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A cinetobacter is a gram-negative coccobacillus (fig. 1)1,2 that 
during the past three decades has emerged from an organism of question-
able pathogenicity to an infectious agent of importance to hospitals world-

wide.3,4 Approximately one quarter of the PubMed citations for “nosocomial acineto-
bacter” in the past 20 years appeared in 2005 and 2006. Acinetobacter infections 
have long been clinically prominent in tropical countries, have been a recurrent 
problem during wars and natural disasters, and have recently caused multihospital 
outbreaks in temperate climates. Most alarming are the organism’s ability to accu-
mulate diverse mechanisms of resistance, the emergence of strains that are resis-
tant to all commercially available antibiotics,5 and the lack of new antimicrobial 
agents in development.6 At more than 300 U.S. hospitals surveyed by the Centers 
for Disease Control and Prevention (CDC), rates of carbapenem resistance in 3601 
isolates of Acinetobacter baumannii, clinically the most important of 25 acinetobacter 
genospecies,1 increased from 9% in 1995 to 40% in 2004.7

Acinetobacter was first described in 1911 as Micrococcus calco-aceticus.8 Since then, 
it has had several names, becoming known as acinetobacter in the 1950s.1,2 Its 
natural habitats are water and soil, and it has been isolated from foods, arthro-
pods, and the environment.3 In humans, acinetobacter can colonize skin, wounds, 
and the respiratory and gastrointestinal tracts. Some strains of acinetobacter can 
survive environmental desiccation for weeks, a characteristic that promotes trans-
mission through fomite contamination in hospitals.1,9

Acinetobacter is easily isolated in standard cultures but is relatively nonreactive 
in many biochemical tests commonly used to differentiate among gram-negative 
bacilli. This can delay isolate identification by a day. A. baumannii, A. calcoaceticus, 
and A. lwoffii are the acinetobacter species most frequently reported in the clinical 
literature. Because it is difficult to differentiate among acinetobacter species on 
the basis of phenotypic characteristics, the term A. calcoaceticus–A. baumannii complex 
is sometimes used.1

Mech a nisms of R esis ta nce

Resistance mechanisms that are expressed frequently in nosocomial strains of 
acinetobacter include β-lactamases, alterations in cell-wall channels (porins), and 
efflux pumps (Fig. 2). A. baumannii can become resistant to quinolones through 
mutations in the genes gyrA and parC and can become resistant to aminoglycosides 
by expressing aminoglycoside-modifying enzymes.10

AmpC β-lactamases are chromosomally encoded cephalosporinases intrinsic to 
all A. baumannii. Usually, such β-lactamases have a low level of expression that does 
not cause clinically appreciable resistance; however, the addition of a promoter 
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insertion sequence, ISAba1, next to the ampC gene 
increases β-lactamase production, causing treat-
ment-limiting resistance to cephalosporins.11 Al-
though porin channels in A. baumannii are poorly 
characterized, it is known that reduced expres-
sion or mutations of bacterial porin proteins can 
hinder passage of β-lactam antibiotics into the 
periplasmic space, leading to antibiotic resis-
tance.

Overexpression of bacterial efflux pumps can 
decrease the concentration of β-lactam antibiot-
ics in the periplasmic space. To cause clinical 
resistance in acinetobacter, efflux pumps usually 
act in association with overexpression of AmpC 
β-lactamases or carbapenemases. In addition to 
removing β-lactam antibiotics, efflux pumps can 
actively expel quinolones, tetracyclines, chloram-
phenicol, disinfectants, and tigecycline.12

Clinically most troubling have been acineto-
bacter’s acquired β-lactamases, including serine 
and metallo-β-lactamases, which confer resis-
tance to carbapenems.10 Acquired extended-spec-
trum β-lactamase carriage occurs in acineto-
bacter but is not as widespread as in Klebsiella 
pneumoniae or Escherichia coli.13

A recent report described a “resistance island” 
containing 45 resistance genes within the acineto-
bacter genome.14 Resistance islands comprise one 
or more virulence genes located in a mosaic dis-
tribution within a large genomic region.15

Currently, the term “multidrug resistance” in 
reference to acinetobacter does not have a stan-
dard definition. It is sometimes used to denote 
resistance to three or more classes of drugs that 
would otherwise serve as treatments for acineto-
bacter infections (e.g., quinolones, cephalospo-
rins, and carbapenems). The term “panresistance” 
has been used to describe strains of acineto-
bacter that are resistant to all standard antimi-
crobial agents tested (except colistin).16

Epidemiol o gy

Historically, acinetobacter has been a pathogen 
of hot and humid climates, where it has been a 
major cause of infections, particularly in inten-
sive care units (ICUs), and sometimes a cause of 
community-acquired pneumonia.17-21 Acinetobac-
ter was cited as the cause of 17% of cases of 
ventilator-associated pneumonias in a Guatema-
lan ICU — second only to pseudomonas, which 
caused 19% of cases — years before becoming a 
concern in ICUs in the United States.21 Over the 
past two decades, acinetobacter infections have 
become an increasingly common nosocomial 
problem in temperate climates.

