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Abstract

Infections occur frequently in critically ill patients and
their management can be challenging for various
reasons, including delayed diagnosis, difficulties
identifying causative microorganisms, and the high
prevalence of antibiotic-resistant strains. In this
review, we briefly discuss the importance of early
infection diagnosis, before considering in more detail
some of the key issues related to antibiotic management
in these patients, including controversies surrounding
use of combination or monotherapy, duration of therapy,
and de-escalation. Antibiotic pharmacodynamics and
pharmacokinetics, notably volumes of distribution and
clearance, can be altered by critical illness and can
influence dosing regimens. Dosing decisions in different
subgroups of patients, e.g., the obese, are also covered.
We also briefly consider ventilator-associated pneumonia
and the role of inhaled antibiotics. Finally, we mention
antibiotics that are currently being developed and show
promise for the future.

Background
Intensive care unit (ICU) patients are particularly likely to
have or develop infection, in part because infection is a
reason for admission and in part because of immunosup-
pression associated with critical illness and the large num-
ber of invasive devices used in these patients. Correct and
adequate antibiotic coverage is essential but can be com-
plex as a result of delayed identification of microorganisms,
the impact of critical illness and therapy on pharmacokin-
etics (PK) and pharmacodynamics (PD) of antibiotics, and
the high prevalence of antibiotic-resistant strains.
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In this review, we briefly highlight the importance of
early infection diagnosis before discussing some of the
key issues related to antibiotic management, including
problems associated with timing, duration, and dosing.
We also briefly consider ventilator-associated pneumonia
(VAP), the use of inhaled antibiotics, and new antibiotic
and adjunct strategies for the future. We focus on bacter-
ial infections and issues associated with multi-drug resist-
ance will not be covered.

Diagnosis
The diagnosis of infection in critically ill patients and
identification of causative microorganisms and their anti-
biotic susceptibilities can be a challenge and yet early,
appropriate antibiotic therapy is associated with improved
outcomes [1], so accurate, rapid diagnosis is important.
Typical clinical signs of infection, such as fever or raised
white blood cell count, are non-specific and can occur in
many other conditions in the critically ill population. Simi-
larly, although many biomarkers, e.g., C-reactive protein
and procalcitonin (PCT) to name just two [2], have been
suggested to help diagnosis or to rule out infection, none
is specific for infection and all can be altered in other
conditions that commonly affect ICU patients. Diagnosis
of infection still relies largely on culture-based techniques,
which can take several days for a positive result to be
available. Moreover, in patients already receiving antibi-
otics, cultures may be negative.
In response to this problem, more rapid microbiological

identification methods are being developed, including
polymerase chain reaction (PCR) and mass spectrometry
with or without electrospray ionization [3–6]. These tests,
particularly when associated with an antimicrobial therapy
team or pharmacist trained in infectious diseases, may
result in shorter times to effective therapy, shorter lengths
of hospital stay, and reduced hospital costs [3, 4] and are
likely to become more widely used in the near future [7].
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Antibiotic therapy
Empiric treatment
It is generally accepted that antibiotics should be admin-
istered as soon as possible once infection is identified
[8], although randomized data to support this notion are
lacking in humans for obvious ethical reasons, and most
data are from observational studies.
There has been and still is considerable debate re-

garding the potential benefits of combination versus
monotherapy in the empiric management of infection
in critically ill patients. Combination therapy has ad-
vantages and disadvantages (Table 1). A first potential
advantage is in vitro synergy between two drugs result-
ing in improved bacterial killing. For example, a colistin–
glycopeptide (vancomycin or teicoplanin) combination
was shown in vitro to be synergistic against multidrug-
resistant (MDR) Gram-negative bacteria, especially Acine-
tobacter baumannii [9, 10]. Nevertheless, clinical studies
have been unable to demonstrate an effect of synergy on
outcomes [11, 12], calling into question the importance
of synergy with the potent antibacterial agents used as
monotherapy today. Another potential advantage is that
combination regimens may provide a greater overall
spectrum of activity.
One of the most important potential disadvantages of

combination therapy is increased drug toxicity, particu-
larly when aminoglycosides are used [13]. Although this
increased risk may be acceptable in a critically ill popu-
lation with a high risk of MDR organisms, it is likely less
acceptable in more stable patient populations or where
the risk of β-lactam resistance is lower. Risk of super-
infection with resistant bacteria or fungal infections
represents another potential disadvantage [14]. Another
frequently cited disadvantage of combination therapy is
increased cost. However, although drug costs will almost
certainly be higher with combination therapy, this in-
creased cost may be acceptable if compensated for by
shorter hospital stays and improved patient outcomes.
In a cohort of patients with septic shock, combination

therapy of a β-lactam with other antibiotics was associ-
ated with a decrease in 28-day mortality compared with
β-lactam monotherapy [15]. And, in a prospective, multi-
center European observational study, combination therapy

