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Antibiotic resistance—What’s dosing got to do with it?

Jason A. Roberts, B Pharm (Hons); Peter Kruger, MBBS, FJFICM; David L. Paterson, MBBS, FRACP, PhD;
Jeffrey Lipman, MBBCh, FJFICM, MD

Despite over 70 yrs of clinical
antibiotic use, bacteria con-
tinue to out-perform clini-
cians by developing increas-

ing levels of resistance to both old and
new antibiotics. Just as bacteria continue
to adapt, clinicians must continue to
adapt their practice. In the field of anti-
biotic resistance, this is essential given
the lack of antibiotics in development

that possess novel mechanisms of action
(1). Protecting the efficacy of our existing
antibiotic armamentarium is essential.

Antibiotic dosing and administration to
optimize clinical treatment of infections
has been widely studied (2–5). In vitro and
in vivo data are now emerging that suggest
inappropriate antibiotic dosing may be con-
tributing to the increasing rate of antibiotic
resistance, in particular for fluoroquinolo-
nes (6), although data on other antibiotic
classes are emerging (7). Antibiotic resis-
tance may also develop from poor infection
control (leading to acquisition of resistant
organisms), selection of resistant organ-
isms in the gut and plasmid transfer (8). It
is noteworthy that interpretation of resis-
tance depends on how it is defined: differ-
ences exist between American (Clinical and
Laboratory Standards Institute) and Euro-
pean (European Committee on Antimicro-
bial Susceptibility Testing) breakpoints (9).
Regardless of this issue, the global trend
toward decreased antibiotic susceptibility
demands that vigorous research is under-
taken to develop dosing regimens that min-
imize the advent of resistance as opposed to
just treating the infective process.

The aim of this review is to identify
original research articles that examine
the effect of antibiotic dosing and expo-
sures on the development of antibiotic
resistance for different antibiotic classes.

Pharmacodynamic parameters describing
these relationships will be sought for flu-
oroquinolone, aminoglycoside, �-lactam,
carbapenem, and glycopeptide antibiot-
ics. Furthermore, we seek to apply phar-
macodynamic principles to assist clinical
practice for suppressing the emergence of
resistance.

Search Strategy and Selection
Criteria

Data for this review were identified by
searches of Pubmed (1966–July 2007),
EMBASE (1966–November 2007) and the
Cochrane Controlled Trial Register, and
references from relevant articles. Search
terms were “antibiotic” or “antibacterial,”
“resistance” or “susceptibility,” and “dos-
ing” or “exposure.” English language ar-
ticles were reviewed. Numerous articles were
identified through searches of the extensive
files of the authors. All articles that related
antibiotic doses and exposure to the forma-
tion of antibiotic resistance were reviewed.

Resistance Development can
Depend on the Level of
Antibiotic Exposure

In 1976, Stamey and Bragonje (10)
produced the first publication of an in
vitro model that correlated antibiotic
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Objective: This review seeks to identify original research arti-
cles that link antibiotic dosing and the development of antibiotic
resistance for different antibiotic classes. Using this data, we
seek to apply pharmacodynamic principles to assist clinical prac-
tice for suppressing the emergence of resistance. Concepts such
as mutant selection window and mutant prevention concentration
will be discussed.

Data Sources: PubMed, EMBASE, and the Cochrane Controlled
Trial Register.

Study Selection: All articles that related antibiotic doses and
exposure to the formation of antibiotic resistance were reviewed.

Data Synthesis: The escalation of antibiotic resistance contin-
ues worldwide, most prominently in patients in intensive care
units. Data are emerging from in vitro and in vivo studies that
suggest that inappropriately low antibiotic dosing may be con-

tributing to the increasing rate of antibiotic resistance. Fluoro-
quinolones have widely been researched and publications on
other antibiotic classes are emerging. Developing dosing regi-
mens that adhere to pharmacodynamic principles and maximize
antibiotic exposure is essential to reduce the increasing rate of
antibiotic resistance.