Health Care–Associated Infections
Most information about health care–associated 
acinetobacter infections is based on outbreak in-
vestigations.22 Infections with A. baumannii tend 
to occur in debilitated patients, mostly in ICUs. 
Residents of long-term care facilities, particular-
ly facilities caring for ventilator-dependent pa-
tients, are at increased risk. In addition to a stay 
in the ICU, risk factors for colonization and infec-
tion are recent surgery, central vascular catheter-
ization, tracheostomy, mechanical ventilation, 
enteral feedings, and treatment with third-genera-
tion cephalosporin, fluoroquinolone, or carbapen-
em antibiotics.23,24

Acinetobacter outbreaks have been traced to 
common-source contamination, particularly con-
taminated respiratory-therapy and ventilator equip-
ment, to cross-infection by the hands of health 
care workers who have cared for colonized or in-
fected patients or touched contaminated fomites, 
and to the occasional health care worker who 
carries an epidemic strain.22,25,26 Once introduced 
into a hospital, acinetobacter often has an epide-
miologic pattern of serial or overlapping out-
breaks caused by various multidrug-resistant 

Figure 1. Gram’s Staining of Sputum Specimen from a 
Patient with Suspected Ventilator-Associated Pneumonia.

Acinetobacter baumannii was recovered from this spec-
imen, which shows gram-negative coccobacilli1; the 
diplococcal features help explain one of the early desig-
nations of acinetobacter as neisseria.2 Bacilli may pre-
dominate, depending on the culture medium.1 Photo-
micrograph courtesy of Kathleen G. Beavis, M.D.
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strains, with subsequent endemicity of multiple 
strains and a single endemic strain predominat-
ing at any one time.22 Prolonged colonization — 
for up to 42 months and affecting 17% of pa-
tients in one study — may contribute to the 
endemicity of A. baumannii after an outbreak.27

Dramatic multihospital outbreaks have been 

described in Brooklyn, Chicago, northwestern 
Indiana, Detroit, and cities in Europe, South 
America, Africa, Asia, and the Middle East.5,23,28,29 
A single-strain outbreak — monoclonal, as iden-
tified by molecular typing — of carbapenemase-
producing (OXA-40) acinetobacter was described 
recently in Chicago and neighboring northwest-
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Figure 2. Potential Mechanisms of Antimicrobial Resistance in Acinetobacter.

Acinetobacter, like other gram-negative bacteria, has an outer membrane and a cytoplasmic membrane, between 
which (the periplasmic space) β-lactamases (carbapenemases, AmpC β-lactamases, and extended-spectrum β-lac-
tamases) reside. Penicillin-binding proteins (PBPs), located at the level of the cytoplasmic membrane, constitute the 
final targets of β-lactam antibiotics. To bind to these targets, antibiotics must traverse the outer membrane through 
porin channels (outer-membrane proteins) into the periplasmic space. Once in the periplasmic space, β-lactam anti-
biotics bind to PBPs or are actively expelled from the bacterial structure through efflux pumps. Acinetobacter can 
harbor integrons and transposons, genetic elements on the bacterial chromosome or on plasmids, that can carry 
multiple cassettes with resistant genes (e.g., extended-spectrum β-lactamases and metallo-β-lactamases).
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ern Indiana.5 Since 2005, at least five hospitals, 
three long-term care facilities, and more than 
200 patients have been affected by this outbreak. 
In a French multicity, monoclonal outbreak of 
multidrug-resistant A. baumannii, 290 isolates were 
collected in 53 hospitals from April 2003 to June 
2004. The epidemic strain harbored an extended-
spectrum β-lactamase known as VEB-1. Most 
infected patients were in ICUs, medical wards, 
or long-term care facilities.28

The occurrence of monoclonal outbreaks in 
multiple hospitals suggests interinstitutional 
spread, presumably by movement of patients or 
personnel, or exposure to common-source con-
tamination of food or equipment. Such outbreaks 
highlight the importance of ongoing surveillance, 
interfacility communication, and measures to 
prevent the introduction of acinetobacter into, 
and the spread from, nursing homes.

Seasonal Variation
Since 1974, the CDC has noted higher rates of 
nosocomial acinetobacter infections in the sum-
mer than in other seasons.30,31 McDonald and 
colleagues evaluated 3447 acinetobacter infections 
in adults and children in ICUs that were reported 
to the CDC between 1987 and 1996; infection 
rates were approximately 50% higher from July to 
October than at other times of the year.31 Possi-
ble explanations include warmer, more humid 
ambient air, which favors growth of acineto-
bacter in its natural habitats, and potentially pre-
ventable environmental contaminants, such as 
condensate from air-conditioning units, which 
has been implicated as a cause of epidemic aci-
netobacter infections.31

Community-Acquired Infections
Community-acquired infections with acinetobac-
ter have been reported in Australia and Asia. 
These infections were characterized by pharyn-
geal carriage of the organism, aggressive pneumo-
nia, and high case fatality rates and were linked to 
alcoholism and cancer.17-19 The reason for the 
higher prevalence of acinetobacter infections in 
certain geographic areas is not known, but it may 
be due in part to differences in temperature and 
humidity that influence colonizing bacteria.