with macrolides was associated with better outcomes
compared with monotherapy in mechanically ventilated
patients with community-acquired pneumonia (CAP)
[16]. However, not all studies have demonstrated an ad-
vantage of combined therapy over monotherapy [17–20].
Importantly, all these studies have compared different
antibiotic regimens in different patient populations, mak-
ing it difficult to generalize the results. In addition, sever-
ity of illness can play an important role when comparing
mono- and combination therapy. In a meta-regression
analysis, Kumar et al. [21] reported that although there
was no overall mortality/clinical response benefit with
combination therapy for the 50 studies included, when
studies were stratified according to baseline mortality
risk, combination therapy was consistently associated
with benefit in the more severely ill patients. Moreover,
the benefits of antibiotic therapy, whether combined or
monotherapy, are related to the activity of the chosen
antibiotics against the infecting organisms and adequacy
has rarely been assessed in these studies.
In current guidelines, combination therapy is suggested

for neutropenic patients with sepsis, patients with infec-
tions caused by MDR pathogens and patients with severe
respiratory infections and septic shock [8, 22]. In general,
decisions regarding the use of combination or monother-
apy should be made on an individual basis according to
the severity of the disease, likely causative microorgan-
ism(s), concomitant diseases, and local microbiological
and resistance patterns.

De-escalation?
Decisions regarding empiric antibiotic therapy are based
on two approaches: (1) a judgment that the likely agent
has “normal antibiotic susceptibility” and can therefore
be treated as such with possible need for “escalation” to
second-line drugs after microbiological identification;
(2) a judgment, based on local microbiology patterns
and clinical presentation, that the infecting microorgan-
ism may be MDR and should be treated as such, with
possible “de-escalation” to a simpler antibiotic regimen
after identification and antibiotic susceptibilities of the
causative microorganism are known. More frequently
the latter approach is used in the ICU to ensure that all
possible causative organisms are initially covered. In-
deed, only about 30 % of all antibiotics are used for
definitive therapy in which the susceptibility patterns
for the infection-associated pathogen are known [23, 24].
In many ICUs, more than 50 % of isolates are resistant to
at least one antibiotic [25], and broad-spectrum combin-
ation empiric therapy may be warranted in these units to
ensure that these organisms are adequately covered.
Once susceptibilities are confirmed, the spectrum can
be reduced (de-escalated) accordingly, although one

Table 1 Some potential advantages and disadvantages of using
combination empiric therapy versus monotherapy

Advantages Disadvantages

Broader coverage that includes
non-susceptible strains

Possible antagonism

Anti-bacterial synergy Possible superinfection

Prevents emergence of resistance May increase resistance

Increased toxicity

Increased costs
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study reported that de-escalation may actually be feasible
in <50 % of cases [26].
Studies have reported conflicting effects on outcomes

with de-escalation in various groups of critically ill pa-
tients [27–29]. A systematic review of 493 studies con-
cluded that there was not sufficient evidence to determine
whether de-escalation of antibiotic agents was effective
and safe for adults with sepsis [30]. Nevertheless, within a
context of a dedicated “antibiotic stewardship” program,
de-escalation should be encouraged, whenever possible, to
optimize antibiotic use [31, 32].

When to stop?
Longer antibiotic courses are associated with MDR patho-
gen selection and spread, increased risks of toxicity, and
higher costs, but courses that are too short risk inadequate
bacterial eradication and relapse. Current guidelines ad-
vise a 7–10 day course, unless poor prognosis predictors
are present (e.g., initial clinical failure, undrainable foci of
infection) [8]. Infections caused by Staphylococcus aureus
or Pseudomonas aeruginosa may warrant more prolonged
antibiotic courses to avoid treatment failures, early re-
lapses or metastatic complications. CAP, with the excep-
tion of Legionella pneumonia, should not be treated for
more than 8 days in responding patients and invasive
abdominal infections may be successfully managed with a
7-day course [22, 33] or even a 4-day course when the
source is controlled [34]. A systematic review of 24 studies
that compared a shorter (5–7 day) regimen versus a lon-
ger (7–21 day) antibiotic course for critically ill patients
with various infections identified no differences in terms
of clinical cure, microbiological eradication, or survival
[35]. Decisions about duration of antibiotic therapy need
to be individualized, taking into account different variables
regarding the patient (e.g., severity of illness, clinical re-
sponse), the type of infection (e.g., source control, deep-
seated infection [e.g., bone infection], MDR pathogens)
and the availability of diagnostic tools (e.g., clinical/
laboratory scores, biomarker). An 8-day course will
likely be more than sufficient in most ICU patients,
and shorter courses may be considered when the source is
controlled.
Biomarkers may assist in decisions regarding when to

stop antibiotics. Concentrations of PCT, a 116 amino
acid peptide, increase during infection and sepsis in
correlation with the degree of inflammatory response
and the severity of the disease. However, PCT concentra-
tions also increase in some non-septic conditions [36]
and remain low in some microbiologically proven bac-
terial infections, especially when the infectious process
remains localized. Nevertheless, PCT concentrations
decline quickly when infection is controlled, so that its
kinetics during the course of the disease may facilitate
decisions to discontinue antibiotics. There is no clear

PCT cutoff value to decide when to stop antibiotics,
although high values (>1 ng/mL) are strongly suggestive
of active bacterial infection. A value <0.5 ng/mL or a
decrease >80 % from the initial value may be used as a
threshold value to stop antibiotics in stable patients.
This approach has been evaluated in several randomized
controlled trials (RCTs) [37–40]. In the PRORATA trial
[40], which included 621 ICU patients half of whom had
septic shock, patients in whom antibiotics were started
or stopped according to PCT concentrations had signifi-
cantly more days without antibiotics than controls (14.3
versus 11.6, p < 0.001), without apparent harm.

