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Abstract 

Background: The EMiC2 membrane is a medium cut-off haemofilter (45 kiloDalton). Little is known regarding its 
efficacy in eliminating medium-sized cytokines in sepsis. This study aimed to explore the effects of continuous veno-
venous haemodialysis (CVVHD) using the EMiC2 filter on cytokine clearance.

Methods: This was a prospective observational study conducted in critically ill patients with sepsis and acute kidney 
injury requiring kidney replacement therapy. We measured concentrations of 12 cytokines [Interleukin (IL) IL-1β, IL-1α, 
IL-2, IL-4, IL-6, IL-8, IL-10, interferon (IFN)-γ, tumour necrosis factor (TNF)-α, vascular endothelial growth factor, mono-
cyte chemoattractant protein (MCP)-1, epidermal growth factor (EGF)] in plasma at baseline (T0) and pre- and post-
dialyzer at 1, 6, 24, and 48 h after CVVHD initiation and in the effluent fluid at corresponding time points. Outcomes 
were the effluent and adsorptive clearance rates, mass balances, and changes in serial serum concentrations.

Results: Twelve patients were included in the final analysis. All cytokines except EGF concentrations declined over 
48 h (p < 0.001). The effluent clearance rates were variable and ranged from negligible values for IL-2, IFN-γ, IL-1α, IL-1β, 
and EGF, to 19.0 ml/min for TNF-α. Negative or minimal adsorption was observed. The effluent and adsorptive clear-
ance rates remained steady over time. The percentage of cytokine removal was low for most cytokines throughout 
the 48-h period.

Conclusion: EMiC2-CVVHD achieved modest removal of most cytokines and demonstrated small to no adsorptive 
capacity despite a decline in plasma cytokine concentrations. This suggests that changes in plasma cytokine concen-
trations may not be solely influenced by extracorporeal removal.

Trial registration: NCT03231748, registered on 27th July 2017.
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injury, CRRT , Kidney replacement therapy
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Introduction
Sepsis is a life-threatening condition in which a dysregu-
lated release of pro- and anti-inflammatory cytokines can 
lead to multiple organ failure and increased mortality [1]. 
Management of sepsis is supportive [2].

Critically ill patients with sepsis-associated acute kid-
ney injury (AKI) requiring kidney replacement therapy 
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(KRT) are at particularly increased risk of death [3]. 
However, KRT may offer the opportunity to provide 
extracorporeal blood purification therapy (BPT). With 
regards to the potential benefit of BPT, there are several 
hypotheses. The ‘peak concentration hypothesis’ pro-
poses that during BPT excessive pro- or anti-inflamma-
tory mediators are removed and plasma concentrations 
decrease to levels below a toxic threshold [4, 4]. The 
‘cytokinetic theory’ proposes that cytokine removal cre-
ates a decreased cytokine gradient between tissues and 
the bloodstream and promotes leukocyte chemotaxis 
towards the infected tissues [6]. The ‘cytotoxic thresh-
old immune modulation theory’ relates to the removal 
of cytokines from the cytokine-concentrated interstitium 
and tissues into the circulation [7]. Finally, a ‘cellular 
theory’ refers to removing leucocytes directly or through 
immune cell reprogramming [8, 9]. The proposed tech-
niques include high-volume haemofiltration (HVHF), use 
of high cut-off (HCO) membrane and adsorption tech-
niques, or plasmapheresis [10]. HCO haemofiltration 
with a cut-off up to 60  kDa has been shown to achieve 
higher cytokine clearance than conventional membranes 
(15–30 kDa), but the effects on clinical outcomes such as 
haemodynamic improvement, severity scores, and sur-
vival are inconclusive [11–17]. Besides, the concomitant 
loss of albumin, proteins, micronutrients, and antibiotics 
is a concern [18, 19].

The EMiC2 filter (Fresenius, Bad Homburg, Germany) 
is a polysulfone (PS)-based membrane with a cut-off of 
45 kDa. Case reports showed reduction in serum k-free 
light chains and myoglobin levels with the EMiC2 filter, 
but actual removal by the filter was not investigated [20–
23]. Other studies reported higher removal of kappa light 
chains (23  kDa), β2-microglobulin (17  kDa), myoglobin 
(17  kDa), IL-6, and IL-8 in patients receiving treatment 
with EMiC2 filters compared with standard high-flux 
membranes [24–27]. EMiC2-continuous veno-venous 
haemodialysis (CVVHD) was well-tolerated, and albu-
min loss was limited [28]. However, in-vitro data showed 
no adsorptive capacity of the EMiC2 filter compared with 
other membranes [29].

