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Purpose of review

We reviewed recent data about epidemiology of Acinetobacter baumannii, resistance mechanisms, and
therapeutic options for severe infections caused by multidrug-resistant strains.

Recent findings

A. baumannii is a major cause of nosocomial infections affecting mainly to debilitating patients in the ICU,
although the spread to regular wards and to long-term care facilities is increasing. It is characterized by its great
persistence in the environment and to have an extraordinary capability to develop resistance to all antimicrobials.
Carbapenems may not be considered the treatment of choice in areas with high rates of carbapenem-
resistant A. baumannii. Nowadays, polymyxins are the antimicrobials with the greatest level of in-vitro
activity against A. baumannii. Colistin is the most widely used in clinical practice although polymyxin B
seems to be associated with less renal toxicity. Colistin is administered intravenously as its inactive prodrug
colistimethate. A loading dose of 9 million IU and subsequently high, extended-interval maintenance doses
(4.5 million IU/12 h) are recommended. Combination therapy instead of monotherapy increases the rates
of microbiological eradication although no clinical study has demonstrated a reduction in clinical outcomes
(mortality or length of stay).

Summary

The optimal treatment for multidrug-resistant A. baumannii nosocomial infections has not been established.
There are no compelling data to recommend combination therapy for severe A. baumannii infections.
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Acinetobacter baumannii is a gram-negative aerobic
bacillus that primarily causes hospital-acquired
infections affecting specially to debilitated patients
with prolonged hospitalization and with long-term
exposition to antimicrobials. Until now, the ICUs
have been considered as the epicenters of A. bau-
mannii infections. Nevertheless, spread to general
wards and long-term care facilities have also been
shown to play an important role.

A. baumannii exhibits a wide variety of mecha-
nisms of resistance to antimicrobial agents. This
phenomenon has increasingly become a cause for
serious concern for stakeholders and the scientific
community worldwide. Thus, the WHO published
its first list of ‘priority pathogens’ resistant to anti-
biotics, which includes the 12 families of bacteria
most dangerous for human health and for that new
antibiotics are urgently needed. In this list, A. bau-
mannii is considered as ‘priority 1’ (critical) [1].
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EPIDEMIOLOGY

Overall, A. baumannii is accountable for more than
12% of the cases of hospital-acquired bloodstream
t © 2018 Wolters Kluwe
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iations: it is frequent in Southern Europe, median
Eastern countries, Asia, and South America, whereas
it is rare in Northern European countries and
Australia [2]. A. baumannii is a common cause of
ICU-acquired pneumonia, particularly late onset
pneumonia [3]. In countries were A. baumannii is
spreading, it is the predominant pathogen isolated
from patients with hospital-acquired pneumonia
(HAP). Indeed, A. baumannii might be accountable
of more than 36% of HAP cases in Asia [4]. Never-
theless, it only represents 1–2% of nosocomial
pneumonia episodes in some countries [5]. In addi-
tion, A. baumannii might be involved in out-of-
hospital healthcare-associated infections. Thus, a
r Health, Inc. All rights reserved.
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KEY POINTS

� Acinetobacter baumannii is one of the most frequently
isolated bacteria in the ICU but significant regional
differences exist.

� A. baumannii harbors on its core genome multiple
innate resistance mechanisms against multiple
antimicrobials and it can rapidly acquire new
resistances via mobile genetic elements.

� Few therapeutic options are available for multidrug
resistant A. baumannii.

� Polymyxins in monotherapy or combined with other
agents (carbapenems, tigecycline, or rifampicin) are
the options more widely used.

Table 1. Risk factors for development of A. baumannii

infections in the ICU

Prior colonization with A. baumannii

Severity of illness

Immunosuppression

Malignancies

Unscheduled admission

Chronic pulmonary diseases

Respiratory failure at admission

Previous antimicrobial therapy

Previous sepsis in ICU

Multiple invasive procedures

Prior central venous or urinary catheterization, mechanical
ventilation, and nasogastric tube

Previous use of carbapenems and third-generation cephalosporins

Older age

Long ICU stay

Special commentary
comparison of two large multicenter cohort studies
found an increase in out-of-hospital cases from 1.2%
in 2000 to 14.2% in 2010 (P<0.001) [6

&

]. Con-
versely, the incidence of A. baumannii in the ICU
seems to have diminished in the last years [7].

