0'	70				
	2.1.2 RCT for CVC site									
	Parienti 2015 Subtotal (95% CI)	21	1145 1145	15	1140 1140	13.7% 1 3.7%	1.39 [0.72, 2.69] 1.39 [0.72, 2.69]	2015		
	Total events	21		15						
	Heterogeneity: Not applicat	ble Die								
	Test for overall effect: $Z = 0$	0.99 (P = 0.3	52)							
	2.1.3 Observational									
	Lorente Ramos 2003	2	382	3	81	5.4%	0.14 [0.02, 0.83]	2003		
	Lorente 2004	4	698	5	147	7.9%	0.17 [0.05, 0.62]	2004		
	Deshpande 2005	0	191	2	139	2.3%	0.15 [0.01, 3.01]	2005		
	Lorente 2005	25	1390	20	288	14.6%	0.26 [0.15, 0.46]	2005		
	Garnacho Montero 2008	17	626	18	387	13.8%	0.58 [0.30, 1.12]	2008		
	Lorente 2008	22	515	16	208	14.1%	0.56 [0.30, 1.04]	2008		
	Memon 2010	6	241	8	184	10.0%	0.57 [0.20, 1.62] 2	2008 2010		
	Subtotal (95% CI)	5	4273	1	52 1486	4.1% 72.1%	0.40 [0.27. 0.59]	2010	▲ [
	Total events	81		73			,		-	
	Heterogeneity: Tau ² = 0.08;	; Chi ² = 9.38	3, df = 7 (P = 0.23); l² = 2	5%				
	Test for overall effect: Z = 4	.53 (P < 0.0	00001)							
	Total (95% CI)		6635		4240	100.0%	0.55 [0.34, 0.89]		•	
	Total events	113		99						
	Heterogeneity: Tau ² = 0.34;	; Chi² = 25.3	85, df = 1	0 (P = 0.	005); l²	= 61%			0.01 0.1 1 10	100
	Test for overall effect: Z = 2	2.41 (P = 0.0)2)	0 (D)					Favours Internal Jugular Favours Femoral	
	Test for subgroup difference	es: Cni ² = 1,	3.77, di =	= 2 (P = 0	J.001), I	~ = 85.5%				
В										
	Chudu on Culture	Internal Ju	gular Totol	Subclay	/ian	Waicht	Risk Ratio	(aar	Risk Ratio	
-	2 2 1 RCT for other outcom	Events	iotai	Events	i otal	weight	iv, Random, 95% CI Ye	ear	IV, Random, 95% Cl	
	Poisson 1991	7	76	1	107	7.9%	9 86 [1.24 78 461 10	991		
	Arvaniti 2012	0	89	5	163	4.9%	0.17 [0.01. 2.96] 20	012		
	Subtotal (95% CI)	·	165	-	270	12.7%	1.45 [0.03, 78.97]			
	Total events	7		6						
	Heterogeneity: Tau ² = 6.70;	Chi ² = 5.08,	df = 1 (F	9 = 0.02);	l ² = 80 ⁶	%				
	Test for overall effect: Z = 0.	18 (P = 0.85	5)							
	2.2.2 RCT for CVC site			_		10	o (o			
	Parienti 2015 Subtotal (95% CI)	13	984 984	6	981 981	16.6% 16.6%	2.16 [0.82, 5.66] 20	015		
	Total events	13	304	6	301	13.070	2.10 [0.02, 0.00]			
	Heterogeneity: Not applicabl	le		U						
	Test for overall effect: Z = 1.	57 (P = 0.12	2)							
	2.2.3 Observational									
	Lorente Ramos 2003	2	382	3	237	9.6%	0.41 [0.07, 2.46] 20	2003		
	Lorente 2004	4	698	5	432	13.2%	0.50 [0.13, 1.83] 20	004		
	Deshpande 2005	0	191	1	221	4.1%	0.39 [0.02, 9.41] 20	005		
	Lorente 2005	25	1390	8	917	18.5%	2.06 [0.93, 4.55] 20	2005		
	Garnacho Montero 2008	17	626	26	100	20.4%		008	-	
	Subtotal (95% CI)	5	230 3517	0	2584	4.8% 70.6%	0.90 [0.42. 1.90]	010	- · ·	
	Total events	53		43					T	
	Heterogeneity: Tau ² = 0.37:	Chi ² = 10.08	3, df = 5 (P = 0.07); l² = 50	0%				
	Test for overall effect: Z = 0.	28 (P = 0.78	3)	,						
	Total (95% CI)		4666		3835	100.0%	1.16 [0.57, 2.35]		-	
	Total events	73		55						
	Heterogeneity: Tau ² = 0.55;	01.12 40.07						_		+
		$Chi^2 = 18.97$	7, df = 8 (P = 0.02); l² = 58	3%			0.01 0.1 1 10 1	00
	Test for overall effect: Z = 0.	40 (P = 0.69)	7, df = 8 (9)	P = 0.02)); l ² = 58	3%			0.01 0.1 1 10 1 Favours Internal Jugular Favours Subclavian	00