Conclusions: Antibiotic dosing must aim to address not only
the bacteria isolated, but also the most resistant subpopulation in
the colony, to prevent the advent of further resistant infections
because of the inadvertent selection pressure of current dosing
regimens. This may be achieved by maximizing antibiotic expo-
sure by administering the highest recommended dose to the
patient. (Crit Care Med 2008; 36:2433–2440)

KEY WORDS: antibiotic; resistance; dosing; exposure; pharmaco-
dynamics
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underdosing with resistance formation.
They examined 100 strains of Enter-
obacteriaceae and showed that resis-
tance to nalidixic acid increased with
lower concentrations and concluded
that underdosage was probably the
cause of resistance. Similar results have
been found for subtherapeutic levels of
other fluoroquinolones (11, 12). Be-
cause of these initial reports, an im-
proved understanding of antibiotic
pharmacodynamics has provided poten-
tial explanations as to how this occurs.

Mutant Prevention
Concentration

The Mutant Prevention Concentration
(MPC) is defined as the drug concentra-
tion required to prevent emergence of all
single step mutations in a population of
at least 1010 bacterial cells (13). It is de-
termined using wild-type bacteria not re-

sistant populations. This concept may be
important for determining optimal dos-
ing regimens that can attain specific tar-
get concentrations and minimize the for-
mation of resistant mutants (14). In the
original study, Dong et al. (14) deter-
mined the effect of different concentra-
tions of various fluoroquinolones on the
selection of resistant mutants. Figure 1 is
an adaptation of the results observed and
shows that with increasing antibiotic
concentrations, colony numbers exhib-
ited a sharp drop (first-step resistant mu-
tants), followed by a plateau and then a
second sharp drop in colony numbers.
Mutants were not recovered at concentra-
tions above those required for the second
sharp drop, thereby defining the MPC.

Certainly most of the information re-
garding the MPC exists for fluoroquino-
lones, although data for other classes are
increasing (7, 15). Determination of
MPCs for individual antibiotics may be an

important step in developing dosing
guidelines that will prevent the emer-
gence of mutant colonies. This area re-
quires further investigation.

Mutant Selection Window

The term mutant selection window was
first proposed by Zhao and Drlica (13), al-
though Baquero had previously referred to
the same concept as “the selective window”
(16, 17). The mutant selection window de-
scribes the range of antibiotic concentra-
tions between the minimum inhibitory
concentration (MIC) and MPC in which re-
sistant mutants may be selected (Fig. 1).
Below the MIC, there is no selective pres-
sure and thus mutants are not allowed to
grow (i.e., be selected). Above the MPC, no
mutants will be selected because it is
thought that a double mutation for growth
is necessary. The mutant selection window
has been defined for many of the fluoro-
quinolones and some �-lactams against
various organisms (7, 18–23), although its
clinical relevance is still not clear.

Resistance Depends on the
Antibiotic Administered

For some bacterial species, it has be-
come apparent that some antibiotics are
associated with higher rates of resistance
despite similar antibiotic exposure to com-
parator antibiotics. Research into the rela-
tive activities of fluoroquinolones suggests
that some are better than others at mini-
mizing the development of mutants for cer-
tain organisms (24, 25). Ba et al. (24) found
moxifloxacin to be superior to ciprofloxacin
for delaying the selection of resistant mu-
tants in an in vitro pharmacodynamic
Stenotrophomonas maltophilia model.
Furthermore, moxifloxacin has been
shown to suppress efflux-containing mu-
tants better than levofloxacin to Strepto-
coccus pneumoniae (20).