Dosing issues
Pharmacokinetics/pharmacodynamics
Various PK factors are altered in critically ill patients
and can have profound effects on the attainment of
adequate antibiotic doses:

Target site penetration Because most infection occurs
in tissue interstitial fluid, the antibiotic concentration
measured in the plasma is actually often only a surrogate
for the true concentration at the site of infection and
may over- or underestimate the actual interstitial fluid
concentration. In critically ill patients, microvascular
failure may impair target site penetration [41].

Clearance Several variables can affect the renal clearance
of hydrophilic antibiotics. In the setting of hypoalbumin-
emia, there is enhanced clearance of highly protein-bound
drugs. For patients with high cardiac output and low sys-
temic vascular resistance, as in sepsis, renal clearance of
drugs may be augmented by increased renal perfusion, to
as much as triple the normal rate [42–44], and may be
associated with treatment failure despite the patient being
susceptible to the antibiotic.

Volume of distribution Multiple factors have been shown
to increase the volume of distribution (Vd) of antibiotics be-
yond the traditionally accepted fluid extravasation that im-
pacts hydrophilic antibiotics. These include an increase in
Vd associated with fluid resuscitation or the physiologic de-
rangements occurring with increased severity of illness [45].

Recently, an enhanced understanding of the PK of
antibiotics has developed, largely based on the hydro-
philicity of the agents [46]. With hydrophilic agents
(e.g., β-lactam antibiotics, aminoglycosides, glycopep-
tides, lipopeptides), tissue distribution is limited to the
extracellular space, and clearance is predominantly via
renal mechanisms. By contrast, with lipophilic agents
(e.g., fluoroquinolones, glycylcyclines, lincosamides,
macrolides, metronidazole, streptogramins, tetracyclines)
tissue distribution includes intracellular penetration and
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hepatic clearance is more common. These variables be-
come important in septic patients because hydrophilic
antibiotics require an increased loading dose in the
setting of sepsis to ensure therapeutic concentrations
are achieved early. With lipophilic agents, an increased
loading dose in septic patients is not needed and dose
adjustment of these antibiotics is generally only required
in the setting of severe hepatic failure [46].
The bacterial killing characteristics of antibiotics

are mostly characterized in terms of time-dependent
and concentration-dependent killing [47]. With time-
dependent antibiotics, such as β-lactams and glyco-
peptides, maximum bacterial killing occurs when the
drug concentration persistently exceeds the minimum in-
hibitory concentration (MIC) of the pathogen. By contrast,
with concentration-dependent antibiotics, such as amino-
glycosides and fluoroquinolones, maximum bacterial kill-
ing occurs when the peak drug concentration exceeds
several times (>8–10) the MIC.
In a prospective multinational point-prevalence study

of 361 evaluable patients in which 248 patients were
treated for infection, 16 % did not achieve target-free
antibiotic concentrations above the MIC. Of these pa-
tients, 32 % were less likely to have a positive clinical
outcome [48]. These data provide an important glimpse
into the relevance of PK/PD issues in the management
of critically ill patients, and they challenge healthcare
providers managing patients in the ICU setting to move
away from the “one dose fits all” strategy that has been
traditionally employed in clinical medicine and toward
a more personalized antibiotic dosing that is individu-
alized to the physiology of the patient being treated
[45]. Importantly too, these changes are unpredictable
and measurement of drug concentrations will increas-
ingly be employed to ensure doses are adequate.

Doses of β-lactams
β-Lactams are time-dependent antibiotics. Several studies
have shown that β-lactam concentrations are inadequate
in patients with sepsis compared with non-critically ill
patients when standard dosage regimens are administered,
particularly when dealing with difficult-to-treat strains
such as P. aeruginosa [49, 50]. To improve PD target
attainment, β-lactams can be administered at increased
doses, increased frequency, or by an extended or continu-
ous infusion. Among these options, continuous infusions
are often used in critically ill patients and have repeatedly
been shown to achieve higher steady-state β-lactam con-
centrations compared with trough concentrations with
standard intermittent regimens [51], although outcome
benefits have not been clearly demonstrated [52]. Interest-
ingly, even when given by continuous infusion, β-lactam
concentrations can still remain below the MIC for
difficult-to-treat pathogens, especially in patients with a

high creatinine clearance associated with high renal drug
elimination [53]. Importantly, β-lactams have been associ-
ated with neurotoxicity and high β-lactam concentrations
may be implicated in clinical neurological deterioration
[54]. It is important, therefore, to ensure that concentra-
tions remain within therapeutic ranges.