In the United States, community-acquired in-
fections are rare. In 1979, A. baumannii pneumo-
nias occurred in three foundry employees who 

worked within meters of each other. Postmor-
tem evaluations in two of the patients showed 
severe underlying pneumoconiosis. A. baumannii 
was isolated from foundry air, but the source was 
not identified.32

Military Personnel
Descriptions of the role played by acinetobacter 
infections during war date to the 1955 report of 
bloodstream infection with a presumed strain of 
acinetobacter (then called achromobacter) in a 
Korean War military recruit.33 During the Vietnam 
War, Tong and colleagues reported on 63 soldiers 
with soft-tissue acinetobacter infections.34,35 Most 
recently, A. baumannii infections have been report-
ed among U.S. military personnel injured in the 
Middle East.36-40

From January 2002 to August 2004, 85 blood-
stream infections with A. baumannii were identi-
fied in soldiers in two military referral hospitals; 
the soldiers had been injured during Operation 
Enduring Freedom in Afghanistan and Operation 
Iraqi Freedom in the Iraq–Kuwait region. A total 
of 35% of the isolates were susceptible only to 
imipenem, and 4% showed resistance to all stan-
dard drugs.36 According to another report, among 
142 acinetobacter isolates recovered from Octo-
ber 2003 to November 2005, strains from de-
ployed personnel showed a lower rate of suscepti-
bility to imipenem than isolates from nondeployed 
personnel (63% vs. 87%, P<0.01).37

Several studies have assessed possible sources 
of wartime acinetobacter infections. Griffith and 
colleagues reported the results of skin cultures 
from 102 active-duty army personnel in Iraq; none 
of 303 samples yielded A. baumannii,38 arguing 
against preinjury colonization. However, in an 
investigation of an outbreak, acinetobacter was 
recovered from environmental cultures of critical 
care treatment areas in seven field hospitals in 
the Iraq–Kuwait region.39 Finally, 16 unique resis-
tance genes were described recently among eight 
major clones of acinetobacter recovered from in-
fected soldiers.40 This heteroclonality and re-
appearance of acinetobacter in personnel partici-
pating in several military actions over the past 
50 years suggest multiple sources, including lo-
cal foods (also a potential source of global spread), 
contamination of wounds in the battlefield, and 
environmental spread and cross-infection in field 
and referral hospitals.

Copyright © 2008 Massachusetts Medical Society. All rights reserved. 
Downloaded from www.nejm.org by JOHN VOGEL MD on March 22, 2008 . 



Current Concepts

n engl j med 358;12 www.nejm.org march 20, 2008 1275

Disasters

Several recent disasters further suggest that aci-
netobacter should be included in the microbio-
logic differential diagnosis of soft-tissue infec-
tions after exposure to a tropical environment 
and that imported strains can cause widespread 
contamination and cross-infection in the hospi-
tal environment. After the Southeast Asia tsunami 
on December 24, 2004, a total of 17 people in 
critical condition were evacuated to Germany; all 
had severe trauma from floating debris, includ-
ing large soft-tissue injuries and fractures. Multi-
drug-resistant acinetobacter was isolated from 
20% of wounds and from blood and respiratory 
secretions.41 A. baumannii was the most prevalent 
nosocomial pathogen reported in a Turkish ICU 
in which casualties of the 1999 Marmara earth-
quake were treated42; A. baumannii had previously 
been isolated only rarely in this ICU. After the 
2002 terrorist bombing in Bali, a patient infected 
with A. baumannii was transferred to a Swiss ICU 
for patients with burn injuries and became the 
presumed source of extensive environmental con-
tamination and an ICU outbreak.43

Cl inic a l M a nifes tations

The most frequent clinical manifestations of 
acinetobacter infection are ventilator-associated 
pneumonia and bloodstream infections.7 Vascu-
lar catheters and the respiratory tract have been 
the most frequent sources of acinetobacter bacte-
remias,44,45 for which crude mortality rates paral-
lel those attributed to other gram-negative bacilli 
(28 to 32%).46

In a study of specimens from 10,852 patients 
with bloodstream infections, collected at 49 U.S. 
hospitals from 1995 to 1998, the proportion of 
infections due to acinetobacter was 1.5%, and 
36% of the acinetobacter infections were polymi-
crobial. The most common coisolates were skin 
flora — coagulase-negative staphylococci or en-
terococci46 — suggesting that some blood isolates 
represented specimen contamination from skin 
or environmental strains.47,48 Nonetheless, a study 
of 48 patients with multidrug-resistant A. bauman-
nii bacteremias, who were matched for severity 
of illness to a control group with infections from 
strains susceptible to treatment with drugs, 
showed that the group with resistant strains had 
a 21.8% attributable mortality, higher hospital-

ization costs, and longer ICU and hospital stays.49 
It is unclear whether such outcomes are due to 
strain virulence or whether they could be avoid-
ed by the prompt use of appropriate therapy.50