One important feature of A. baumannii is its
tendency to cause outbreaks because of its resistance
to antimicrobials and its ability to survive for pro-
longed periods on dry surfaces. Outbreaks of multi-
drug resistant (MDR)-A. baumannii have been found
to be mainly transmitted via the hands of healthcare
workers, and contaminated equipment and health-
care environment [8

&

,9]. The potential of cross-
transmission increases if the patients is heavily col-
onized, if the surfaces surrounding the patients are
colonized or if the number of patients colonized in
the unit at the same time is high [10].

Specific resistant clones are the predominant
cause of outbreaks. Three European clones (desig-
nated as I, II, and III) have disseminated in geo-
graphically distinct areas, and in specific
institutional outbreaks, the majority of MDR-A.
baumannii isolates usually belongs to a single clone.
Whole genome sequencing techniques may help in
differentiating outbreak from nonoutbreak strains
[11].

Although limited to A. baumannii endemic
areas, MDR-A. baumannii risk is highly variable
according to the countries. Patients at high risk
of MDR-A. baumannii infections are those with
mechanical ventilation, particularly in case of pro-
longed duration, those with longer hospital or ICU
stay, or those with greater degree of exposure to
infected or colonized patients in the neighboring
hospital environment [12,13]. The most frequently
reported risk factors for A. baumannii infections are
listed in Table 1.
 Copyright © 2018 Wolters Kluwer H
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ANTIMICROBIAL RESISTANCE

A. baumannii is characterized by its great persistence
in the environment enabling it to spread rapidly and
the extraordinary capability to develop resistance to
antibiotics [14,15]. Although A. baumannii has
innate resistance mechanisms against multiple anti-
microbials on its core genome, the strains can easily
acquire new resistance determinants via various
mobile genetic elements. Almost all mechanisms
of antimicrobial resistance have been described
including enzymatic inactivation, alteration of bac-
terial targets, permeability barriers to uptake of anti-
microbials, or active efflux pumps. In many isolates,
the genes that confer resistance to antimicrobials are
clustered together within an antibiotic-resistance
island which accumulates in specific genetic regions
of the large accessory genome [16].
Resistance to carbapenems

The mechanism by far the most common is the
presence of carbapenemases, which can be of several
types. Group 2 class D carbapenemases are the most
common mechanism by which Ab strains become
resistant to carbapenems. The Oxacilinase (OXA)-23
cluster (OXA-23, OXA-27, and OXA-49) was the first
recognized in the 1980s. These enzymes are known
to spread through plasmid-mediated transfer that
disseminated worldwide in the mid-1990s, [17]. The
OXA-58 and OXA-24 clusters are also common and
diffuse widely [18].

The class B metallo-b-lactamases (mainly Ver-
ona integron-encoded metallo-b-lactamas-1 and
New Delhi metallo-beta-lactamase 1 and 2) are
much more efficient as they are potent hydrolyzers
ealth, Inc. All rights reserved.
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Acinetobacter baumannii infections Garnacho-Montero and Timsit
of carbapenems [19,20]. They have been increas-
ingly identified in Asia, Middle East countries, and
Italy. Klebsiella pneumoniae carbapenemas class A
carbapenemases are usually not a common mecha-
nism of resistance for A. baumannii. However, since
2009, a new class A carbapenemase, called GES, is
spreading in North Africa, Middle East countries,
France, and Belgium [21].
Resistance to sulbactam

Diverse mechanisms can confer resistance to sulbac-
tam in A. baumannii. Thus, the b-lactamase TEM-1
(class A) and an Acinetobacter-derived cephalospor-
inase-30 seem be involved [22].
Resistance to polymyxins

To date, polymyxins remain as the most active
antimicrobial agents against A. baumannii. How-
ever, increasing rates of colistin-resistant A. bauman-
nii isolates have been reported in different countries.
Importantly, colistin resistance may be underesti-
mated using automated testing methods [23].
Genetic alterations in the PmrA–PmrB two-compo-
nent system and lipid A biosynthesis genes may be
associated with colistin resistance [24]. The mcr-1
gene, which is responsible for colistin resistant
strains in Enterobacteriaceae, has not been yet iden-
tified in Acinetobacter spp. [25].