Figure 3. Catheter-related blood stream infection risk in studies comparing internal jugular to femoral (A), internal jugular to subclavian (B), and

www.ccmjournal.org

6

XXX 2016 • Volume XX • Number XXX

С	Study or Subgroup	Femo	ral Totol	Subclay	vian	Weight	Risk Ratio	Veer	Risk Ratio
_	2.3.1 RCT for other outcor	Events ne	Total	Events	Total	weight	IV, Random, 95% CI	rear	r IV, Random, 95% Cl
	Arvaniti 2012 Subtotal (95% CI)	0	213 213	5	163 163	4.2% 4.2%	0.07 [0.00, 1.25] 0.07 [0.00, 1.25]	2012	2
	Total events	0		5					
	Heterogeneity: Not applicab	le							
	Test for overall effect: Z = 1.	.81 (P = 0	0.07)						
	2.3.2 RCT for CVC site								
	Merrer 2001	2	134	1	136	5.6%	2.03 [0.19, 22.12]	2001	1
	Parienti 2015 Subtotal (95% CI)	11	875 1009	4	878 1014	12.6% 18.2%	2.76 [0.88, 8.63] 2.61 [0.93, 7.30]	2015	5
	Total events	13		5					
	Heterogeneity: Tau ² = 0.00;	Chi ² = 0.	.05, df =	= 1 (P = 0	.82); l² :	= 0%			
	Test for overall effect: Z = 1.	.82 (P = (0.07)						
	2.3.3 Observational								
	Lorente Ramos 2003	3	81	3	237	9.4%	2.93 [0.60, 14.21]	2003	3
	Lorente 2004	5	147	5	432	11.9%	2.94 [0.86, 10.01]	2004	4 +
	Lorente 2005	20	288	8	917	15.4%	7.96 [3.54, 17.88]	2005	5 —
	Deshpande 2005	2	139	1	221	5.6%	3.18 [0.29, 34.74]	2005	5
	Garnacho Montero 2008	18	387	26	585	17.3%	1.05 [0.58, 1.88]	2008	8
	Memon 2010	1	52	0	192	3.6%	10.92 [0.45, 264.32]	2010	0
	Lorente 2011	26	313	5	147	14.3%	2.44 [0.96, 6.23]	2011	1
	Subtotal (95% CI)		1407		2731	77.6%	2.94 [1.38, 6.25]		\bullet
	Total events	75		48					
	Heterogeneity: Tau ² = 0.57;	Chi ² = 1	7.19, df	= 6 (P =	0.009);	l² = 65%			
	Test for overall effect: Z = 2.	.80 (P = 0	0.005)						
	Total (95% CI)		2629		3908	100.0%	2.44 [1.25, 4.75]		◆
	Total events	88		58					
	Heterogeneity: Tau ² = 0.58;	Chi ² = 22	2.93, df	= 9 (P =	0.006);	l² = 61%			
	Test for overall effect: Z = 2	.63 (P = 0	0.009)	•					U.UUD U.T 1 10 200 Eavours Eemoral Eavours Subclavian
	Test for subgroup difference	es: Chi² =	: 6.07, d	lf = 2 (P =	: 0.05),	l² = 67.0%)		

Figure 3. (Continued). femoral to subclavian insertion site (C). Vertical lines indicate no difference between the two intervention groups. Pooled risk ratios were calculated from random-effects models with Der Simonian and Laird method. IV = inverse variance.