Doses of aminoglycosides
To be active, aminoglycosides need to reach peak con-
centrations at least eight times higher than the MIC for
the strain, while low trough concentrations need to be
achieved (high concentrations are associated with tox-
icity). Due to changes in Vd and renal clearance, the PK
of aminoglycosides may be altered in sepsis, especially in
septic shock, leading to insufficient peak concentrations.
Accordingly, aminoglycoside doses have been revisited.
For example, the recommended loading dose of amika-
cin has been increased from 15 to 25 mg/kg and even
these doses may not be high enough in some patients. In
a multicenter trial in 80 patients, administration of
25 mg/kg of amikacin allowed adequate peak concentra-
tions to be achieved in only 70 % of patients [55]. Simi-
lar results were observed in a trial of 146 patients [56] in
which the higher the fluid balance the lower the chances
of reaching adequate concentrations, highlighting the
crucial role of changes in aminoglycoside Vd. Import-
antly, toxic trough concentrations were uncommon in
both trials.
When very high peak concentrations need to be

reached, as in patients with MDR pathogens with inter-
mediate susceptibility to aminoglycosides, combination of
very high doses of aminoglycosides associated with high-
flow (50 ml/kg/min) continuous veno-venous hemofiltra-
tion may help achieve adequate peak concentrations while
minimizing toxicity and, even more importantly, enable
daily administration of the agent (and thus more frequent
exposure to its bactericidal effects) [57].

Dosing in obese patients
Obesity is associated with different physiological distri-
butions of protein and water-based tissue (e.g., muscle)
and lipid-based tissue (e.g., fat) than are present in non-
obese patients. These patients tend to also have a higher
blood volume and cardiac output than their non-obese
counterparts and are believed to have reduced perfusion
of peripheral tissues. These factors can lead to changes
in Vd and drug clearance that necessitate different drug
doses to achieve the same concentrations observed in
non-obese patients.
Various metrics have been used to help describe drug

behavior in obese patients. In general, for antibiotics
primarily eliminated by the kidneys, an accurate descrip-
tion of glomerular filtration rate or creatinine clearance
is sufficient for predicting drug clearance in obesity.
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Many equations, such as the Cockroft-Gault and Modi-
fied Diet in Renal Disease equations, do not perform
particularly well at extremes of body weight, in which
case less common equations, such as the Salazar-
Corcoran equation [58], should be substituted where
measured urinary collection is not possible.
For aminoglycosides, adjusted body weight is consid-

ered the best descriptor of Vd, with clearance varying to
a similar extent such that half-life is often the same in
obese and non-obese patients [59]. For glycopeptides,
total body weight (TBW) is the most accurate descriptor
of Vd and clearance changes [60]. For β-lactams, there is
a lack of consensus amongst the sparse papers, but lean
body weight (LBW) is a plausible descriptor for changes
in Vd and drug clearance is well described by creatinine
clearance [61]. For fluoroquinolones, the data are not
completely clear, but LBW seems an appropriate de-
scriptor of changes in Vd for levofloxacin and either
LBW or TBW appear appropriate for ciprofloxacin [62].
For linezolid, there are insufficient data to make strong
recommendations for altered dosing in obesity, although
differences in PK are considered likely. For daptomycin,
TBW has been correlated with changes in Vd and drug
clearance [63].

Dosing during extracorporeal therapies
Renal replacement therapy (RRT) can be delivered by
diffusion (hemodialysis), convection (hemofiltration), or
a combination of both (hemodiafiltration). It may be
delivered continuously (CRRT) or intermittently. There
are several papers on drug dosing during CRRT, but very
few in critically ill patients receiving intermittent RRT
[64]. A specific issue for intermittent RRT is the incon-
sistent drug clearance likely to occur during a 24-hour
period [65]. Such inconsistent clearance is highly prob-
lematic for time-dependent antibiotics where unadjusted
dosing in the presence of high drug clearance that alter-
nates with no drug clearance will result in potentially
very low and very high concentrations over the course of
the day exposing the patient to risks of clinical failure
and toxicity.
Drugs that are hydrophilic and usually subject to renal

clearance are commonly cleared by dialysis [66]. Large
molecules (>1000 Da), like vancomycin, are poorly cleared
by hemodialysis, although the availability of high-flux
filters has increased the clearance of these drugs some-
what. Smaller molecules, like the β-lactam and aminogly-
coside antibiotics, are largely cleared by hemodialysis [66],
although this clearance is typically lower than with normal
renal function. Protein binding has important effects on
drug clearance with highly protein-bound drugs, like
teicoplanin, oxacillin and ceftriaxone, having low dialysis
clearance because the protein-bound fraction cannot be
cleared [66]. Finally, for antibiotics with a larger Vd there

is typically less antibiotic in the vascular compartment
and so less is available for clearance. This is seen with the
quinolones, which have a comparatively larger Vd than
the β-lactams or aminoglycosides.
In the absence of clinical PK and dosing data for