The exact role of the EMiC2 filter in the treatment of 
sepsis-associated AKI is unknown. Furthermore, the 
causal link between reduction in plasma cytokine con-
centration and extracorporeal cytokine removal has not 
been demonstrated [26, 28]. Before proceeding to a trial 
comparing the EMiC2 filter with other commercially 
available filters to manage sepsis-associated AKI, it is 
important to determine the characteristics and the actual 
magnitude of cytokine removal in vivo. In this pilot study, 
we aimed to measure the clearance of middle molecu-
lar weight cytokines using the EMiC2 filter in patients 
receiving CVVHD.

Material and methods
This study was a prospective observational study 
in a 62-bed mixed tertiary-care intensive care unit 
(ICU) between June and September 2017. The study 
was approved by the Research Ethics Commit-
tee (16/LO/0313), registered on clinicaltrials.gov 
(NCT03231748) and conducted in accordance with 
the Declaration of Helsinki 2013. Written informed 
consent was obtained from all patients or their legal 
representatives.

Subjects
Eligible patients were critically ill adult patients with 
acute kidney injury and sepsis in whom a decision had 
been made by the clinical team to start citrate-based 
CVVHD. Exclusion criteria were lack of consent, pre-
existing dialysis-dependent kidney failure, life expec-
tancy < 24  h, haemoglobin < 7  g/dL, and need for 
extracorporeal membrane oxygenation (ECMO).

Kidney replacement therapy (KRT) setting
CVVHD was performed with the dialysis machine mul-
tifiltrate using the medium cut-off dialyzer EMiC2 and 
a bicarbonate-buffered dialysate (Fresenius Medical 
Care, Bad Homburg, Germany) at 25–30  ml/kg/h [30]. 
Regional citrate anticoagulation was used in all patients.

Cytokine measurement
The concentrations of interleukin (IL)-2, IL-4, IL-6, IL-8, 
IL-10, vascular endothelial growth factor (VEGF), inter-
feron gamma (IFN-γ), tumour necrosis factor alpha 
(TNF-α), IL-1alpha (IL-1α), IL-1beta (IL-1β), monocyte 
chemoattractant protein-1 (MCP-1), epidermal growth 
factor (EGF) were measured before initiation of CVVHD 
(T0) and pre- and post-dialyzer during CVVHD at 1, 6, 
24, and 48 h (T1, T6, T24, and T48, respectively) (Addi-
tional file 1). These molecules were also measured in the 
effluent at the same time points (T1, T6, T24, and T48). 
If CVVHD had to be temporarily discontinued, sampling 
was performed 1–2 h after CVVHD was re-started using 
the same circuit. In case, a circuit change was neces-
sary within the first 24 h of the study, sampling was re-
commenced de novo with the new filter. If a further filter 
change was necessary within the first 24  h, the patient 
was withdrawn from the study.

Laboratory analyses
Blood and effluent samples were centrifuged at 3000 rpm 
for 15  min and stored in a − 80  °C freezer until batch 
analysis at the end of the study. The cytokine concen-
trations were determined by electro-chemilumines-
cent immunoassay (ECLIA) method using an Evidence 
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Investigator Bioship system (Randox Laboratories Lim-
ited, the United Kingdom).

Outcomes
The primary outcome of interest was cytokine clearance 
during EMiC2-based CVVHD. The secondary endpoints 
were adsorption by the EMiC2 filter, changes in cytokine 
concentrations in plasma, and reduction ratios of all 
cytokines over 48 h.