In cumulative meta-analysis, considerable influence of studies published after 2011 was observed only in colonization risk point estimates in internal jugular-femoral comparisons with a tendency toward nondifference (**Supplement-Figs. 13** and **14**, Supplemental Digital Content 2, http://links.lww.com/CCM/C172).

Network Meta-Analysis

In individual comparisons for colonization, femoral and internal jugular were more probable to increase the risk than subclavian (NMA: RR, 3.01 [95% CI, 2.18–4.16] and RR, 2.50 [95% CI, 1.98–3.16], respectively), whereas subclavian presented the lowest risk (SUCRA, 100%). CRBSI risk was increased for femoral compared with subclavian (NMA: RR, 2.40 [95% CI, 1.35–4.26]), and no difference was observed between internal jugular and subclavian (NMA: RR, 1.19 [95% CI, 0.65–2.19]). There was no inconsistency for either outcome, indicating that NMA comparisons seem to be in agreement with calculated indirect estimates by pairwise analysis (**Fig. 5; Supplement-Table 9**, Supplemental Digital Content 2, http://links.lww.com/ CCM/C172; and **Supplement-Figs. 15** and **16**, Supplemental Digital Content 2, http://links.lww.com/CCM/C172).

Secondary Outcomes

Three studies (21, 53, 56) reported noninfectious complications; in one (21), pneumothorax was more frequent in subclavian (14/981) compared with internal jugular (4/984), in the second (53), pneumothorax events between subclavian (1/192) and internal jugular (1/230) were similar, and in the third (56), four events (4/144) in subclavian were observed. Only one study (21) used ultrasound guidance for CVC insertion, mainly for internal jugular.

Two studies (21, 56) reported thrombotic complications per site (Supplement-Table 2, Supplemental Digital Content 3, http://links.lww.com/CCM/C173).Quantitative synthesis was possible solely for comparison of thrombotic risk between femoral and subclavian. The risk was higher for femoral considering CVC-related thrombosis (RR, 4.58 [95% CI, 1.02–20.52]; $I^2 = 76$) and major CVC-related thrombosis (RR, 3.57 [95% CI, 1.38–9.22]; $I^2 = 0\%$; **Supplement-Fig.** 17, Supplemental Digital Content 2, http://links.lww.com/CCM/C172).

DISCUSSION

According to our findings, in the ICU setting, when CRBSI risk is considered, <u>subclavian is no longer the incontestable site of</u> choice in ICU patients; <u>internal jugular</u> can be, also, chosen <u>initially. Subclavian</u> retains its <u>first-choice</u> rank when <u>colonization risk</u> is regarded and not otherwise contraindicated. <u>Excess</u> <u>CRBSI</u> risk of <u>femoral remains arguable.</u>

Critical Care Medicine

www.ccmjournal.org

Figure 4. Comparison of central venous catheter indwelling time between internal jugular and femoral (**A**), internal jugular and subclavian (**B**), and femoral and subclavian insertion site (**C**). *Vertical lines* indicate no difference between the two intervention groups. Pooled mean difference was calculated from random-effects models with Der Simonian and Laird method.

www.ccmjournal.org

XXX 2016 • Volume XX • Number XXX

Figure 5. Network estimates (network meta-analysis [NMA]): from the trial by Parienti et al (21), only central venous catheters (CVCs) inserted in the insertion sites assigned in three-choice randomization scheme (subclavian, internal jugular, and femoral) were analyzed in the NMA. **A**, NMA plot of the three insertion sites for CVC colonization. **B**, Network plot of the three insertion sites for catheter-related bloodstream infections (CRBSIs). The width of the lines is proportional to the number of trials comparing each pair of insertion sites and the size of each node is proportional to the number of participants. **C**, Network estimates of summary risk ratios for CVC colonization. **D**, Network estimates of summary risk ratios for CRBSI. The *black solid lines* represent the CIs for summary risk ratios for each comparison and the *red lines* the respective predictive intervals (PIs). The *blue line* is the line of no effect (risk ratio = 1).