Antibiotic Pharmacodynamics

Pharmacodynamics relate pharmacoki-
netic parameters to pharmacologic effect
(26). For antibiotics, pharmacodynamics re-
lates the concentration of the antibiotic to its
anti-infective ability (27). Fundamental phar-
macodynamic parameters (28, 29) illustrated
in Figure 2 include the following:

● the time for which a drug’s serum con-
centration remains above the MIC for a
dosing period (T � MIC),

Figure 1. Mutant selection window and mutant prevention concentration. This graph represents
reducing bacterial colonies with increased antibiotic exposure for a concentration-dependent antibi-
otic (e.g., fluoroquinolone). As exposure is increase, a greater reduction in colony forming units is
observed. For bacterial colonies to survive the first “drop-off” at the bacteria’s minimum inhibitory
concentration (MIC), a first step mutation is required. For bacterial colonies to survive the second
drop-off, a second step mutation is required. Selective antibiotic growth may occur when antibiotic
concentrations are in the mutant selection window. The mutant prevention concentration requires at
least a second-step mutation for bacterial survival. Adapted from Dong Y, Zhao X, Domagala J, et al
(14). cfu, colony-forming units; Cmax, maximum serum antibiotic concentration.

Figure 2. Pharmacokinetic and pharmacodynamic parameters of antibiotics on a concentration vs.
time curve. AUC, area under the curve; MIC, minimum inhibitory concentration.
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● the ratio of the maximum serum anti-
biotic concentration (Cmax) to MIC
(Cmax:MIC),

● the area of the concentration time
curve during a 24-hr time period (area
under the curve [AUC]0–24) divided by
the MIC (AUC0–24/MIC).

Pharmacodynamically, the rate and ex-
tent of an antibiotic’s activity is depen-
dent on the interaction between drug
concentrations at the site of infection,
bacterial load, phase of bacterial growth,
and the MIC of the pathogen (30). It fol-
lows that a change in any of these factors
will affect the pharmacodynamic profile
of the antibiotic against a particular
pathogen and may affect not only the
outcome of therapy but also predispose to
formation of antibiotic resistance.

Pharmacodynamic characteristics that
correlate with clinical efficacy, bacterial
eradication and resistance for multiple
classes of antibiotics are shown in Table
1. Individual antibiotic classes are dis-
cussed below.

Fluoroquinolones

Fluoroquinolones display largely con-
centration-dependent kill characteristics
but also some time-dependent effects.

The pharmacodynamic properties associ-
ated with fluoroquinolones have been
widely studied. Previous research has
suggested that depending on the patho-
gen, achieving a high Cmax:MIC ratio
(e.g., Cmax: MIC up to 10 for ciprofloxacin
and lomefloxacin) assists bacterial killing
(21, 31–33) and is also associated with
minimizing the development of resistant
mutants (32, 34, 35).

AUC0–24/MIC has also been shown to
be important with an AUC0–24/MIC �125
for successful clinical outcome for infec-
tions caused by Gram-negative organisms
(36). Some authors have also shown that
a high AUC0–24/MIC can reduce the de-
velopment of resistance (37–39). This was
further quantified by Gumbo et al. (40)
who found that an AUC0–24/MIC of 53 is
required with moxifloxacin for complete
suppression of a drug-resistant mutant
population of Mycobacterium tuberculo-
sis. Using Monte Carlo simulations, the
probability of target attainments for the
recommended daily dose (400 mg/day)
was 59%. When higher doses were used,
the probability of target attainments im-
proved considerably, 600 mg/day was
86% and 800 mg/day was 93%. Although
the toxicity of moxifloxacin 800 mg has
not been determined in a large patient

cohort, high doses of ciprofloxacin up to
1200 mg/day, have previously been
shown to be safe in critically ill patients
(41, 42). Other studies have also shown
that a high AUC0–24/MPC also predicts
the prevention of resistant mutants (7).