Clearances
Effluent clearance (Cleff) at each sampling time point was 
estimated using the following equation [31]:

where Qdf represents dialysate flow rate (ml/h).
Adsorptive clearance (Kad) was calculated as:

Mad represents mass removal rate by membrane 
adsorption (pg/min) (see below):

The average hourly effluent clearance  (Cltotal) dur-
ing the study period was calculated using the following 
formula:

The period between starting CVVHD and the 1-h time 
point was not included due to the necessary equilibra-
tion process. Average clearance per minute  (Clmean) was 
determined from  Cltotal as follows:

Mass balance
Mass balance equations describe the transport of mol-
ecules and account for material entering and leaving a 
system. They allow the estimation of contribution from 
adsorption and removal into the effluent. Mass balance 
of the cytokines at each time point was calculated as 
follows:

(1)
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)
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(5)

Mpredialyzer = Qi × Cpredialyzer; Qi = Qb ×

(

1−
Hct

100

)

where Qi is inlet plasma flow rate (ml/min); Qb is blood 
flow rate (ml/min); Hct is haematocrit at sampling time; 
Qo is outlet plasma flow rate (ml/min); Quf is ultrafiltra-
tion rate (ml/min); Qdf is dialysate flow rate (ml/min); 
Mpredialyzer is inlet mass rate (pg/min); Mpostdialyzer is outlet 
mass rate (pg/min); Mtotal is total mass removal rate (pg/
min); Mdf is mass removal rate by CVVHD (pg/min); Mad 
is mass removal rate by membrane adsorption (pg/min).

We only included subjects with detectable pre-dialyzer 
concentrations when analysing the effluent and adsorp-
tive clearance rates and mass balances.

Reduction ratios
The reduction ratio (RR) of plasma cytokine concentra-
tions at each time point was calculated as follows [24]:

where Ctime0 = plasma concentrations of cytokines at 
baseline before CVVHD initiation.

Statistical analyses
The Kolmogorov–Smirnov test was performed to test for 
normal distribution of continuous variables. Normally 
distributed data were summarised as mean ± stand-
ard deviation. Missing data were not imputed. Non-
parametric variables were summarised as median with 
interquartile range. Changes in median levels over time 
were compared using generalised estimating equations 
(GEE). Spearman’s correlation was performed to assess 
the correlation between plasma cytokine concentrations 
and clearance rates. Linear regression was performed to 
investigate the link between molecular weight and clear-
ance. A p value < 0.05 was considered statistically sig-
nificant. Data were analysed using Stata 16 (StataCorp, 
College Station, Texas).

(6)
Mpostdialyzer = Qo × Cpostdialyzer; Qo = Qi−Quf

(7)Mtotal = Mpredialyzer−Mpostdialyzer

(8)Mdf = Qdf × Ceff

(9)Mad = Mtotal−Mdf

(10)RR =
Cpredialyzer timeX− Ctime0

Ctime0
× 100
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Results
Patient characteristics
Thirteen patients were recruited to the study, but one 
patient was excluded because KRT was not started 
for clinical reasons. Baseline characteristics, severity 
scores, clinical and laboratory data at KRT initiation of 
the remaining 12 patients are presented in Table 1. The 
median dialysate volume was 2400 mL (IQR 2300–3000), 
and the median ultrafiltration rate was 40  mL/h (IQR 
0–190). Eight patients were discharged alive from the 
ICU.

Cytokine plasma concentrations
Median and interquartile range of pre-dialyzer plasma 
cytokine concentrations at baseline and pre-determined 
time points are displayed in Table  2. IL-2, EGF, IFN-γ, 
IL-1β were undetectable in 3, 3, 2, and 1 patient, respec-
tively, throughout the whole study period. The plasma 
concentrations of all cytokines except EGF significantly 
decreased over time (p < 0.001). Figure  1 demonstrates 

the pre-filter cytokine concentrations at each time point 
relative to baseline levels (T0, 100%). At 48 h, the pre-fil-
ter cytokine concentrations decreased to 38.98 ± 18.89% 
for IFN-γ and to 90.57 ± 52.21% for IL-2, corresponding 
to reduction ratios of -61.02% and -9.43%, respectively. 
(Additional file  2) In contrast, for EGF, the pre-filter 
cytokine concentrations at 48  h were 161.74 ± 97.84% 
higher compared with baseline.

Cytokine removal
Clearance rates
The adsorption and effluent clearance rates at each time 
point are shown in Table  3 and Additional file  3. The 
median time-weighted effluent clearance rates varied 
from 0 mL/min in 5 cytokines (IL-2, IFN-γ, IL-1α, IL-1β, 
and EGF) to 33.9  mL/min (MCP-1), 55.4  mL/min (IL-
4), and 63.8 mL/min (IL-8). The effluent clearance rates 
were constant during the 48-h period for most cytokines, 
except for IL-10 and TNF-α where clearance rates were 
higher at T48. The median time-weighted adsorption 
rates ranged from − 64.0 ml/min (IQR − 91.2 to − 43.4) 
for IL-4 to 9.8 ml/min (IQR − 3.8 to 46.3) for IL-2. Nega-
tive values for adsorption were observed in all cytokines 
at some time points. There were no significant changes in 
adsorption rates over time. Correlations between serum 
concentrations and adsorption and effluent clearance are 
shown in Additional file 4.