Acinetobacter pneumonia occurs predomi-
nantly in ICU patients who require mechanical 
ventilation and tends to be characterized by a late 
onset. Affected patients spend more days in the 
ICU and on a ventilator before having positive 
cultures than do patients with pneumonias 
caused by other gram-negative bacilli or unin-
fected patients.24,51 The clinical effect of ventila-
tor-associated acinetobacter pneumonias has been 
variable. A recent study showed higher mortality 
among patients with multidrug-resistant acineto-
bacter infections than among patients infected 
with susceptible acinetobacter strains or unin-
fected patients; however, when the severity of 
illness and underlying diseases were considered, 
the main difference was that patients with multi-
drug-resistant acinetobacter infections had longer 
hospital and ICU stays.52

In other studies, mortality among patients 
with pneumonia due to multidrug-resistant aci-
netobacter was similar to that among patients 
with infection caused by other pathogens24 or 
among controls (with or without pneumonia) 
matched for severity of illness and length of ICU 
stay,53 suggesting that coexisting conditions were 
the major predictors of the outcome or that in 
some cases acinetobacter may have been a colo-
nizer rather than a pathogen.

Tr e atmen t

Infections caused by antibiotic-susceptible aci-
netobacter isolates have usually been treated with 
broad-spectrum cephalosporins, β-lactam–β-lac-
tamase inhibitor combinations (e.g., a combination 
that includes sulbactam, a drug marketed only in 
combination intravenous products in the United 
States), or carbapenems (e.g., imipenem or merope-
nem, although there are reports of discordant 
susceptibility to carbapenems54), used alone or in 
combination with an aminoglycoside.55 The du-
ration of treatment is generally similar to that for 
infections caused by other gram-negative bacilli, 
is largely empirical, and depends mostly on the 
site of infection.

For infections caused by multidrug-resistant 
isolates, antibiotic choices may be quite limited; 
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the most active agents in vitro are the polymyx-
ins — polymyxin B and polymyxin E (colis-
tin).23,56,57 Polymyxins are cationic detergents that 
disrupt bacterial cytoplasmic membranes, caus-
ing leakage of cytoplasmic contents.58 Clinicians 
abandoned polymyxins in the 1960s and 1970s, 
prompted by problems of nephrotoxicity and neu-
rotoxicity (mostly paresthesias).59

The emergence of multidrug-resistant gram-
negative bacilli has brought polymyxins back into 
use during the past few years; recent studies 
show less toxicity, possibly because of lower 
doses, different drug formulations, and careful 
ICU monitoring.59 Current nephrotoxicity rates 
range up to 36%, and neurotoxicity is now un-
common.59 The main side effect of inhaled co-
listin — used in the past for prevention and more 
recently for treatment of ventilator-associated 
pneumonia — is bronchoconstriction.56,59 Recent-
ly, in vitro studies have suggested colistin hetero-
resistance in some phenotypically susceptible 
acinetobacter strains,60,61 but the clinical impor-
tance of this phenomenon is unknown.

Tigecycline, a new glycylcycline antibiotic, is 
another drug that has been active in vitro and 
clinically against some multidrug-resistant strains 
of A. baumannii47,62; however, development of re-
sistance to tigecycline has been reported recent-
ly.63 In addition, in some outbreaks of acinetobac-
ter infections, most isolates were not susceptible 
to tigecycline.5

Only limited conclusions can be drawn from 
studies of resistant acinetobacter infections64-76 
(Table 1). These studies have been mostly retro-
spective, small case series that often included a 
mix of patients with infections at different sites, 
and in some of the studies, combined outcomes 
were reported for grouped cases of multidrug-
resistant bacteria. In many series, intravenous 
colistin has shown success rates of 50% or more 
for the treatment of pneumonia, but a success 
rate of only 25% was reported in one series of 20 
cases.72 Kwa and colleagues used inhaled colis-
tin as monotherapy in 17 patients with acineto-
bacter pneumonia and reported clinical improve-
ment in 57.1%.77

Data on the treatment of bloodstream infec-
tions are even more limited. During the acineto-
bacter outbreak in Chicago and northwestern 
Indiana, 81 bloodstream infections were treated. 
In two thirds of the cases, only a single blood 
culture was positive; in 25% of patients, vascular 
catheters were changed before the first negative 
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culture result was obtained, suggesting aborted 
catheter-related infections. Active antibiotic ther-
apy was never given in 49% of the cases or was 
started only after blood cultures became negative 
in 22% of the cases.47 These data support the 
notion that in some cases acinetobacter bactere-
mia may represent specimen contamination.