These studies all provide evidence that
the recommended dose of fluoroquinolo-
nes may be inappropriately low and that
reevaluation of existing dosing regimens
are appropriate to ensure that clinical
efficacy is optimized and formation of flu-
oroquinolone resistance is minimized.
Given the association of high AUC0–24/
MIC with clinical efficacy and reduced
development of antibiotic resistance, dos-
ing that attains high Cmax:MIC is sug-
gested, because this will increase the
AUC0–24/MIC. Thus, to use ciprofloxacin
as an example, doses of 400 mg 8-hourly
or 600 mg 12-hourly in patients with
normal organ function is appropriate.
Further research that defines the precise
AUC0–24/MIC and toxicities for different
antibiotics and dosing regimens is re-
quired.

Aminoglycosides

Aminoglycosides exhibit concentra-
tion-dependent kill characteristics, where

Table 1. Pharmacodynamic parameters that have been shown to correlate with clinical efficacy, bacterial eradication and reduced resistance for different
antibiotic classes

Antibiotic Class
Pharmacodynamic Parameter

Correlating with Efficacy

Pharmacodynamic Parameter
Associated with Bacterial

Eradication
Pharmacodynamic Parameter Correlating with

Reduced Development of Resistance

Fluoroquinolones AUC0–24/MIC (36, 83–85) (e.g.,
ciprofloxacin AUC0–24/MIC
�125 hrs for Gram
negative organisms)

Cmax:MIC (31) (e.g.,
levofloxacin Cmax:
MIC �10)

Cmax:MIC (32, 35) (e.g., ciprofloxacin Cmax:
MIC �4)

AUC0–24/MIC (37, 40) (e.g., garenoxacin
AUC0–24/MIC �190; moxifloxacin
AUC0–24/MIC �53)

AUC0–24/MPC (7)(e.g., ciprofloxacin
AUC0–24/MPC �22)

Aminoglycosides Cmax:MIC (45) Cmax:MIC (44, 86) (e.g.,
tobramycin Cmax/MIC �10)

Cmax:MIC prevent adaptive resistancea and
possibly mutation frequency (46, 48, 51)

�-lactams T � MIC (6, 87–89) T � MIC (54) T � MSW (6) (the time within MSW
increases resistance)

AUC0–24/MIC (58) (e.g., various �-lactams
AUC0–24/MIC �100)

Carbapenems T � MIC (90) T � MIC (91) Cmin/MIC (61) (e.g., meropenem
Cmin/MIC �6.2)

Glycopeptides AUC0–24/MIC (26, 92) T � MIC (65–67) and Cmax:
MIC (68)

AUC0–24/MIC (23, 69) (e.g., vancomycin
AUC0–24/MIC �382)

Combination Therapy nda nda MPC/MIC �e.g., levofloxacin/colistin (74)�
AUC0–24/MIC �e.g., moxifloxacin/doxycycline
(70)�

Note that these published values may be derived from in vitro studies and may not be directly transferable to clinical settings.
aAdaptive resistance is the reduced drug uptake by the bacteria that survive a suboptimal dose of an aminoglycoside.
AUC, area under the curve; MIC, minimum inhibitory concentration; Cmax, maximum serum antibiotic concentration; MSW, mutant selection window;

MPC, mutant prevention concentration; nd, not defined.
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Cmax:MIC ratio �10 is recommended for
optimal efficacy (28, 43–45). Suboptimal
dosing of aminoglycosides may lead to
adaptive resistance by virtue of a period of
reduced drug uptake by the bacteria. Im-
proved Cmax:MIC seems to reduce this
(46, 47) that may be due to use of the
postantibiotic effect. Once-daily dosing
adheres to Cmax:MIC principles and the
drug-free period associated with this
minimizes the effect of adaptive resis-
tance (46–48). Other forms of aminogly-
coside resistance, including enzyme-
mediated inactivation, have been elucidated
(49, 50), although are not known to be
associated with particular dosing regi-
mens. Other data from Henderson-Begg
et al. (51) have reported that bacterial
mutability can occur with subtherapeutic
aminoglycoside exposure.