Mass balance
The total mass transfer (Mtotal) and mass balance via 
adsorption (Mad) and CVVHD (Mdf) are demonstrated 
in Additional file  5. Total mass transfer and the contri-
butions from Mdf and Mad were calculated in percent-
age of Mpredialyzer and shown in Fig. 2. There was marked 
heterogeneity in the proportion of haemofilter clear-
ance and adsorption for all cytokines over time. CVVHD 
(%Mdf/Mpredialyzer) contributed more to cytokine removal 
than adsorption (%Mad/Mpredialyzer) for IL-4, TNF-
α, and MCP-1. At 1  h after CVVHD initiation, total 
removal (%Mtotal/Mpredialyzer) ranged from − 12.24% (IL-
8) to 10.27% (TNF-α). The total cytokine removal rates 
remained stable over the observation period except for 
VEGF which rose due to increased adsorption. At 48 h, 
%Mtotal/Mpredialyzer varied from − 19.06% (IFN-γ) to 
43.54% (VEGF).

Discussion
This is the first study which investigated the transport 
characteristics of 12 molecules across the EMiC2 mem-
brane. The key findings were: first that the plasma con-
centrations of all molecules declined over 48  h, except 
for EGF. Second, the effluent clearance rates were low for 
most cytokines, except for IL-4, IL-8, and MCP-1. Third, 

Table 1 Baseline characteristics of  study patients 
before CVVHD initiation

IQR interquartile range, APACHE Acute Physiologic and Chronic Health 
Evaluation II, SOFA Sequential Organ Failure Assessment

Parameters n = 12

Baseline data

 Age (median, IQR) 57 (47.8, 75)

 Male (n) 8

Source of sepsis (n)

 Lung 5

 Abdomen 5

 Musculoskeletal system 2

Comorbidities (n)

 Diabetes 3

 Hypertension 6

 Chronic heart disease 3

 Chronic lung disease 1

 Cerebrovascular disease 3

 Weight (kg) 72.5 (70, 87)

 Height (cm) 176 (165, 179)

Parameters on day of enrolment

 Mechanical ventilation (n, %) 9 (75%)

 Vasopressor use (n, %) 9 (75%)

 APACHE II (median, IQR) 27 (23, 30)

 SOFA score (median, IQR) 11 (10, 12)

 Urine output (mL/day) 63 (33, 161)

Laboratory data (median, IQR)

 Haemoglobin (g/L) 86 (71, 104)

 Urea (mmol/L) 13.1 (11.5, 18)

 Creatinine (µmol/L) 287 (150, 438)

 C-reactive protein (mg/L) 127 (82, 228)
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minimal or negative adsorption was observed for all 
cytokines. Finally, the total removal rates and contribu-
tions from CVVHD and adsorption were heterogeneous 
but were mostly low to moderate.

Extracorporeal blood purification to attenuate the 
effects of pro-inflammatory and anti-inflammatory medi-
ators in sepsis remains a controversial issue. Although 
some studies showed potentially promising results and a 
reduction in cytokine concentrations in plasma with par-
ticular extracorporeal techniques, it is not always clear 
whether these declines in cytokine levels are related to 
the filter, or simply a reflection of the dynamic nature 
of sepsis [10]. Baseline cytokine concentrations of our 
patient cohort were similar or lower than previous 
reports in the literature [32–41]. This possibly reflects the 
heterogeneity in phenotypes and severity of sepsis and 
also underlines the complexity of cytokine profile inter-
pretation in this setting. Whilst some cytokines are pro-
inflammatory and associated with poor outcomes [42], 
others have a potentially beneficial role. For instance, 
EGF represents tissue recovery or regeneration after 

injury and is associated with cellular proliferation and 
survival in sepsis [43].