hemodialysis in critically ill patients, valuable mechanis-
tic insights can be gained from in vitro RRT models.
Such experiments have shown that dialysate flow rate is
the most important factor associated with hemodialysis
clearance of drugs [67]. More data are needed to improve
dosing in hemodialysis as the sub-optimal achievement of
target concentrations seen in the early phase of therapy in
critically ill patients receiving CRRT is likely to also be
problematic with intermittent techniques [68].
Antibiotics are commonly required during extracorpor-

eal membrane oxygenation (ECMO); however, few data
are available regarding antibiotic PK during ECMO. The
major changes in ECMO are increased Vd and decreased
drug clearance, although the extent of such changes
remains poorly characterized [69]. Antibiotic concentra-
tions may be further altered during ECMO because of the
circuit itself (with associated drug sequestration) and/or
the associated systemic inflammation (with vasodilation
and capillary leak) [70].
The Vd and clearance of meropenem, piperacillin and

vancomycin seem to be similar in adult patients undergo-
ing ECMO and in controls [71], suggesting that ECMO
may not greatly influence antibiotic PK.

A special situation: VAP
Although its incidence varies widely according to the
population and the criteria used [72], VAP is the leading
cause of nosocomial infection in the ICU and a risk
factor for increased mortality.

Diagnosis of VAP
Diagnosis of VAP is still a difficult clinical issue with two
basic diagnostic strategies [73]: clinical and microbio-
logical (Fig. 1). A recent Cochrane review of five random-
ized studies [74] found no differences in any of the clinical
outcomes between these strategies, although an earlier
meta-analysis reported that invasive testing was associated
with more antibiotic modifications [75]. A recent study
[76] proposed that a modified Clinical Pulmonary Infec-
tion Score (CPIS), which included lung echography and
serum PCT concentrations, would add sensitivity and
specificity to the classic CPIS, but this requires further
validation. Rapid PCR techniques may help increase the
sensitivity and specificity of the clinical suspicion of VAP.

Should we consider preemptive therapy in VAP?
Respiratory tract colonization precedes VAP in nearly
100 % of cases. Risk factors include prior antibiotics, out-
of-hospital intubation, presence of tracheal intubation

Vincent et al. Critical Care  (2016) 20:133 Page 5 of 13

iAnnotate User
Highlight

iAnnotate User
Underline

iAnnotate User
Highlight

iAnnotate User
Underline

iAnnotate User
Highlight

iAnnotate User
Underline

iAnnotate User
Highlight

iAnnotate User
Highlight

iAnnotate User
Underline

iAnnotate User
Highlight

iAnnotate User
Underline

iAnnotate User
Highlight

iAnnotate User
Underline

iAnnotate User
Highlight



devices, and duration of intubation. Bacterial biofilm
formation on the endotracheal tube may play a key role in
colonization. Hospitalized patients tend to become colo-
nized with organisms in the hospital environment within
48 hours. Thus, VAP pathogenesis could be considered as
a continuum from ICU admission to confirmed pneu-
monia through colonization and invasion depending
on virulence factors.
Very few trials have tested use of preemptive antibiotics

in VAP. Several studies have shown reduced rates of VAP
development in patients with ventilator-associated

tracheobronchitis (VAT) who received appropriate anti-
biotic therapy [77–79]. VAT is believed—although this re-
mains controversial— to be an intermediate process
between colonization and VAP. In post-cardiac surgery
patients at risk of VAT/VAP, Bouza et al. [80] reported a
reduction in the VAT/VAP rate in patients who received a
3-day preemptive course of linezolid and meropenem
compared with those who did not, but this approach was
associated with development of linezolid resistance. In an-
other study, a single dose of ceftriaxone, ertapenem, or
levofloxacin within 4 h of endotracheal intubation in

a

b

Fig. 1 Clinical (a) and microbiological (b) strategies for diagnosis and management of ventilator-associated pneumonia (VAP). ATB
antibiotic, BAL bronchoalveolar lavage, BAS bronchial aspirate, LRT lower respiratory tract, PSB protected specimen brush. Modified from
[116] with permission
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comatose patients was associated with reduced early-
onset VAP with no increased incidence of infection by
multiresistant microorganisms [81]. Clearly further re-
search is needed before any recommendations can be
made regarding the use of pre-emptive therapy in VAP.

A place for nebulized antibiotics in VAP?
For patients receiving mechanical ventilation, aerosolized
antibiotics delivered via an efficient system may achieve
airway-drug concentrations 100–300-fold higher than the
MIC of most bacteria, including MDR pathogens, with
reduced systemic toxicity and reduced pressure for selec-
tion of resistant organisms [82–84]. In a double-blind,
placebo-controlled study in 42 ICU patients requiring
prolonged mechanical ventilation who were colonized
and/or infected with potentially difficult-to-treat patho-
gens (e.g., methicillin-resistant S. aureus [MRSA] and
non-fermenting Gram-negative bacteria), aerosolized anti-
biotics successfully eradicated the existing MDR organ-
isms and reduced the pressure for new resistance [85].
However, various technical issues need to be addressed.