The available data indicate that thera-
peutic aminoglycoside dosing should
seek to maximize Cmax:MIC and inherent
postantibiotic effect that has been shown
to correspond to reduced toxicity (2, 3).
Thus, once daily dosing for most indica-
tions (i.e., gentamicin and tobramycin 7
mg/kg; and amikacin 30 mg/kg) is recom-
mended in the absence of renal dysfunc-
tion or other contraindications.

�-Lactams

�-Lactam antibiotics have been asso-
ciated with resistance since their early
clinical use (52, 53). They are understood
to be time-dependent antibiotics where
bacterial killing is reported to be related
to the time for which concentrations ex-
ceed the MIC of the infecting organism
(T � MIC) (26). Maximal killing occurs
when the antibiotic concentration is
maintained at 4–5� MIC (54, 55). As a
minimum standard, in vitro and ex vivo
data suggest that the time above MIC
should be maintained for about 50% of
the dosing interval for penicillins, 60%–
70% for cephalosporins, and 40% for car-
bapenems (56). Fantin et al. (57) used an
experimental Pseudomonas aeruginosa
aortic endocarditis in rabbits using cefpi-
rome and ceftazidime to propose that
bacterial resistance to �-lactams may de-
velop should the antibiotic concentration
fall below the MIC for more than half the
dosing interval.

Although some studies have been un-
dertaken (15, 58) more are required to
accurately define how �-lactam expo-
sures may prevent resistance. Until such
data become available, dosing that targets
concentrations greater than 4� MIC for

extended intervals would appear most ap-
propriate (54). This has recently been re-
viewed (59) and is probably best achieved
by using more frequent dosing or even
extended- or continuous-infusion.

Carbapenems

Although carbapenems belong to the
�-lactam family, they have been shown to
require a reduced percentage of T � MIC
for bacteriostatic and bactericidal activity
compared with other �-lactams (56).
However, when carbapenems are used to
treat serious P. aeruginosa infections,
there is a substantial risk of development
of resistance during therapy. For exam-
ple, a large comparative study by Fink et
al. in which imipenem 1-g 8-hourly was
used found that 50% of P. aeruginosa
strains (22 of 44 isolates) developed resis-
tance (60). How might this emergence of
resistance be prevented? Tam et al. (61)
used an in vitro hollow-fiber infection
model to show that a Cmin:MIC (or trough
concentration) �6.2 could suppress the
development of resistant P. aeruginosa
subpopulations. These data follow results
of similar studies in �-lactams and sug-
gest that it is probably optimal to main-
tain carbapenem concentrations at 4–6�
MIC. To achieve these target concentra-
tions, high doses are suggested. Extended
infusions may also be beneficial for these
antibiotics (59, 62). A study by Drusano et
al. (63) deemed high-dose meropenem
2-g 8-hourly administered as a prolonged
3-hr infusion (coadministered with tobra-
mycin 5 mg/kg 24-hourly and vancomy-
cin 1-g 12-hourly) to be effective at min-
imizing resistance of Pseudomonas in a
cohort of 120 patients with ventilator-
associated pneumonia where 52 of 61
pathogens were eradicated by day 7. Al-
though only 2 of 36 patients (and 2 of
61 pathogens) were resistant to mero-
penem at day 7, the effect of lower
meropenem doses on rates of resistance
was not examined. Chastre et al. (64)
used extended infusion doripenem and
compared this regimen with conven-
tional infusion imipenem. Only 18% (5
of 28) patients treated with the ex-
tended infusion carbapenem developed
resistance of P. aeruginosa during ther-
apy, compared with 50% (11/22) who
received the conventional infusion.

Glycopeptides

The pharmacodynamic properties of
glycopeptides are not fully understood.