Previous studies explored cytokine changes and 
cytokine removal by the EMiC2 filter, but none have fully 
investigated the various mechanisms of cytokine clear-
ance in critically ill patients with sepsis [25–28]. Despite 
reported decent removal of IL-6, IL-8, IL-1β, and TNF-α 
(MW 8.4–25  kDa) in-vitro, the effluent clearance rates 
varied markedly in humans [26, 27, 29]. Several factors 
might affect in vivo clearance, e.g. duration of blood con-
tact, binding to protein or plasma components, dialysate 
rate or ultrafiltration rate, molecular weight, serum con-
centration, or sampling time after filter installation. In 
a previous study using a HCO membrane, a decline in 
plasma IL-1ra and IL-6 was observed in patients with 
high baseline concentrations [11]. This corresponds with 
our results showing that serum IL-2, IL-6, and IL-1β con-
centrations were positively correlated with effluent clear-
ance rates. We also noted that the effluent clearance rates 
remained constant over time which may be explained 
by the use of citrate-based anticoagulation [44]. Citrate 

Table 2 Pre-filter cytokine concentrations at pre-determined time points

Values expressed as median (interquartile range)

Normal range from literature for baseline cytokine concentrations in sepsis (in pg/mL):

IL-2 = 0 (0–108.5); IL-4 = 8.88 (93.2–202.7); IL-6 = 376–2375; TNF-α = 4.43 to 33; IL-8 = 215 to 1349; IL-1β = 0 to 66.02; IL-10 = 88.55 to 638; IFN-γ = 20.82 to 275 pg/mL; 
MCP-1 = 454.2 (97.4–22,000); EGF = 35.9 ± 58.03, VEGF = 27.58 to 1082, IL-1α = 0.12 to 0.36 pg/mL [25–34]

IL interleukin, VEGF vascular endothelial growth factor, IFN interferon, TNF tumour necrosis factor, MCP monocyte chemoattractant protein, EGF epidermal growth 
factor
* p value for differences in cytokine concentrations for all time points using generalized estimating equations (GEE)

Cytokines (pg/ml) T0 (n = 12) T1 (n = 12) T6 (n = 12) T24 (n = 11) T48 (n = 7) p value*

IL-2 2.68
(0,4.18)

1.21
(0, 2.73)

0
(0, 2.67)

0
(0, 3.32)

0
(0, 4.75)

< 0.001

IL-4 1.30
(1.17, 1.92)

1.4
(1.16, 2.03)

1.36
(1.15, 1.84)

1.19
(0.99, 2.24)

1.19
(0.99,1.94)

< 0.001

IL-6 311.03
(30.92, 1175.13)

84.22
(35.02, 1336.48)

80.64
(30.12, 1273.17)

27.48
(23.33, 548.69)

90.82
(14.4,153.54)

< 0.001

IL-8 83.21
(55.10, 588.14)

74.15
(21.79, 446.88)

88.83
(20.82, 356.09)

60.44
(22.65, 222.59)

37.28
(19.99, 77.22)

< 0.001

IL-10 9.35
(4.38, 25.46)

10.04
(4.35, 27.55)

9.03
(3.96, 19.89)

6.58
(3.32, 9.42)

4.95
(1.54, 6.93)

0.008

VEGF 41.25
(21.78, 64.97)

35.86
(10.46, 59.43)

29.00
(14.9, 35.68)

30.28
(20.77, 39.77)

28.64
(13.93, 38.23)

< 0.001

IFN-γ 1.59
(1.31, 1.92)

1.62
(0,2.76)

1.01
(0, 2.34)

0
(0, 1.89)

0
(0, 1.46)

< 0.001

TNF-α 5.84
(4.55, 18.03)

5.30
(3.2, 13.33)

4.63
(3.44, 13.83)

4.14
(2.85, 9.1)

4.08
(3.14, 4.61)

< 0.001

IL-1α 0.72
(0, 1.59)

0.24
(0, 1.27)

0
(0, 1.07)

0
(0, 1.29)

0.56
(0, 1.33)

< 0.001

IL-1β 1.37
(0.5, 2.79)

1.09
(0, 1.71)

1.19
(0, 1.77)

0
(0, 1.47)

0
(0, 1.64)

< 0.001

MCP-1 571.9
(335.2, 1436.69)

516.75
(311.89, 779.07)

457.74
(275.88, 646.24)

316.63
(201.93, 742.44)

262.63
(116.93, 451.12)

< 0.001

EGF 1.34
(0, 1.49)

0
(0, 1.66)

1.30
(0, 1.62)

1.38
(0, 1.68)

1.76
(0,1.84)

< 0.001
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can prolong filter life by reducing both filter clotting (i.e. 
thrombosis within the lumen of the filter) and clogging 
(i.e. formation of protein layer which progressively oblit-
erates the membrane pores) [45, 46].