Intravenous or intrathecal colistin has been 
used successfully for the treatment of central 
nervous system infections caused by acineto-
bacter. Intravenous administration of the drug 
results in moderate penetration of inflamed me-
ninges, with cerebrospinal fluid levels that are 
approximately 25% of serum levels.78

When faced with infections due to multidrug-
resistant bacteria, clinicians frequently use com-
binations of antibiotics. In vitro studies have 
demonstrated either synergy or additive effects 
when polymyxins were used with imipenem, ri-
fampin, or azithromycin against multidrug-resis-
tant acinetobacter.23 Motaouakkil and colleagues 
successfully treated 16 ventilator-associated pneu-
monias or bloodstream infections with the com-
bination of colistin and rifampin.66 Clinical use 
of rifampin with imipenem for carbapenem-resis-
tant acinetobacter infections has been less suc-
cessful71 (Table 1).

Infec tion Con trol

The primary goals for the control of multidrug-
resistant acinetobacter infection are recognizing 
its presence in a hospital or long-term care facil-
ity at an early stage, controlling spread aggres-
sively, and preventing the establishment of en-
demic strains. Control measures are based almost 
entirely on experiences from outbreaks of acineto-
bacter infection and generally address the organ-
ism’s major epidemic modes of transmission 
(Fig. 3) and the excessive use of broad-spectrum 
antibiotics.22

Control is most successful when a common 
source is identified and eliminated.3,22,48,51,55 A 
review of 51 hospital outbreaks showed that 25 
had a common source: 13 outbreaks with pre-
dominantly respiratory tract infections and 12 
with predominantly bloodstream or other infec-
tions were controlled by removal or disinfection 
and sterilization of contaminated ventilator (or 
related) equipment or contaminated moist fo-
mites.22

In a single-hospital, multi-ICU outbreak of 
ventilator-associated pneumonia, A. calcoaceticus 
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was cultured from 18% of reusable ventilator 
circuits after pasteurization and from the hands 
of the four health care workers — one of whom 
was persistently colonized — who assembled 
circuits; both disinfection failure and recontami-
nation of circuits by colonized workers during 
handling probably caused the outbreak.25 Never-
theless, multidrug-resistant acinetobacter has re-
mained largely susceptible to disinfectants and 
antiseptics; occasional reports of disinfectant 
failure are more likely to represent the failure of 
personnel to follow cleaning procedures than 
disinfectant resistance.

Aggressive cleaning of the general environ-
ment has been the next most frequent outbreak 
intervention,22 reflecting the concern that aci-
netobacter’s ability to survive for weeks on wet or 
dry surfaces facilitates nosocomial transmission.9 
A review of 1561 hospital epidemics reported 
over the past 40 years noted that closure, typi-
cally for cleaning, was considered necessary for 

outbreak control in 22.9% of 105 units affected 
by acinetobacter, as compared with 11.7% affect-
ed by other pathogens.79 An outbreak attributed 
to dissemination of acinetobacter by high-pres-
sure lavage of wounds demonstrated the effect of 
extensive environmental contamination on the 
risk of cross-infection.26 Because multiple mea-
sures are usually introduced simultaneously, it has 
been difficult to assess the independent effect of 
cleaning. However, in one ICU outbreak, failure 
to maintain a low level of environmental con-
tamination by A. baumannii correlated with an in-
creased risk of patient colonization.22

When neither common sources nor environ-
mental reservoirs are identified, control has de-
pended on active surveillance and contact isolation 
for colonized and infected patients, improve-
ments in the hand hygiene of health care work-
ers (generally the hardest measure to implement), 
and aseptic care of vascular catheters and endo-
tracheal tubes.22,51,57,80 A few reports credit out-

Common sources
(e.g., respiratory-therapy and other
equipment, vegetables and fruits,

colonized personnel)

Patients colonized or infected

Health care workers’ hands
or large droplets

(e.g., respiratory suctioning,
wound lavage)

Patients colonized or infected

Health care
workers’ hands

Environmental contamination
Wet sites

(e.g., hydrotherapy equipment,
suction water, tap aerators)

Dry sites
(e.g., bedding, furniture, computer
keyboards, blood-pressure cuffs)

Acinetobacter shed by patients
(e.g., from skin, wounds, 

respiratory aerosol)
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Figure 3. Reservoirs, Sources, and Transmission Patterns for Acinetobacter in Health Care Facilities.

Infection-control measures are directed against the major epidemiologic modes of transmission of acinetobacter, as determined mostly 
from outbreaks: common-source contamination, environmental contamination, and cross-infection due to lapses in hand hygiene.22 Al-
though environmental contamination is well documented as a cause of epidemic infections, there are fewer examples of environmental 
contribution to endemic acinetobacter.
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break control to reduced prescribing of broad-
spectrum antibiotics, such as fluoroquinolones 
or carbapenems.22 Because antibiotic exposure is 
often a risk factor for an outbreak, these findings 
are plausible; however, use of multiple interven-
tions and historical controls complicates inter-
pretation of these studies. Finally, patient decolo-
nization — by skin cleansing with chlorhexidine 
or the use of polymyxin topically, orally, or by 

aerosol — has been an occasional adjunctive con-
trol measure that warrants evaluation.57
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smaller than cigarettes and typically contain only 
about a quarter as much tobacco (they are wrapped 
in the leaf of another plant). In a comparison be-
tween smokers and nonsmokers, the relative risk 
of death from any medical cause did not depend 
on educational level, but it did depend on whether 
bidis or cigarettes were smoked and the amount 
smoked (Fig. 1). The risk ratio for a given num-
ber of bidis or cigarettes smoked was greater for 
cigarettes than for bidis. However, we found a 
dose–response relationship between smoking and 
mortality among men who smoked only bidis and 
among men who smoked only cigarettes (P<0.001 
for both trends), with particularly elevated risk ra-
tios for cigarette smoking.