Heteroresistance is defined as the presence of
subpopulations of resistant organisms in an isolate
considered susceptible by standard methods.
Because heteroresistance detection requires a special
method and equipment, most laboratories cannot
routinely perform this test. Heteroresistance rates
vary from 18.7 to 100%. It has been linked to
previous exposure to colistin and has been associ-
ated with failure of colistin therapy [26,27].
Resistance to tigecycline

Two different types of specific resistance to tetracy-
clines have been described in A. baumannii, based on
efflux pumps or on a ribosomal protection protein.
Two efflux pumps are described, TetA and TetB,
which are both specific transposon-mediated efflux
pumps. Although TetB controls the efflux of both
tetracycline and minocycline, TetA is only respon-
sible for the efflux of tetracycline. The second mech-
anism is the ribosomal protection protein, which
protects the ribosome from the effect of tetracycline.
This protein is encoded by tet (M) gene; it helps in
shielding the ribosome from tetracycline, doxycy-
cline, and minocycline [28].
 Copyright © 2018 Wolters Kluwe
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HOW TO DIFFERENTIATE
ACINETOBACTER COLONIZATION
FROM INFECTION

The respiratory tract, urinary tract, surgical wounds,
and biological fluids may be locations for infection
or colonization. A. baumannii has the capability to
form biofilms on the surface of the endotracheal
tube, which explain the high levels of colonization
in the lower part of the respiratory tract in intubated
patients [29].

It is often challenging to differentiate coloniza-
tion from infection, especially in the critical care
setting. In critically ill patients, up to half of the
cases in which A. baumannii is isolated represents a
mere colonization [30].

Many biomarkers, but especially procalcitonin
levels, can have an important place in the process of
discriminating the presence or absence of bacterial
infections. However, no clinical study has been
conducted to assess the accuracy of any biomarker
for distinguishing A. baumannii infection from
colonization.
THERAPEUTIC OPTIONS

Inadequate empirical therapy of severe infections
caused by A. baumannii is associated with increased
mortality [30,31]. Therefore, it is crucial to know the
available therapeutic options and, more impor-
tantly, their rate of susceptibility at your own insti-
tution. The recommended doses of the antibiotics
with activity against A. baumannii is outlined in
Table 2 [32

&&

,33].
Carbapenems

Carbapenems have been considered the treatment
of choice for infections caused by MDR A. bauman-
nii. In the last years, many A. baumannii isolates
exhibit carbapenem resistance, which is strongly
associated with prior use of carbapenems.

Meropenem has a lower affinity for certain oxa-
cillinase enzymes than imipenem [34]. Its stability
in extended infusion and a comparatively lower
seizure threshold than imipenem makes merope-
nem a rational choice for A. baumannii. Unfortu-
nately, rising minimum inhibitory concentrations
(MIC) of meropenem substantially decrease the
probability of achieving the relevant pharmacoki-
netic/pharmacodynamic index with the routine
dosing regimens of 1 g every 8 h. A 2-g q8 h regimen
in extended infusion is more likely to achieve the
required %T more than MIC target. Nevertheless,
these carbapenem-resistant-A. baumannii strains
exhibit high MIC levels (>32 mg/l) making neces-
sary the use of other antimicrobials. Therefore,
r Health, Inc. All rights reserved.
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Table 2. Recommended doses of antimicrobials for severe A. baumannii infections

Daily dose

Antibiotic Loading dose >50 50–30 30–10 <10 Dose on CRRT Observations

Meropenema Not required 2 g/8h 1g/8 h 1 g/12 h 1g/24 h 0.5–1g/8–12 h Extended infusion (3–4h)
is recommended. If
extended infusion is
used, the first dose
should be administered
in 30 min