Some data suggest that the bactericidal
activity of vancomycin is time-dependent
(65–67) and other data have shown that
Cmax:MIC to be important (68). However,
clinical efficacy has been correlated with
AUC0–24:MIC (26). Although sparse data
exist, it would seem that formation of
resistance to glycopeptides is directly re-
lated to total exposure. Tsuji and Rybak
(69) presented data that low doses of van-
comycin (�500 mg 12-hourly; AUC0–24/
MIC �250) were associated with de-
creased susceptibility. Higher doses
(equivalent of 750 mg or 1000 mg 12-
hourly; AUC0 –24/MIC � 510 or 382)
showed no changes in susceptibility.
Similar results have been obtained by
Firsov et al. (23). Certainly, these data
suggest that higher dosing of glycopep-
tides (up to 40 mg/kg) may be impor-
tant for reducing the development of
resistance. Dosage adjustments based
on concentrations obtained as part of
therapeutic drug monitoring services
can assist the clinician achieve target
concentrations (15–25 mg/L).

Other Antibiotics

Data exist suggesting that low-dose
linezolid (200 mg 12-hourly) is more
likely to result in the development of
resistance to Enterococcus faecium and
E. faecali than higher doses (600 mg 12-
hourly) (70). Sites of infection that are
difficult to penetrate may also be associ-
ated with the development of resistance
as reported by Wilson et al. (71) in iso-
lates from a patient with a thoracotomy
wound with contingent empyema. When
devising linezolid courses, clinicians also
need to be aware of data that suggest that
longer courses (�2 wks) of linezolid
treatment may increase the possibility of
the development of antibiotic resistance
(72). Data supporting courses �2 wks
leading to development of antibiotic re-
sistance also exist for daptomycin (73).

Combination Antibiotic Therapy

Combination antibiotic therapy has
been advocated for some bacterial infec-
tions (e.g., enterococcal endocarditis or
serious pseudomonal infections) on the
basis of in vitro synergy between the an-
tibiotics used. From a theoretical point of
view, combination therapy may assist in
avoiding the development of resistance
because the AUC0–24/MIC of the antibiot-
ics seem to be additive or even synergistic
(61, 74 –76). These studies show that
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combination therapy is an appropriate
way to reach target exposure and may
reduce the chance of resistance by avoid-
ing excess total time in mutant selection
window. Randomized clinical studies
have not shown that combination ther-
apy reduces emergence of antibiotic re-
sistance (77). Appropriate dosing of in-
dividual antibiotics may negate the
need for combination therapy infec-
tions caused by organisms with a high
potential for resistance formation (e.g.,
Pseudomonas infections). If combina-
tion therapy does provide an advantage,
it is likely to be early in the course of
infection when the inoculum of infect-
ing organisms is highest.

Effect of Bacterial
Factors—Species,
Subpopulation, Fitness, Load

Dosing requirements have been re-
ported to change depending on bacterial
species, subpopulations, “biological fit-
ness,” and the bacterial load. An addi-
tional factor that may require further re-
search is the impact of antibiotic
treatment on the development of resis-
tance in normal commensal flora.

Data and clinical experience suggest
that the rate of resistance formation of
a pathogen depends on the bacterial
species. P. aeruginosa has been shown
to develop resistance to moxifloxacin
more readily than S. pneumoniae (78).
Although moxifloxacin is not indicated
for use in P. aeruginosa infections,
these data demonstrate that different
bacterial species may be more capable
of developing antibiotic resistance to
certain antibiotics.

The opportunities for development of
resistance also seem to increase with the
presence of resistant bacterial subpopula-
tions in a culture. Croisier et al. (20) used
an in vivo model to demonstrate that
therapeutic moxifloxacin and levofloxacin
were both efficient with wild-type exper-
imental S. pneumoniae, with only moxi-
floxacin being effective against S. pneu-
moniae with a resistant subpopulation.

Bacterial fitness is a measure of the
ability of a pathogen to infect a host,
persist and proliferate, and be transmit-
ted to a new host (79). As such, if a
patient acquires a pathogen from a hos-
pital environment, then this pathogen is
more likely to have had previous antibi-
otic exposure and be more capable of
developing resistance.