During mechanical ventilation, large droplets (>5 μm) are
more likely to be trapped in the circuit, whereas smaller
particles (<0.5 μm) are more likely to be expulsed during
expiration, so that the size of the particles generated
should optimally be between 1 and 3 μm. Particle size
depends on the aerosol generator and ventilator settings.
On ultrasonic nebulizers, aerosol particle size is inversely
proportional to the piezoelectric crystal vibration frequency,
and drug output is directly proportional to the amplitude of
crystal vibration. On vibrating mesh nebulizers, droplet size
is more homogeneous and easier to calibrate [86]. To in-
crease lung deposition, tidal volume has to be set at
500 mL (or more) in adults, with a long inspiratory time
(which can be obtained by increasing the I:E ratio) and
reduced inspiratory flow. When using a heat/moisture
exchanger, it has to be removed during nebulization (and
replaced at the end of the aerosol treatment). When using a
heated humidifier, it should be switched off during nebuli-
zation or the amount of drug should be increased [87].
Several antibiotics have been studied as aerosolized

agents; however, how their dosing should be adjusted for
optimal efficacy and safety remains unclear. Studies
suggest that nebulized aminoglycosides are superior to
intravenous administration for providing high tissue
concentrations and inducing rapid and potent bacterial
killing [88, 89], but renal toxicity may be a concern. In
40 patients with VAP randomized to nebulized or intra-
venous amikacin and ceftazidime, acquisition of per-
treatment antibiotic resistance occurred only in the
intravenous group [90]. In a meta-analysis of 12 studies,
nebulized antibiotics were associated with improved
clinical cure rates in VAP, although this effect did not

persist after trial sequential analysis and there was no ef-
fect on microbiological cure, lengths of stay, or mor-
tality [91].
In recent years, there has been interest in the use of in-

haled colistin (in the form of colistimethate sodium) in VAP
because of its known activity against MDR Gram-negative
bacteria and the poor penetration of the intravenous form
in the lungs [92]. Studies on aerosolized colistimethate as an
adjunct to intravenous colistimethate for treating VAP
yielded conflicting results [93–96]. A recent meta-analysis of
studies suggested that addition of aerosolized colistin in
VAP was associated with improved clinical and microbio-
logical response rates but had no effect on mortality [97],
but the quality of the evidence was poor.

New antibiotics in the pipeline
Very few new antibiotics have been developed over the
past 10 years but there are some promising agents in the
pipeline (Table 2) [98]. Solithromycin, a new macrolide
(fluorketolide), effectively kills macrolide-susceptible path-
ogens, like Streptococcus pneumoniae, Haemophilus influ-
enzae, and atypical pathogens, and is also effective against
macrolide-resistant bacteria. Solithromycin resistance has
not yet been identified. In a phase II study in 132 patients
with moderate to severe CAP, clinical and microbiological
success rates were similar in patients treated with soli-
thromycin (800 mg on day 1, 400 mg from day 2) or
levofloxacin (750 mg daily) [99]. Adverse effects, espe-
cially diarrhea, were significantly more frequent with
levofloxacin (45.6 versus 29.7 %).
Omadacycline (an aminomethylcycline) and eravacy-

cline (a fluorocycline) are developed from the tetracy-
clines and have now entered phase II clinical trials.
Omadacycline is available for intravenous and oral ther-
apy. It is effective against a large number of sensitive
but also resistant Gram-positive pathogens (including
vancomycin-resistant enterococci and MRSA) and against
some Gram-positive pathogens, such as H. influenzae,
Klebsiella, and Escherichia coli [100]. Eravacycline is also
active against resistant Gram-negative pathogens but not
against P. aeruginosa or Burkholderia.
Fifth-generation cephalosporins with MRSA activity

(ceftaroline, which does not have Pseudomonas activity,
and the Pseudomonas-active ceftobiprole) are available
in a number of countries, but have not been used exten-
sively (because of a lack of data) in critically ill patients.
In a recent RCT, ceftobiprole (3 × 500 mg) was com-
pared with the combination of ceftazidime (3 × 2 g) and
linezolid (2 × 600 mg) in 781 patients with nosocomial
pneumonia, including 210 with VAP [101]. Clinical cure
rates overall were around 50 % in both groups, but
ceftobiprole performed less well in VAP (23.1 versus
36.8 % cure rate). Ceftolozane/tazobactam is a new ceph-
alosporin that differs from ceftazidime by a modification
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Table 2 The most important new antibiotic agents in the pipeline

Drug class Drug name Development
phase

Potential indications

Cephalosporin GSK-2696266 Phase 1 Bacterial infections

Novel cephalosporin +
β-lactamase inhibitor

Ceftolozane + tazobactam Approved
March 2015

Complicated urinary tract infections, complicated intra-abdominal
infections, acute pyelonephritis (kidney infection), hospital-acquired
bacterial pneumonia/ventilator associated pneumonia

Ceftaroline + avibactam Phase 2 Complicated urinary tract infections

Ceftazidime + avibactam
(CAZ-AVI)

Approved 2015 Complicated urinary tract infections, complicated intra-abdominal
infections, acute pyelonephritis (kidney infection), hospital-acquired
bacterial pneumonia/ventilator-associated bacterial pneumonia