The contribution of adsorption to total cytokine 
removal with EMiC2 filters was minimal. We noted a 
small degree of adsorption of IL-2 and VEGF which 
contributed to total mass removal. However, “negative 
adsorption” was also observed for all cytokines consistent 

with similar reports in the literature [15, 28, 31]. The 
mechanisms for this “de-sorption” phenomenon are 
unclear and might be explained by effects of haemocon-
centration on the outflow side from fluid removal albeit 
in a significantly smaller degree than in CVVH mode, 
release of previously bound cytokines from cells [47], 
activation of the inflammatory system through reverse 
diffusion [28], the ‘back-filtration/back-diffusion’ phe-
nomenon including the movement of molecules from a 

Fig. 1 Cytokine plasma concentrations expressed as a percentage of the concentration at time = 0 h. a Mean and standard error of interleukin-2 
(IL-2), IL-4, IL-6, IL-8, IL-10, vascular endothelial growth factor (VEGF) concentrations. b Mean and standard error of interferon-γ (IFN-γ), tumour 
necrosis factor-α (TNF-α), IL-1α, IL-1β, monocyte chemoattractant protein-1 (MCP-1), epidermal growth factor (EGF)
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Table 3 Serial cytokine clearance rates by adsorption and diffusion at 1, 6, 24, and 48 h after continuous veno-venous 
haemodialysis initiation and time-weighted mean clearance rates

Cytokines T1 T6 T24 T48 Time-weighted mean

IL-2

 Adsorption (n = 6) 3.0
(− 21.9, 72)

18.5
(11.5, 20.6)

18.8
(− 3.6, 75)

6.4
(− 4.0, 9.8)

9.8
(− 3.8, 46.3)

 Effluent (n = 6) 0
(0, 24.2)

0
(0, 0)

0
(0, 0)

0
(0, 0)

0
(0, 0)

IL-4

 Adsorption (n = 12) − 54.2
(− 107.7, − 38.7)

− 61.0
(− 75.3, − 44.2)

− 78.1
(− 91.7, − 46.9)

− 61.3
(− 67.8, − 50.8)

− 64.0
(− 91.2, − 43.4)

 Effluent (n = 12) 55.2
(38.9, 69.0)

55.9
(50, 66.0)

59.3
(52.1, 72.2)

68.9
(43.2, 83.9)

55.4
(51.3, 69.9)

IL-6

 Adsorption (n = 12) − 15.3
(− 21.6, − 3.1)

− 4.9
(− 11.5, 4.8)

− 13.3
(− 20.8, − 1.3)

− 10.6
(− 13.1, − 5.7)

− 11.5
(− 18.1, 0.9)

 Effluent (n = 12) 10.2
(6.1, 17.3)

9.0
(8.1, 10.6)

5.6
(2.4, 20.5)

2.2
(0, 6.8)

7.8
(4.1, 15.7)

IL-8

 Adsorption (n = 12) − 44.5
(− 66, − 23)

− 42.3
(− 224.1, − 19)

− 50
(− 243.3, − 28.8)

− 61.8
(− 100.9, − 2.9)

− 48.9
(− 144.7, − 19.0)

 Effluent (n = 12) 37.7
(26.4, 47.8)

49.0
(40.8, 87.5)

62.7
(24.2, 116.3)

32.7
(16.2, 103.1)

63.8
(34.7, 93.6)

IL-10

 Adsorption (n = 12) − 5.9
(− 16.7, 1.6)

3.5
(− 10.0, 7.1)

− 6.6
(− 10.1, 8.2)

− 17.2
(− 25.7, − 8.5)

− 7.1
(− 10.7, 16.9)

 Effluent (n = 12) 0.5
(0, 10.0)

0
(0, 1.8)

0
(0, 1.8)

9.6
(4.5, 21.3)

2.2
(0.3, 5.5)

VEGF

 Adsorption (n = 9) − 2.7
(− 22.8, 11.2)

− 2.6
(− 6.9, 10.6)

4.0
(− 7.4, 17.2)

37.7
(0.5, 100)

4.0
(− 7.4, 16.9)

 Effluent (n = 10) 5.0
(0, 17.6)

0
(0, 20.2)