Sulbactam Not required 9–12g/day (in
three doses)

9–12 g/day (in
three doses)

6–9g/day (in two
to three doses)

3g/day 2–3g/12 h 4-h infusion is
recommended

Colistin 9 M IU 9 M IU/day in two
doses

6M IU/24 h in two
doses

4.5 M IU/24h 3M IU/24 h 9 M IU/day in
two doses

Loading dose is necessary
including patients with
renal dysfunction

Polymyxin B 2–2.5 mg/kg 1.5–3mg/kg/day
in two doses

NC NC NC NC Continuous infusion may
be suitable. Same doses
in patients on CRRT

Tigecycline 100 mg
200 mg

50 mg/12 h
100 mg/12 h

NC
NC

NC
NC

NC
NC

NC
NC

May be adequate for
approved indications
(abdominal infections
and SSTI)

For other indications,
especially pulmonary
infections (without
approval by regulatory
agencies) use high dose
(200 mg/day)

Minocycline 200 mg 100 mg/12 h NC NC NC NC

Rifampicin Not required 600 mg/day or
600 mg/12 h

600 mg/day or
600 mg/12 h

600 mg/day 600mg/day 600 mg/day Always in combination
therapy

Fosfomycin Not required 12–24 g in 3 or 4
doses

4g/12 h 4 g/24 h 2g/24 h 8 g/12 h Always in combination
therapy

CRRT, Continuous renal replacement therapy; M IU: millions international units; NC, no change; SSTI, Skin and soft tissue infection.
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Acinetobacter baumannii infections Garnacho-Montero and Timsit
carbapenems cannot be used empirically, at least in
monotherapy, for severe infections in areas with a
high rate of resistance to carbapenems.
Sulbactam

Sulbactam is a penicillanic acid sulfone which, as
well as being a b-lactamases inhibitor, with intrinsic
activity against A. baumannii. A pharmacokinetic/
pharmacodynamic study performed in healthy vol-
unteers concluded that a 4-h infusion of 3 g of
sulbactam every 8 h constitutes the best treatment
option for less susceptible isolates [35]. Multiple
clinical studies corroborate that high-dose sulbac-
tam (9 g/day) is a valid option in the management of
severe Acinetobacter infections. In a retrospective
study analyzing infections caused by carbapenem-
resistant-A. baumannii, polymyxin (colistin or poly-
myxin B) treatment was significantly associated
with higher mortality than sulbactam. The use of
a polymyxin was identified as an independent risk
factor for mortality [36].

Unfortunately, nowadays the percentage of resis-
tance to sulbactam has reached such a high level [22]
that its use as empirical therapy against infections
caused by A. baumannii is discouraged [32

&&

].
Polymyxins

Polymyxins are a group of polypeptide cationic anti-
biotics. Only polymyxin B and polymyxin E (colis-
tin) are used in clinical practice. Colistin is by far the
most extensively used polymyxin. It is administered
as colistimethate (CMS), a prodrug that needs to be
hydrolyzed to its active form (colistin).

CMS is mostly excreted unchanged in urine
(70%) and is partly transformed to colistin (30%),
whereas renal excretion of colistin is negligible
(1–2%). As renal function decreases, a progressively
larger fraction of a dose of CMS will be converted
to colistin. The elimination of colistin is nonrenal
because it undergoes extensive renal tubular reab-
sorption, and nonbiliary by unknown mechanism.
In the last years, our knowledge on the clinical
pharmacokinetic of colistin has increased substan-
tially. The ratio of the area under the curve (AUC) to
the MIC (AUC/MIC ratio) is the best pharmacoki-
netic–pharmacodynamic index to describe its effi-
cacy profile. A dosing regimen should allow for
colistin plasma concentrations of about 2 mg/l to
assure the efficacy against colistin susceptible A.
baumannii. A meta-analysis of 32 studies confirmed
the clinical benefit of high doses of colistin
(MIC�2 mg/l) [37]. The risk of nephrotoxicity
increases as plasma colistin concentration exceeds
2.5 mg/l [38]. This problem of heteroresistance to
 Copyright © 2018 Wolters Kluwe
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colistin can be overcome with high doses of colistin
or with the use of another active agent [39].