The present meta-analysis differs from the two former ones (17, 18). It is the first that included the largest RCT for sites, compared separately each site with the remaining ones, assessed the quality of evidence, and analyzed CRBSI and colonization as distinct outcomes. Contrary to the findings of Parienti et al (17), our findings support subclavian, as the preferred site, only for colonization and not for CRBSI risk reasons. Contrary to the study by Marik et al (18), we found that femoral has higher CRBSI risk than subclavian and, in agreement to their results, higher CRBSI risk than internal jugular, which merits further evaluation. In contrast to the present meta-analysis, in the study by Parienti et al (17), CRBSI and colonization risk data were not separately analyzed; one of the 10 included studies was a crossover trial,

and two studies included catheters inserted in wards or emergency departments, whereas internal jugular was not compared with femoral. In addition, statistical significance was guided by one, observational, single-center study that did not control for baseline characteristics (51). In the study by Marik et al (18), five of 10 studies analyzed CVCs inserted in wards, as well as in the ICU, and one included catheters for renal replacement therapy; furthermore, subclavian was not compared with internal jugular. Compared with the study by Timsit et al (19), we observed different CRBSIs, yet, comparable colonization risk for internal jugular and femoral. Our results for CRBSI and colonization risk agree with the recent RCT for sites by Parienti et al (21) with differences, only in internal jugular-femoral comparisons.

Critical Care Medicine

www.ccmjournal.org

Full barrier precautions and protocols for CVC insertion and maintenance were reported in almost all studies, highlighting their wide application. Two studies (49, 57) used exclusively chlorhexidine solutions for skin antisepsis, two used chlorhexidine-impregnated sponges (19, 54), and one (19) evaluated chlorhexidine-dressings' effect on femoral and internal jugular CRIs, which did not permit quantitative analysis. The relevance between the site and chlorhexidine dressings for CRI prevention remains controversial (61). None of the studies evaluated chlorhexidine bathing. Five studies used impregnated catheters as comparators; none of them evaluated CRBSI or colonization in patients with exclusive use of these catheters; instead, relative CRBSI risk was comparable when studies with these catheters in more than 40% of their populations were analyzed separately. Probably, antimicrobial catheters reduce CRBSI and colonization risk in the ICU (62); however, our study was not designed to evaluate CRI risk differences between sites, when only antimicrobial catheters were used. Even in the latest RCT for sites, no antimicrobial catheters or chlorexidine dressings were used, whereas chlorexidine for skin antisepsis and ultrasound guidance were applied only for a proportion of patients (21). This observation signifies that newer preventive policies have not yet gained general acceptance in the ICU, which merits further evaluation.

Mechanical complications were rarely reported in included studies. Ultrasound-guided CVC insertion can probably reduce mechanical complications, mainly for internal jugular and secondarily for subclavian (63). Nevertheless, this approach has not shown any positive effect on CRBSI prevention (64).

The present study has several limitations. First, we included crude incidence numbers of outcome measures because only three studies reported adjusted hazard ratios; nonetheless, even with adjusted outcome measures, residual confounding may still exist. Second, the included studies did not provide data on site skin colonization, dressing disruptions, and-with one exception (19)—on gender, possible confounding variables (65). We could not estimate the influence of duration of CVC catheterization on CRBSI and colonization risk, as this could be achieved only by individual patient data meta-analysis. Third, because the majority of included studies were observational, the risk of overrated pooled estimates exists, as nonsignificant outcomes from observational studies are more expected to be published than from RCTs (66). Nevertheless, in a recent meta-analysis, significant effect estimate differences between RCTs and observational studies were not demonstrated, suggesting that other than study design issues should be evaluated whenever discrepancies between RCTs and observational studies are speculated (66, 67). Fourth, the NMA of randomized and observational studies permitted the evaluation of a large sample size, at the cost, however, of a possibly enhanced risk of bias because of low-quality nonrandomized assignments (68). Consequently, our NMA results, though valid, should not be used for the elaboration of definitive conclusions.