0
(0, 0)

0
(0, 16.8)

3.4
(0, 19.2)

IFN-γ

 Adsorption (n = 7) 0
(− 20.0, 24.1)

7.9
(4.4, 12.3)

16.6
(− 20.4, 5.7)

− 16.1
(− 20.9, − 4.5)

− 2.3
(− 20.3, 11.2)

 Effluent (n = 7) 0
(0, 0)

0
(0, 0)

0
(0, 0)

0
(0, 0)

0
(0, 0)

TNF-α

 Adsorption (n = 12) − 5.3
(− 10.6, 3.5)

− 7.0
(− 12.3, 4.1)

− 22.8
(− 38.8, − 13.4)

− 19.3
(− 23.4, − 0.6)

− 10.6
(− 23.3, 4.1)

 Effluent (n = 12) 11.6
(0, 17.0)

19.0
(13.9, 30.7)

26.5
(13.5, 33.2)

22.7
(18.5, 28.8)

19.0
(9.0, 28.4)

IL-1α

 Adsorption (n = 6) − 7.2
(− 13.1, 69)

− 5.6
(− 30.2, 5.0)

− 26.1
(− 38.9, − 7.7)

− 11.4
(− 46.1, 48.1)

− 10.2
(− 23.2, 4.1)

 Effluent (n = 6) 0
(0, 0)

0
(0, 35.0)

0
(0, 15.2)

0
(0, 9.3)

0
(0, 8.6)

IL-1β

 Adsorption (n = 7) − 12.2
(− 62.3, 0)

22.5
(− 3.6, 56)

− 21.1
(− 46.0, − 10.2)

− 9.2a − 8.6 (− 21.1, 3.1)

 Effluent (n = 7) 0
(0, 29.0)

0
(0, 20.0)

30.0
(0, 61.4)

0a 0
(0, 31.8)

MCP-1

 Adsorption (n = 12) − 31.8
(− 19.9, − 13.4)

− 23.1
(− 25.4, − 17.8)

− 30.5
(− 35.7, − 10.9)

− 22.9
(− 40.5, − 4.8)

− 24.9
(− 35.7, − 10.9)
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higher concentration in the dialysate to a lower concen-
tration in the blood at the distal end of the hollow fibres 
in high-flux membranes [48], cytokine induction from 
dialyzer bio-incompatibility [49], activation or deactiva-
tion by enzymes after sampling, or sampling errors.

We found that the changes in cytokine concentra-
tions seen in plasma were discordant with the extent of 
removal by clearance and adsorption. Despite a decline in 
serum concentrations, we found low total mass removal 
rates across the filter for most cytokines. The clearance 

rates were highest for IL-4, IL-8, and MCP-1, but their 
plasma reduction ratios varied significantly from − 13.46 
to − 59.94%. Although VEGF showed the highest total 
mass removal at 48 h, the reduction ratio was − 34.88% 
which was lower than others.

Some of our findings are compatible with data in the lit-
erature but not all. For instance, a previous study demon-
strated higher IL-6 and IL-8 clearance by the EMiC2 filter 
than the standard membrane, but showed no significant 
impact on plasma cytokine concentrations [26]. Another 

Table 3 (continued)

Cytokines T1 T6 T24 T48 Time-weighted mean

 Effluent (n = 12) 33.5
(29.7, 46.6)

38.2
(35.0, 43.0)

31.3
(18.0, 50)

32.9
(24.5, 46.6)

33.9
(21.6, 43.6)

EGF

 Adsorption (n = 5) 0.9
(0.7, 1.7)

8.2
(0, 15.1)

− 7.3
(− 14.8, − 4.8)

− 0.2
(− 43.0, 3.7)

0
(− 12, 3.4)

 Effluent (n = 7) 0
(0, 0)

0
(0, 0)

0
(0, 0)

0
(0, 0)

0
(0, 0)

Values expressed as median (interquartile range)

IL interleukin, VEGF vascular endothelial growth factor, IFN interferon, TNF tumour necrosis factor, MCP monocyte chemoattractant protein, EGF epidermal growth 
factor, T1 = 1 h, T6 = 6 h, T24 = 24 h, and T48 = 48 h
a Only one observation