Monobactam + novel
β-lactamase inhibitor

Aztreonam + avibactam
(ATM-AVI)

Phase 1 Bacterial infections

Carbapenem + novel
β-lactamase inhibitor

Carbavance Phase 1 Complicated urinary tract infections, complicated intra-abdominal
infections, hospital-acquired bacterial pneumonia/ventilator-associated
bacterial pneumonia, febrile neutropenia

MK-7655 + imipenem/cilastatin Phase 2 Complicated urinary tract infections, acute pyelonephritis,
complicated intra-abdominal infections

Aminoglycoside Plazomicin Phase 3 Bloodstream infections and nosocomial pneumonia caused by
carbapenem-resistant Enterobacteriaceae

Fluoroquinolone WKC 771 Phase 1 Bacterial infections

WKC 2349 (WCK 771 pro-drug) Phase 1 Bacterial infections

Avarofloxacin Phase 2 Community-acquired bacterial pneumonia, acute bacterial skin and
skin structure infections

Finafloxacin Phase 2 Complicated urinary tract infections, acute pyelonephritis (kidney
infection), acute intra-abdominal infections, acute bacterial skin
and skin structure infections

Nemonoxacin Phase 2 Community-acquired bacterial pneumonia, diabetic foot infection,
acute bacterial skin and skin structure infections

Zabofloxacin Phase 2 Community-acquired bacterial pneumonia

Delafloxacin Phase 3 Acute bacterial skin and skin structure infections, community-acquired
bacterial pneumonia, uncomplicated gonorrhea

Oxazolidinone Tedizolid Approved
June 2014

Acute bacterial skin and skin structure infections, hospital-acquired
bacterial pneumonia/ventilator acquired bacterial pneumonia

Cadazolid
(quinolonyl-oxalidinone)

Phase 3 Clostridium difficile-associated diarrhea

Radezolid Phase 2 Acute bacterial skin and skin structure infections, community-acquired
bacterial pneumonia

MRX-I Phase 1 Bacterial infections including community-acquired MRSA and
vancomycin-resistant enterococci infections

LCB01-0371 Phase 1 Bacterial infections

Lipopeptide and glycopeptide Oritavancin Approved
August 2014

Acute bacterial skin and skin structure infections

Glycopeptide-cephalosporin
heterodimer

TD-1607 Phase 1 Serious Gram-positive bacterial infections (acute bacterial skin and
skin structure infections, hospital-acquired pneumonia/ventilator-
associated pneumonia, bacteremia)

TD-1792 Phase 2 Acute bacterial skin and skin structure infections, other serious
infections caused by Gram-positive bacteria, including hospital-
acquired pneumonia/ventilator-associated pneumonia and
bacteremia

Lipo-glycopeptide Dalbavancin Approved
May 2014

Acute bacterial skin and skin structure infections

Ramoplanin Phase 2 Clostridium difficile-associated diarrhea

Lipopeptide Surotomycin Phase 3 Clostridium difficile-associated diarrhea
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of the side chain in the third position of the cephem
nucleus, allowing increased antipseudomonal activity and
activity against some extended spectrum β-lactamase-
producing strains. In a recent study in patients with com-
plicated intra-abdominal infection, ceftolozane/tazobactam
(3 × 1.5 g) plus metronidazole was non-inferior to merope-
nem (3 × 1 g) [102]. In another large trial, treatment with
ceftolozane/tazobactam was also associated with better
responses compared with high-dose levofloxacin in pa-
tients with complicated lower urinary tract infections or
pyelonephritis [103].
Tedizolid is a new oxazolidinone that is more bacteri-

cidal than the currently used linezolid [104]. Although
differences in clinical response rates have not been very
significant, the rate of adverse events seems to be some-
what lower with tedizolid [105].
Avibactam is a new β-lactamase inhibitor active against

a large number of extended spectrum β-lactamases, in-
cluding class A, some class C, and some class D β-

lactamases. It is not active against the metallo-β-
lactamases, but is active against Klebsiella pneumoniae
carbapenemases. Ceftazidime/avibactam combination
(plus metronidazole) therapy has been tested against
meropenem or imipenem in two RCTs in patients with
intra-abdominal and urogenital infection. Non-inferiority
of the new combination was demonstrated in both studies
[106, 107]. A study comparing ceftazidime/avibactam with
meropenem in patients with nosocomial pneumonia is on-
going (ClincialTrials.gov identifier NCT01808092).
Two other new β-lactamase inhibitors are now being

studied in phase III trials in patients with MDR enterobac-
teriaceae, including carbapenem-resistant strains. The boro-
nate β-lactam inhibitor, RPX7007, combined with the new
carbapenem, biapenem (RPX2003), demonstrated high bac-
tericidal activity against carbapenem-resistant enterobacte-
riaceae [108]. MK-7655 (relebactam), in combination with
imipenem/cilastatin, covers MDR enterobacteriaceae (with
the exception of those producing metallo-carbapenemases),

Table 2 The most important new antibiotic agents in the pipeline (Continued)

Macrolide

Ketolide Solithromycin Phase 3 Community-acquired bacterial pneumonia, uncomplicated
urogenital gonorrhea