CONCLUSIONS

The present meta-analysis for short-term, nontunneled CVCs in the ICU suggests that subclavian, as well as, internal jugular could be chosen initially when CRBSI risk is considered. Subclavian could be proposed as the most appropriate site, whenever colonization risk is assumed and not otherwise contraindicated. Conclusions were derived from a large data sample including trials with considerable heterogeneity of CRBSI risk comparisons, small number of RCTs for site, limited sample size of observational studies to detect rare events as CRB-SIs, and low GRADE quality of evidence for all comparisons. A RCT for femoral compared with the other two sites, incorporating other than site selection preventive measures, like ultrasound guidance for CVC insertion, timely discontinuation of catheterization, antimicrobial catheters, could help elucidate the veritable place of femoral in a site selection procedure.

ACKNOWLEDGMENT

We thank Theodoros Sakellariou for his technical assistance for developing figures and tables.

REFERENCES

- Srinivasan A, Wise M, Bell M, et al: Centers for Disease Control and Prevention (CDC): Vital signs: Central line-associated blood stream infections-United States, 2001, 2008, and 2009. *Morb Mortal Wkly Rep* 2011; 60:243–248
- Fontela PS, Platt RW, Rocher I, et al: Epidemiology of central lineassociated bloodstream infections in Quebec intensive care units: A 6-year review. Am J Infect Control 2012; 40:221–226
- Polderman KH, Girbes AJ: Central venous catheter use. Part 1: Mechanical complications. *Intensive Care Med* 2002; 28:1–17
- Schummer W, Schummer C, Rose N, et al: Mechanical complications and malpositions of central venous cannulations by experienced operators. A prospective study of 1794 catheterizations in critically ill patients. *Intensive Care Med* 2007; 33:1055–1059
- Durbec O, Viviand X, Potie F, et al: Lower extremity deep vein thrombosis: A prospective, randomized, controlled trial in comatose or sedated patients undergoing femoral vein catheterization. *Crit Care Med* 1997; 25:1982–1985
- Joynt GM, Kew J, Gomersall CD, et al: Deep venous thrombosis caused by femoral venous catheters in critically ill adult patients. *Chest* 2000; 117:178–183
- Ziegler MJ, Pellegrini DC, Safdar N: Attributable mortality of central line associated bloodstream infection: Systematic review and metaanalysis. *Infection* 2015; 43:29–36
- Zimlichman E, Henderson D, Tamir O, et al: Health care-associated infections: A meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med 2013; 173:2039–2046
- Pronovost P, Needham D, Berenholtz S, et al: An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 2006; 355:2725–2732
- Marsteller JA, Sexton JB, Hsu YJ, et al: A multicenter, phased, cluster-randomized controlled trial to reduce central line-associated bloodstream infections in intensive care units*. *Crit Care Med* 2012; 40:2933–2939
- Blot K, Bergs J, Vogelaers D, et al: Prevention of central line-associated bloodstream infections through quality improvement interventions: A systematic review and meta-analysis. *Clin Infect Dis* 2014; 59:96–105
- Hockenhull JC, Dwan KM, Smith GW, et al: The clinical effectiveness of central venous catheters treated with anti-infective agents in preventing catheter-related bloodstream infections: A systematic review. *Crit Care Med* 2009; 37:702–712
- O'Grady NP, Alexander M, Burns LA, et al; Healthcare Infection Control Practices Advisory Committee (HICPAC): Guidelines for the prevention of intravascular catheter-related infections. *Clin Infect Dis* 2011; 52:e162–e193
- Furuya EY, Dick A, Perencevich EN, et al: Central line bundle implementation in US intensive care units and impact on bloodstream infections. *PLoS One* 2011; 6:e15452