In response to Pandey and Pandey, the addi-
tional adjustment for tobacco chewing did not 
materially alter the relative risk of death from any 
medical cause or the relative risk of death from 
cancer in a comparison of smokers and non-
smokers.
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Figure 1. Risk of Death in Men between the Ages of 30 
and 69 Years, According to the Type and Amount  
of Tobacco Smoked.

Risk ratios are for smokers as compared with non-
smokers. The mean numbers of bidis smoked per day 
were divided into three categories: 4.4 (1 to 7 bidis), 
10.2 (8 to 14 bidis), and 23.9 (≥15 bidis). The mean 
numbers of cigarettes smoked per day were divided 
into two categories: 4.0 (1 to 7 cigarettes) and 13.7  
(≥8 cigarettes). More results are available on the Web 
site of the Centre for Global Health Research at www.
cghr.org/tobacco.

Acinetobacter Infection
To the Editor: In their review article, Munoz-
Price and Weinstein (March 20 issue) 1 state that 
“Acinetobacter is a gram-negative coccobacillus” 
and that it is “nonreactive in many biochemical 
tests commonly used to differentiate among gram-
negative bacilli.” However, acinetobacter can be 
gram-variable and even gram-positive on initial 
Gram’s staining.2,3 The appearance of the bacte-

ria is highly dependent on its life-cycle phase: it 
is rod-shaped during the growth phase and coc-
cobacillary during the stationary phase.4,5 The 
oxidase-negative characteristic allows one to dif-
ferentiate acinetobacter from other important 
gram-negative bacteria such as pseudomonas and 
neisseria.4,5 This information can be useful with 
respect to diagnosis and time to treatment when 
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a clinician has a high clinical suspicion of acinet-
obacter infection but the Gram’s stain does not 
show a gram-negative coccobacillus.
Roger Kapoor, M.D., M.B.A.
Stanford University 
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To the Editor: Munoz-Price and Weinstein did 
not comment on abscesses as one of the clinical 
manifestations of acinetobacter infection. In our 
intensive care unit (ICU), we identified two pa-
tients with multidrug-resistant Acinetobacter bau-
mannii abscesses. The first patient was a 77-year-
old woman who underwent splenectomy after 
multiple trauma and in whom a lung abscess de-
veloped after 60 days in the ICU. This patient 
recovered. In the literature there is a case report 
of a lung abscess1 and three cases of pneumato-
celes due to A. baumannii.2 The second patient was 
a 68-year-old man who also underwent splenec-
tomy after multiple trauma, and in whom an in-
traabdominal abscess developed at the site of sple-
nectomy 10 days after admission to the ICU. This 
patient died. To our knowledge, only four cases 
of A. baumannii intraabdominal abscesses have 
been reported in the literature.3,4
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To the Editor: As pointed out by Munoz-Price 
and Weinstein, A. baumannii is an important con-
taminant of wounds, and it is an important caus-
ative agent of infectious complications of open 
fractures, as reported in studies involving combat 
casualties.1-3 In our reference service in Brazil for 
severe skeletal trauma, over the past 5 years A. bau-
mannii was the second most frequent agent related 
to infection in open Gustilo type II and III frac-
tures. It was isolated in 25 patients (18% of the 
total number of patients), and the majority of iso-
lates were multidrug-resistant.
Ana L. Lima, M.D., Ph.D. 
Priscila R. Oliveira, M.D. 
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The Authors Reply: Kapoor is correct. As noted 
in our review article, on Gram’s staining of cul-
tures of acinetobacter, bacilli or coccobacilli may 
predominate, depending on the culture medium. 
Young acinetobacter cultures (most frequently in 
liquid mediums) can stain as gram-positive1 and 
have coccal morphology for approximately 24 
hours; the latter effect is seen in up to 25% of 
liquid cultures growing acinetobacter (Schreck-
enberger P: personal communication). This be-
havior is shared by other gram-negative bacilli such 
as neisseria and moraxella. Regarding the oxidase-
negative characteristic, it is true that it will dif-
ferentiate acinetobacter from oxidase-positive or-
ganisms such as pseudomonas and neisseria; 
however, it will not differentiate acinetobacter from 
oxidase-negative nonfermenting bacteria such as 
Stenotrophomonas maltophilia or oxidase-negative fer-
menting bacteria such as members of the Entero-
bacteriaceae family.
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As mentioned by Myrianthefs et al. and Lima 
et al., acinetobacter can manifest as wound infec-
tions. As we noted, in one series of patients af-
fected by a natural disaster, 20% of wounds were 
infected with acinetobacter; acinetobacter was also 
a common cause of infected wounds in the bat-
tlefield and burn injuries. Our experience in the 
greater Chicago area is that acinetobacter detect-
ed in wounds more frequently tends to be a con-
taminant than an actual pathogen. Nevertheless, 
in the majority of settings, the most common 

presentations are respiratory, urinary, and blood 
infections.
L. Silvia Munoz-Price, M.D.
Medical Specialists 
Munster, IN 46321 
simunozprice@gmail.com