LptD inhibitor POL7080 Phase 2 Ventilator-associated bacterial pneumonia, low respiratory
infections

Tetracycline Omadacycline Phase 2 Community-acquired bacterial pneumonia, acute bacterial
skin and skin structure infections, complicated urinary tract
infections

Eravacycline Phase 3 Complicated intra-abdominal infections, complicated urinary
tract infections, hospital-acquired bacterial pneumonia

Monosulfactam BAL30072 Phase 1 Multidrug-resistant Gram-negative bacterial infections

Fabl inhibitor Debio 1452 Phase 2 Acute bacterial skin and skin structure infections

Debio 1450 (Debio 1452
pro-drug)

Phase 1 Bacterial infections

CG-400549 Phase 2 Acute bacterial skin and skin structure infections; osteomyelitis

LpxC inhibitor ACHN-975 Phase 1 Bacterial infections

DNA gyrase inhibitor AZD0914 Phase 1 Uncomplicated gonorrhea

Methionyl-tRNA synthetase
(MetRS) inhibitor

CRS-3123 Phase 1 C. difficile infection

Peptide deformylase inhibitor GSK-1322322 Phase 2 Acute bacterial skin and skin structure infections

Type 2 topoisomerase inhibitor GSK-2140944 Phase 2 Respiratory tract infections, acute bacterial skin and skin
structure infections

Bicyclolide EDP-788 Phase 1 Bacterial infections

Pleuromutilin Lefamulin (BC-3781) Phase 2 Acute bacterial skin and skin structure infections, community-
acquired bacterial pneumonia

Elongation factor inhibitor LFF571 Phase 2 C. difficile-associated diarrhea

Fusidane Taksta (fusidic acid) Phase 2 Prosthetic joint infections

Defensin-mimetic Brilacidin Phase 2 Acute bacterial skin and skin structure infections

SMT19969 Phase 2 C. difficile-associated diarrhea

Adapted from [98] with permission
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but in addition relebactam augments the activity of imipe-
nem against P. aeruginosa in general and especially against
OprD mutants of this pathogen [109].

Non-antibiotic, adjunctive therapies
We are facing increasing incidences of bacterial resist-
ance for both community and nosocomial infections and
there is a need for alternative, non-antibiotic, adjunctive
therapeutic options to decrease antibiotic pressure. In
the ICU, the most problematic microorganisms to treat
remain P. aeruginosa and S. aureus because of their
resistance profile and Clostridium difficile because of its
tendency to cause relapse or recurrence.
The only effective adjunctive therapy for C. difficile

infections appears to be toxin-neutralizing antibodies
that target both toxin A and B [110]. Fecal flora recon-
stitution by fecal transplantation has also been shown to
prevent recurrent infections for up to 1 year [111]. More-
over, C. difficile infection recurrence rates decreased three-
fold when oligofructose prebiotics or toxin-neutralizing
antibodies were added to standard antibiotics. Recently,
spores of C. difficile given by mouth were shown to be
effective in stopping repeated bouts of C. difficile infection,
which occur in 25–30 % of patients who suffer an initial
episode of diarrhea or colitis [112].
Monoclonal antibodies are probably the most promising

adjunctive option for treating P. aeruginosa. Repeated
doses of a monoclonal antibody targeting P. aerugi-
nosa serotype O11 as an adjunctive therapy to antibi-
otics in P. aeruginosa hospital-acquired pneumonia
and VAP were associated with a significant resolution
rate without immunogenicity [113].
Human monoclonal antibodies are also being developed

that specifically bind and neutralize the alpha-toxin of S.
aureus, for adjunctive therapy in VAP. In a mouse sepsis
model, treated animals had a significant reduction in mor-
tality [114] and in a mouse pneumonia model, treatment
protected against both methicillin-susceptible S. aur-
eus and MRSA strains (unpublished data). Clinical tri-
als are ongoing in patients with VAP.
Some very innovative adjunctive approaches may also

be beneficial in severe infections in the ICU. Pore-
forming toxins (PFTs) induce lysis of host target cells by
forming pores that disrupt the plasma and can cause ser-
ious complications associated with high mortality rates.
About 30 % of cytotoxic bacterial proteins are PFTs,
making them the largest category of virulence factors.
Capturing bacterial PFTs with liposomes by mimicking
membrane domains thus appears a promising approach,
although it is still in pre-clinical development [115].

Conclusion
Management of infection in critically ill patients is an
evolving challenge, in part because of the ever-present

threat of MDR strains. Alterations in PK/PD parameters
in critically ill patients can complicate dosing issues, yet
adequate antibiotic treatment is crucial to optimize sur-
vival rates. Therapeutic drug monitoring is likely to be
more widely used in the future. Antibiotic choices and du-
rations need to be individualized for each patient accord-
ing to specific patient characteristics, disease severity,
likely infecting organisms, and local resistance patterns.
Although more responsible antibiotic prescribing may
help reduce antibiotic pressure and development of anti-
biotic resistance, research needs to continue to try and
identify new antibiotics and adjunctive therapies.
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