XXX 2016 • Volume XX • Number XXX

- Hansen S, Schwab F, Behnke M, et al; und das PROHIBIT Consortium: [Compliance with national guidelines for the prevention of central venous catheter-associated-infections in German intensive care units]. *Dtsch Med Wochenschr* 2013; 138:1706–1710
- Zingg W, Cartier V, Inan C, et al: Hospital-wide multidisciplinary, multimodal intervention programme to reduce central venous catheterassociated bloodstream infection. *PLoS One* 2014; 9:e93898
- Parienti JJ, du Cheyron D, Timsit JF, et al: Meta-analysis of subclavian insertion and nontunneled central venous catheter-associated infection risk reduction in critically ill adults. *Crit Care Med* 2012; 40:1627–1634
- Marik PE, Flemmer M, Harrison W: The risk of catheter-related bloodstream infection with femoral venous catheters as compared to subclavian and internal jugular venous catheters: A systematic review of the literature and meta-analysis. *Crit Care Med* 2012; 40:2479–2485
- Timsit JF, Bouadma L, Mimoz O, et al: Jugular versus femoral shortterm catheterization and risk of infection in intensive care unit patients. Causal analysis of two randomized trials. *Am J Respir Crit Care Med* 2013; 188:1232–1239
- Marschall J, Mermel LA, Fakih M, et al; Society for Healthcare Epidemiology of America: Strategies to prevent central line-associated bloodstream infections in acute care hospitals: 2014 update. *Infect Control Hosp Epidemiol* 2014; 35:753–771
- Parienti JJ, Mongardon N, Mégarbane B, et al; 3SITES Study Group: Intravascular complications of central venous catheterization by insertion site. N Engl J Med 2015; 373:1220–1229
- 22. Liberati A, Altman DG, Tetzlaff J, et al: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. *PLoS Med* 2009; 6:e1000100
- Stroup DF, Berlin JA, Morton SC, et al: Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283:2008–2012
- Ruesch S, Walder B, Tramèr MR: Complications of central venous catheters: Internal jugular versus subclavian access-a systematic review. *Crit Care Med* 2002; 30:454–460
- Veenstra DL, Saint S, Saha S, et al: Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: A meta-analysis. *JAMA* 1999; 281:261–267
- Gilbert RE, Harden M: Effectiveness of impregnated central venous catheters for catheter related blood stream infection: A systematic review. *Curr Opin Infect Dis* 2008; 21:235–245
- 27. Dias S, Welton N, Sutton A, et al: NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework for pairwise and network meta-analysis of randomised controlled trials. National Institute for Health and Clinical Excellence, 2011. 98 p. (Technical Support Document in Evidence Synthesis; No. TSD2). Available at: http://www.nicedsu.org.uk/. Accessed January 1, 2014
- Mermel LA, Farr BM, Sherertz RJ, et al; Infectious Diseases Society of America; American College of Critical Care Medicine; Society for Healthcare Epidemiology of America: Guidelines for the management of intravascular catheter-related infections. *Clin Infect Dis* 2001; 32:1249–1272
- Timsit JF: Updating of the 12th Consensus Conference of the Societe de Reanimation de langue francaise (SRLF): Catheter related infections in the intensive care unit. Ann Fr Anesth Reanim 2005; 24:315–22
- Maki DG, Weise CE, Sarafin HW: A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med 1977; 296:1305–1309
- Brun-Buisson C, Abrouk F, Legrand P, et al: Diagnosis of central venous catheter-related sepsis. Critical level of quantitative tip cultures. Arch Intern Med 1987; 147:873–877
- Higgins JPT, Altman DG: Assessing risk of bias in included studies. *In:* Cochrane Handbook for Systematic Reviews of Interventions. Higgins JPT, Green S (Eds). Chichester, UK, John Wiley & Sons, Ltd, 2008, pp 187–241
- Wells G, Shea B, O'Connell D, et al: The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Non Randomised Studies in Meta-Analyses. 2013. Available at: http://www.ohri.ca/programs/ clinical_epidemiology/oxford.asp. Accessed January 1, 2014