Polymyxin B is available for direct intravenous
administration. Polymyxin B dosages should be cal-
culated based on body weight and the plasma con-
centration is not influenced by renal function [40].
Of note, the incidence of renal failure seems to be
lower with polymyxin B than with colistin [41].
Minocycline

Minocycline exhibits bactericidal activity against A.
baumannii as well as synergistic effects with different
antimicrobials. In retrospective studies, the use of
intravenous minocycline provided high rates of
clinical success or improvement and was generally
well tolerated among patients with MDR or carba-
penem-resistant-A. baumannii infections [42].
Tigecycline

Serious doubts exist about the role of tigecycline in
monotherapy for MDR-A. baumannii infections. The
currently approved dosage is a 100-mg loading dose
followed by a 50-mg dose administered twice daily.
Tigecycline possesses a large distribution volume
but Cmax in the serum does not exceed 0.87 mg/l
with the standard regimen; treatment of intravascu-
lar/bacteremic infections by A. baumannii seems
impossible with the approved regimen [43]. Simi-
larly, tigecycline concentrations in pulmonary
endothelial lining fluid with conventional dosing
are insufficient (0.01–0.02 mg/l) to treat A. bauman-
nii pneumonia [44].

A matched cohort analysis concluded that the
tigecycline-based therapy resulted in higher in-hos-
pital mortality than the colistin-based therapy (61 vs.
44%, respectively) in critically ill patients with pneu-
monia caused by multidrug-resistant A. baumannii.
This lower efficacy of tigecycline might be because of
A.baumannii isolateswithMICmore than 2 mg/l [45].
Two meta-analyses discourage the use of a tigecycline
for the treatment of MDR-A. baumannii infections
because, compared with other active antimicrobials,
the use of tigecycline was associated with higher in-
hospital mortality, lower microbial eradication rate
and longer length of stay [46,47

&&

]. Nevertheless, a
high-dose regimen (200 mg/day), usually in combi-
nation with another antimicrobial, may be an effec-
tive and well-tolerated alternative for severe A.
baumannii infections including HAP [48].
MONOTHERAPY OR COMBINATION
THERAPY

The use of combination therapy is an attractive
approach based on the results of experimental
r Health, Inc. All rights reserved.
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Special commentary
models and justified by the high mortality rates of
these infections, the lack of proven valid therapeutic
options, and the rapid development of resistance.
Notwithstanding, the advantages of combination
therapy is doubtful.
Observational studies

A recent observational study that evaluated multiple
combinations (colistin and tigecycline followed by
carbapenem and tigecycline were the most common
combinations) compared with monotherapy (colis-
tin and carbapenems were the most common drugs
used in monotherapy) failed to demonstrate
any benefits in term of mortality in patients with
sepsis because of multidrug-resistant A. baumannii.
Various observational studies evaluating different
colistin-based combination therapy against mono-
therapy with colistin have reported a higher eradi-
cation rate but no impact on mortality with the used
of combination therapy [49,50]. It is worth men-
tioning a retrospective study that compared mono-
therapy with colistin with patients that received
combination therapy (colistin and carbapenem,
sulbactam, tigecycline, or other agents) in MDR-A.
baumannii BSI. Rates of 14-day survival and micro-
biological eradication were significantly higher in
the combination group but without differences in
hospital mortality [49].