Fig. 2 The median levels of total amount of cytokine moved (Mt), expressed as a percentage of the inlet mass rate (%Mt/Mi) at t = 1, 6, 24, and 48 h 
after continuous veno-venous haemodialysis initiation (connected line). For each time point, the relative proportions of adsorption (%Mad/Mi, gray 
bars) and haemofilter clearance (%Mdf/Mi, dotted bars) are shown. a IL-2, b IL-4, c IL-6, d IL-8, e IL-10, f VEGF, g IFN-γ, h TNF-α, i IL-1α, j IL-1β, k MCP-1, 
l EGF
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study showed comparable IL-6 clearance between the 
EMiC2 and high-flux membrane [27]. Similarly, stud-
ies using the EMiC2 or HCO membranes reported no 
changes in plasma concentrations despite detectable 
clearance in the ultrafiltrate [11, 15, 28, 50]. These results 
in the literature, together with our findings highlight that 
a rise or fall in serum concentrations during KRT might 
be related to factors other than extracorporeal removal, 
e.g. changes in cytokine production, endogenous clear-
ance, intradialytic cytokine release, general improve-
ment of the underlying disease, or response to treatment 
[51]. It should also be noted that cytokine half-lives are 
extremely short. (Additional file  6) Thus, their endog-
enous metabolism might be more rapid than clearance 
during extracorporeal therapy. In general, the kidneys 
contribute to 15–20% of cytokine metabolism [52]. Our 
study showed that CVVHD using the EMiC2 filter con-
tributed little to total clearance of most cytokines. This 
suggests that extracorporeal removal does not substitute 
renal clearance, similar to lactate removal [53]. In addi-
tion, the interaction of soluble forms and their endog-
enous modulators (receptors or antagonists) indicates 
different states of immune activation. Thus, the meas-
urement of plasma cytokine concentrations in isolation 
might not reflect the true immune status or indicate the 
impact of extracorporeal removal on the dynamics of that 
particular cytokine system [54].

This is the first study to investigate a comprehensive 
panel of molecules which are representative of pro- and 
anti-inflammatory cytokines in real clinical settings. 
Adsorption and diffusive clearances were evaluated 
extensively by determination of their clearance rates, and 
mass balances across the membrane over a 48-h period. 
However, some limitations need to be acknowledged. 
First, the objective of this pilot study was to investigate 
the mechanistic impact of using the EMiC2 filter. It was 
not powered to assess an association with clinical out-
comes. Second, we did not intend to compare the EMiC2 
filter with other filters. Therefore, there was no control 
group. However, this is an exploratory study to charac-
terize the transport characteristics of cytokines when 
using the EMiC2 filter. This investigation is essential 
before proceeding to larger clinical studies investigating 
the role of blood purification with the EMiC2 filter as an 
adjunctive therapy in sepsis. Third, we selected 12 differ-
ent molecules but did not measure all potential pro- and 
anti-inflammatory cytokines. We acknowledge that our 
conclusions only apply to the cytokines measured and 
that it is possible that other cytokines or medium-sized 
molecules are removed at higher quantities when using 
the EMiC2 filter. Fourth, the cohort of included patients 
was heterogenous and there were some patients with 
undetectable cytokine concentrations throughout the 

whole study period. Given the mechanistic nature of this 
project, we only included subjects with detectable pre-
dialyzer concentrations when analysing the effluent and 
adsorptive clearance rates and mass balances. Although 
there was minimal correlation between initial cytokine 
concentrations and clearance rates, we are unable to 
comment on whether cytokine removal in patients with 
different cytokine concentrations, including cytokine 
storm/septic shock would have different clinical effects. 
We acknowledge that cytokines may have different 
effects independent of the concentration, including par-
acrine and endocrine actions [55]. Finally, our aim was 
to describe clearance and adsorption of cytokines during 
CVVHD with an EMiC2 filter. Although we showed that 
only small amounts of cytokines were actually removed, 
we acknowledge that we cannot exclude any immu-
nomodulatory effects [56, 57].

Conclusion
Our study has shown that in patients with sepsis and 
acute kidney injury requiring KRT with the EMiC2 fil-
ter, clearance of cytokines by CVVHD was modest and 
adsorption was minor. We observed a decline in serum 
concentrations of most cytokines during the study period 
but were unable to detect an obvious correlation between 
serum concentration and cytokine clearance. The results 
suggest that mechanisms other than extracorporeal 
removal contribute to changes in plasma cytokine con-
centrations. Further work to determine the role of the 
EMiC2 filter in clinical practice is required.
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