- 34. Guyatt GH, Oxman AD, Schünemann HJ, et al: GRADE guidelines: A new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol 2011; 64:380–382
- DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials 1986; 7:177–188
- Higgins JP, Thompson SG: Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21:1539–1558
- Deeks JJ, Higgins JPT, Altman DG: Chapter 9: Analysing data and undertaking meta-analyses. *In*: Cochrane Handbook for Systematic Reviews of Interventions. Higgins JPT, Green S (Eds). Chichester, UK, John Wiley & Sons, 2008, pp 243–296
- Borenstein M, Hedges LV, Higgins JPT et al: Meta-regression. In: Introduction to Meta-Analysis. Chichester, United Kingdom, John Wiley & Sons, Ltd, 2009, pp 187–203
- Nixon RM, Bansback N, Brennan A: Using mixed treatment comparisons and meta-regression to perform indirect comparisons to estimate the efficacy of biologic treatments in rheumatoid arthritis. *Stat Med* 2007; 26:1237–1254
- Harbord RM, Egger M, Sterne JA: A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. *Stat Med* 2006; 25:3443–3457
- Schmitz S, Adams R, Walsh C: Incorporating data from various trial designs into a mixed treatment comparison model. *Stat Med* 2013; 32:2935–2949
- 42. Cameron C, Fireman B, Hutton B, et al: Network meta-analysis incorporating randomized controlled trials and non-randomized comparative cohort studies for assessing the safety and effectiveness of medical treatments: Challenges and opportunities. *Syst Rev* 2015; 4:147
- Lorente L, Jiménez A, García C, et al: Catheter-related bacteremia from femoral and central internal jugular venous access. *Eur J Clin Microbiol Infect Dis* 2008; 27:867–871
- Lorente L, Lecuona M, Ramos MJ, et al: The use of rifampicinmiconazole-impregnated catheters reduces the incidence of femoral and jugular catheter-related bacteremia. *Clin Infect Dis* 2008; 47:1171–1175
- 45. Deshpande KS, Hatem C, Ulrich HL, et al: The incidence of infectious complications of central venous catheters at the subclavian, internal jugular, and femoral sites in an intensive care unit population. *Crit Care Med* 2005; 33:13–20; discussion 234
- Gil RT, Kruse JA, Thill-Baharozian MC, et al: Triple- vs single-lumen central venous catheters. A prospective study in a critically ill population. Arch Intern Med 1989; 149:1139–1143
- Traoré O, Liotier J, Souweine B: Prospective study of arterial and central venous catheter colonization and of arterial- and central venous catheter-related bacteremia in intensive care units. *Crit Care Med* 2005; 33:1276–1280
- Garnacho-Montero J, Aldabó-Pallás T, Palomar-Martínez M, et al: Risk factors and prognosis of catheter-related bloodstream infection in critically ill patients: A multicenter study. *Intensive Care Med* 2008; 34:2185–2193
- Lorente L, Villegas J, Martín MM, et al: Catheter-related infection in critically ill patients. *Intensive Care Med* 2004; 30:1681–1684
- Lorente L, Jiménez A, Martín MM, et al: Lower incidence of catheter-related bloodstream infection in subclavian venous access in the presence of tracheostomy than in femoral venous access: Prospective observational study. *Clin Microbiol Infect* 2011; 17:870–872
- Lorente L, Henry C, Martín MM, et al: Central venous catheter-related infection in a prospective and observational study of 2,595 catheters. *Crit Care* 2005; 9:R631–R635
- Lorente Ramos L, Galvan R, Martin V, et al: Incidencias de las complicacionesinfecciosasen la cateterizacion intravascular (Trate of intravascular catheter infection line days). *Med Intensiva* 2003; 27:224–228
- Memon JI, Rehmani RS, Venter JL, et al: Central venous catheter practice in an adult intensive care setting in the eastern province of Saudi Arabia. Saudi Med J 2010; 31:803–807
- 54. Arvaniti K, Lathyris D, Clouva-Molyvdas P, et al; Catheter-Related Infections in ICU (CRI-ICU) Group: Comparison of Oligon catheters and chlorhexidine-impregnated sponges with standard multilumen central venous catheters for prevention of associated colonization