Robert A. Weinstein, M.D.
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Does Preventive Care Save Money?

To the Editor: In the Perspective article by Co-
hen et al. (Feb. 14 issue),1 a narrow construction 
of what constitutes prevention leads to erroneous 
conclusions about its potential impact and cost-
effectiveness. The authors do not address preven-
tive interventions that occur outside the doctor’s 
office. These include basic public health services 
and many other policies that bear directly on 
health (e.g., seat-belt laws and smoke-free policies). 
Health gains achieved through population-based 
approaches often exceed those that can be accom-
plished clinically, and these approaches are often 
cost-saving or highly cost-effective.2

Even if one considers only prevention in clini-
cal settings, many high-value services are substan-
tially underutilized. For example, less than 50% 
of the target population receives smoking-cessa-
tion services, counseling about aspirin use, colo-
rectal-cancer screening, and influenza vaccines. 
Increasing use of these four services to 90% would 
save more than 100,000 lives annually.3

Policymakers should support investment in 
prevention for the right reasons — namely, to im-
prove health at an acceptable cost, even if the ser-
vices will not reduce overall spending. If reduced 
spending is the goal, then policymakers should 
discourage use of low-value services, both thera-
peutic and preventive.
Jonathan E. Fielding, M.D., M.P.H.
Los Angeles County Department of Public Health 
Los Angeles, CA 90012
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2007.

The authors reply: Fielding and colleagues 
correctly highlight community-based interventions 
as important preventive strategies to evaluate, but 
they fail to note that our analysis of 1500 compari-
sons described in 599 articles drawn from the Tufts 
Medical Center Cost-Effectiveness Analysis Regis-
try (www.cearegistry.org) did in fact include a num-
ber of community-based interventions. Like clin-
ical preventive services, nonclinical interventions 
are sometimes expensive (e.g., a ban on cell-phone 
use while people are driving, which costs $380,000 
per quality-adjusted life-year, or QALY1) and some-
times cost-saving (e.g., folic acid fortification of 
grains2 and condom distribution3). Other inter-
ventions cost the health care system more money 
than they save but generally deliver good value,4 
meaning that they cost less than commonly rec-
ognized benchmarks for cost per QALY.5
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3.
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Abstract and Introduction

Abstract

Acinetobacter baumannii has emerged as a significant hospital pathogen, quickly becoming resistant to commonly prescribed
antimicrobials. It has recently gained notoriety as a cause of debilitating soft tissue infections in soldiers returning from Iraq and
Afghanistan. Current literature supports the belief that it is the widespread contamination of increasingly antimicrobial-resistant A.
baumannii in both military and civilian hospitals that contributes to the rising rates of infections.

Introduction

In 1911, a Dutch microbiologist by the name of Martinus Willem Beigerinck discovered an aerobic, gram-negative,
non-fermentative bacterium we now know to be of the genus Acinetobacter.[1] Acinetobacter began to be recognized as a
significant hospital pathogen in the late 1970s, but at that time it was easily treated as it was susceptible to commonly used
antimicrobials. In 1986 a pair of researchers, Bouvet and Grimont, delineated 12 DNA groups of Acinetobacter using DNA-DNA
hybridization and proposed 4 new species.[3] These 4 included A. baumannii, which has emerged as a formidable, increasingly
antimicrobial-resistant pathogen ubiquitous in the clinical environment today.[4–7] Acinetobacter baumannii and its close relatives,
Genomic species 3 and 13TU, form what is called the "A. baumannii complex." These are the 3 species of the most clinical
importance, causing a vast majority of Acinetobacter infections, but they cannot be differentiated by routine diagnostic tests. They
are often just referred to as A. baumannii in most literature unless stated otherwise. Acinetobacter baumannii is just 1 of many
Acinetobacter species that can cause disease in humans, but in 2004, the Centers for Disease Control (CDC) reported that A.
baumannii accounts for approximately 80% of all reported Acinetobacter infections.[8]