Several in-vitro studies have documented the
existence of a potent synergism of the combination
of colistin with anti-gram-positive antibiotics [51–
53]. In a retrospective series, clinical benefit of the
combination of colistin and vancomycin was not
documented in patients with A. baumannii ventila-
tor-associated pneumoni (VAP) and BSI. In addition,
the rate of renal failure was significantly higher in
patients on combination therapy compared with
those on monotherapy with colistin [54]. Con-
versely, a multicenter study that included a hetero-
geneous group of infections caused by different
gram-negative bacilli concluded that therapy with
colistin and a glycopeptide at least five days was a
protective factor for 30-day mortality [55].
Randomized clinical trials
Colistin and rifampicin

A randomized, open label trial found no difference
in mortality or length of hospitalization between a
colistin-rifampicin group and colistin monotherapy
in serious MDR-A. baumannii infections. However,
an increased rate of A. baumannii eradication with
combination therapy was observed [56]. The results
were identical in another clinical trial that
 Copyright © 2018 Wolters Kluwer H
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compared colistin and rifampicin with colistin
in 43 patients with VAP caused by carbapenem-
resistant-A. baumannii. [57].

Colistin and fosfomycin

A recent randomized open-trial evaluated mono-
therapy with colistin compared with the combina-
tion of colistin and fosfomycin for 7–14 days
in patients infected with carbapenem-resistant A.
baumannii. Microbiological response at the first 72 h
and at the end of treatment were significantly
higher in the combination group but without differ-
ences in clinical cure rate or 28-day mortality [58].

Colistin and meropenem

Experimental studies suggest that for A. baumannii
infections, polymyxin–carbapenem combinations
are synergistic and increased bactericidal activity
compared with polymyxins alone. A recent random-
ized controlled trial that enrolled 406 patients with
severe infections caused by carbapenem-resistant
gram-negative bacteria concluded that combination
therapy (colistin and meropenem) did not result in
better outcomes compared with colistin monother-
apy. Specifically, for A. baumannii infections, no
differences existed between monotherapy and com-
bination therapy for clinical failure (primary out-
come), or 14-day and 28-day mortality [59

&&

].
Meta-analyses

Diverse meta-analyses have assessed the use of com-
bination therapy in severe A. baumannii infections.
A meta-analysis that included five observational
studies and two randomized controlled trials con-
cluded that the combination of colistin and rifam-
picin compared with colistin alone did not impact
on mortality rate or length of hospitalization
although microbiological eradication rate was sig-
nificantly higher in the combination group. The use
of rifampicin was associated with a nonsignificant
trend toward a higher incidence of liver toxicity
[60]. However, the variability in the doses adminis-
tered including the low doses of colistin used in
these studies and the lack of colistin loading dose
warrant further investigation of this antimicrobial
combination. Another meta-analysis concluded
that the combination of polymyxins with other
antibiotics achieved similar hospital mortality and
clinical response rates than monotherapy [61].

It is worth mentioning a recent meta-analysis
that concluded that colistin in combination with
sulbactam was associated with a significantly higher
microbiological cure rate compared with colistin in
combination with tigecycline (RR 1.23; 95% CI
1.03–1.47) and colistin monotherapy (RR 1.21;
ealth, Inc. All rights reserved.
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95% CI 1.06–1.38) although mortality rates were
unaffected. As expected by its pharmacokinetic
properties, tigecycline-based therapy was signifi-
cantly less effective for achieving a microbiological
cure in BSIs [47

&&

]. Finally, a Bayesian network meta-
analysis analyzed the comparative effectiveness of
different antimicrobials in monotherapy or com-
bined for MDR-A. baumannii HAP in critically ill
patients. Intravenous colistin monotherapy was
chosen as comparator. For survival benefit, sulbac-
tam appears to be the best treatment option. Among
combinations, colistin and fosfomycin achieved the
highest survival benefit [62].
CONCLUSION

The treatment for A. baumannii infections often
represents a challenge because of the paucity of
active agents, the limited data about their efficacy
and concerns about serious side-effects. As carbape-
nem and sulbactam resistances are rising worldwide,
polymyxins in monotherapy or combined with
other agents are widely used. Colistin is considered
to be suboptimal to b-lactams or sulbactam but it
represents frequently the last resort for drug resis-
tant A. baumannii infection.

Recent meta-analyses coincide in the lack of
clinical efficacy (cure rate or mortality) using com-
bination therapy instead of monotherapy for A.
baumannii severe infections although microbiolog-
ical eradication rates are significantly higher with
the use of two active antimicrobials. Furthermore,
side-effects can be significantly higher with some of
these combinations.
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