Critical Care Medicine

www.ccmjournal.org 11

and infections in intensive care unit patients: A multicenter, randomized, controlled study. Crit Care Med 2012; 40:420-429

- Poisson DM, Touquet S, Bercault N, et al: Polyurethane versus polyethylene: An in vivo randomized study of polymer borne catheter related sepsis. *Pathol Biol* 1991; 39:668–673
- Merrer J, De Jonghe B, Golliot F, et al; French Catheter Study Group in Intensive Care: Complications of femoral and subclavian venous catheterization in critically ill patients: A randomized controlled trial. *JAMA* 2001; 286:700–707
- 57. Walz JM, Avelar RL, Longtine KJ, et al; 5-FU Catheter Study Group: Anti-infective external coating of central venous catheters: A randomized, noninferiority trial comparing 5-fluorouracil with chlorhexidine/ silver sulfadiazine in preventing catheter colonization. *Crit Care Med* 2010; 38:2095–2102
- Mimoz O, Villeminey S, Ragot S, et al: Chlorhexidine-based antiseptic solution vs alcohol-based povidone-iodine for central venous catheter care. Arch Intern Med 2007; 167:2066–2072
- 59. Theaker C, Juste R, Lucas N, et al: Comparison of bacterial colonization rates of antiseptic impregnated and pure polymer central venous catheters in the critically ill. *J Hosp Infect* 2002; 52:310–312
- Rupp ME, Lisco SJ, Lipsett PA, et al: Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter-related infections: A randomized, controlled trial. *Ann Intern Med* 2005; 143:570–580
- Mahjoub Y, Dupont H: Chlorhexidine-impregnated dressing: An efficient weapon against catheter-related bloodstream infection?*. *Crit Care Med* 2014; 42:1742–1743

- Lai NM, Chaiyakunapruk N, Lai NA, et al: Catheter impregnation, coating or bonding for reducing central venous catheterrelated infections in adults. *Cochrane Database Syst Rev* 2013; 3:CD007878
- Lalu MM, Fayad A, Ahmed O, et al; Canadian Perioperative Anesthesia Clinical Trials Group: Ultrasound-guided subclavian vein catheterization: A systematic review and meta-analysis. *Crit Care Med* 2015; 43:1498–1507
- 64. <u>Cartier V, Haenny A, Inan C, et al: No association between ultra-</u> <u>sound-guided insertion of central venous catheters and bloodstream</u> <u>infection: A prospective observational study. J Hosp Infect 2014</u>; <u>87:103–108</u>
- Timsit JF, Bouadma L, Ruckly S, et al: Dressing disruption is a major risk factor for catheter-related infections. *Crit Care Med* 2012; 40:1707–1714
- Golder S, Loke YK, Bland M: Meta-analyses of adverse effects data derived from randomised controlled trials as compared to observational studies: Methodological overview. *PLoS Med* 2011; 8:e1001026
- Anglemyer A, Horvath HT, Bero L: Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials. *Cochrane Database Syst Rev* 2014; MR000034
- Verde PE, Ohmann C: Combining randomized and non-randomized evidence in clinical research: A review of methods and applications. *Res Synth Methods* 2015; 6:45–62

Definitions: <u>USA</u> and <u>French definitions</u> were applied for primary outcomes (29,30). <u>Colonisation</u> was defined as <u>positive semi-quantitative</u> tip culture [≤ 15 cfu/mL, roll plate (31)] or <u>positive quantitative</u> culture [$\leq 10^3$ cfu/mL vortex (32)], without evidence of clinical sepsis; <u>CRBSI</u> as <u>colonisation plus one</u> <u>positive</u> blood culture from <u>peripheral puncture</u> growing the <u>same</u> <u>microorganism</u> as the catheter tip. CVC-related thrombosis was considered when a partial thrombus was found or when symptomatic site-related deep vein thrombosis was observed. Major CVC-related thrombosis was defined as complete site-related thrombosis of at least one vessel.