Bacterial load may also be an impor-
tant factor for dosing recommendations.
Jumbe et al. (80) developed a mathemat-
ical model for P. aeruginosa to show that
dose requirements increase by a factor of
2–6 for each increase in bacterial popu-
lation by a factor of 10 (e.g., 107–108).
Although Craig et al. (81) have recently
expressed doubts over the clinical rele-
vance of the inoculum effect it does pro-
vide additional rationale for the impor-
tance of clinicians achieving adequate
source control when managing patients
with infection.

Predicting the effect of bacterial spe-
cies, subpopulations, and bacterial load
during empirical therapy is impossible,
and as such, use of maximum tolerated
antibiotic doses may be required to en-
sure optimal treatment of the infection
and prevention of the development of re-
sistant mutants.

Cross Resistance

Data on resistance across antibiotic
classes are developing and suggest expo-
sure to an antibiotic can induce resis-
tance to antibiotics with different modes
of action (known as cross-resistance). An
in vitro model by Fung-Tomc et al. (82)
found exposure of methicillin-resistant
Staphylococcus aureus to subinhibitory
levels of ciprofloxacin promoted the de-
velopment of low-level resistance to tet-
racycline, imipenem, fusidic acid, and
gentamicin. Similar ciprofloxacin expo-
sure to a P. aeruginosa variant promoted
decreased susceptibilities to imipenem,
amikacin, and cefepime. Similar results
were found by Henderson-Begg et al. (51)
using S. pneumoniae. This phenomenon
may not occur with all antibiotic agents
or classes. The Fung-Tomc et al. (82)
model also tested an aminoglycoside and
found no cross-resistance to other anti-
biotics whereas Henderson-Begg et al.
(51) found contrary results for strepto-
mycin.

What About Patient Factors?

A considerable body of evidence exists
describing the altered pharmacokinetic
characteristics of antibiotics in organ
dysfunction and various disease states
(e.g., sepsis) (27). Recommendations for
either decreased dosing in patients with
organ dysfunction, or increased dosing in
patients with supranormal renal function
are available. However, there is scarce
documentation of the dose-exposure re-

lationships and the effect of such regi-
mens on antibiotic resistance. Further
research must address optimal dosing in
specific patient populations and disease
states to ensure appropriate plasma, and
more importantly, tissue levels are
achieved.

The available data suggest that a par-
adigm change in antibiotic dosing may be
required to ensure that maximal doses
given in such a way to achieve high drug
exposures (without causing toxicity) to
suppress the formation of antibiotic re-
sistance. We propose the term “highest
tolerated dose” to describe this dosing
strategy. Other pharmacokinetic and
pharmacodynamic studies to determine
the precise doses for different antibiotics
in different patient populations are also
required.

CONCLUSIONS

Emerging data suggest that achieving
specific pharmacodynamic targets for an-
tibiotic exposure can help reduce the de-
velopment of resistance. Research has de-
fined pharmacodynamic parameters for
different antibiotic classes particularly
fluoroquinolones, and different bacterial
species that are reported to correlate with
clinical efficacy and reduce the formation
of antibiotic resistance. Although sub-
stantial data on fluoroquinolone exposure
to prevent resistance formation exist,
there is a dearth of information on other
antibiotic classes.

The combination of the escalation of
worldwide antibiotic resistance and re-
duced development of new antibiotics be-
hooves us to optimize our use of available
antibiotics. The evidence that has been
identified in this structured review sup-
ports the notion that antibiotic dosing
must target the most resistant subpopu-
lation in the bacterial population in an
effort to prevent the emergence of resis-
tant organisms because of selective pres-
sure. This may require a research and
practice paradigm change so antibiotic
selection and dosing strategies are de-
signed to consider limiting antimicrobial
resistance by administering the highest
tolerated dose of antibiotic.
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