As a hospital pathogen, A. baumannii mainly affects patients in the intensive care unit (ICU), including burn patients, trauma
patients, and patients requiring mechanical ventilation.[2,7–10] Also, any immunocompromised patient or anyone who has an
underlying disease, such as chronic lung disease or diabetes, is at an increased risk for A. baumannii infection.[8] As an
opportunistic pathogen, A. baumannii usually poses no threat to healthy people. It can colonize the skin of healthy people, but it
will generally not cause infection.[2,7–9,11] In immunocompromised and intensive care populations, however, A. baumannii can
cause a variety of infections. According to the published literature, some infections associated with A. baumannii include ventilator-
associated pneumonia, skin and soft-tissue infections, secondary meningitis, urinary tract infections, wound and blood stream
infections, endocarditis, intra-abdominal abscess, and surgical site infections.[9,12] In soldiers, cases of osteomyelitis have been
shown to develop from deep wound infections.[9]

Acinetobacter baumannii is a gram-negative, nonmotile, obligate aerobic coccobacillus harboring a number of effective virulence
factors.[11] These factors include the attachment to and persistence on solid and dry surfaces, the ability to obtain essential
nutrients such as iron, the adhesion to and subsequent destroying of epithelial cells, and the ability in some strains to produce
gelatinases and proteinases that damage host tissues.[13] Acinetobacter baumannii has the added ability to colonize the skin of
patients or healthy individuals without causing illness.[4] The transmission of colonized bacteria to a susceptible patient, however,
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can result in infection. Acinetobacter baumannii also has the ability to form biofilms, which may play a role in the process of
colonization. A biofilm is an aggregate of microorganisms in which the cells adhere to one another or to a surface in a
self-produced matrix of extracellular DNA, proteins, and polysaccharides.[4] The cells forming the biofilm are morphologically,
metabolically, and physiologically different from their planktonic counterparts. Biofilms help the bacteria resist disinfection while
also allowing the participating cells to trade resistance genes, further facilitating the persistence of the pathogen.[4]

Acinetobacter baumannii is no longer isolated only rarely in hospitals, and the cause of this increase in detection is not clear. An
increase in the use of broad-spectrum antibiotics may contribute to the isolating of more antimicrobial resistant bacteria, but war
and natural disasters may also play a part. This is not only evidenced by the current war, but also by traumatic disasters such as
earthquakes, like the Marmara earthquake in 1999. The GATA Haydarpasa Training Hospital, 1 of the major treatment facilities
after this disaster, recovered A. baumannii from 31.2% of all the ICU patients. Before the earthquake, the bacteria was isolated
from only approximately 7.3% of patients.[10] Furthermore, multi-drug-resistant strains of A. baumannii were being recovered
where there had been none previously.[10] The Brooke Army Medical Center (BAMC) at Fort Sam Houston in San Antonio, TX,
treats a population of both active and retired military personnel, their dependents, and a limited number of civilian trauma patients.
Until the medical center began seeing soldiers with infected wounds, A. baumannii was rarely encountered. In the 14 months prior
to March 1, 2003, only 2 active-duty soldiers of the 326 admitted to BAMC had any Acinetobacter infection.[9] Both patients had
underlying disease. During the study period however, from March 1, 2003, to May 31, 2004, the rate of Acinetobacter isolation
increased 3-fold. Most isolates were from admitted deployed soldiers with gunshot and explosives wounds. All isolates were of the
Acinetobacter baumannii complex. Of these isolates, 76% were multi-drug resistant (MDR); almost half of them being resistant to
every tested antimicrobial except Imipenem.[9] At the Walter Reed Army Medical Center (WRAMC) in Washington, DC, 75 patients
were found to be positive for Acinetobacter. Of these patients, 63% had positive Acinetobacter cultures less than 3 days after
admittance. Of the isolates, 89% were resistant to at least 3 drugs, meeting the criteria for multidrug resistance.[14]

A. Baumannii and War

Many of these patients with A. baumannii infections are soldiers who were previously healthy.[9,14] The reservoir for these
infections is not well known and may be different for each treatment facility, but the evidence strongly suggests the high numbers of
wounded soldiers and the transfer of these soldiers from 1 treatment facility to another aids the transmission and the growing
resistance of A. baumannii.[14,15] A common misconception is that soldiers get these infections from the soil of Iraq and
Afghanistan or have become infected from explosive devices placed inside animal carcasses—rumors with their beginnings in
military hospitals—but A. baumannii is a pathogen mainly found in a health care setting and is not isolated from the soil.[2]

Acinetobacter baumannii has been isolated from every hospital on the aeromedical evacuation route from Iraq and Afghanistan.[15]

Furthermore, a study by Scott and colleagues (2007) tested 49 soil samples for A. baumannii and recovered only 1 isolate, but this
isolate was not genetically related to any of the 86 clinical isolates recovered from 7 military treatment facilities. Also, soldiers did
not test positive for A. baumannii upon admission after injury.[15]

It should be noted that war-time infection is by no means a new adversary. However, the organism doing so much widespread
damage currently to both servicemen and civilian alike is a hospital pathogen, not an environmental 1 like trench fever in War
World I or malaria in World War II.

Robust evidence suggests the excessive use of broad-spectrum antibiotics may also be to blame for the evolution of drug-resistant
strains of A. baumannii.[4,6,8,9] When a patient presents with a bacterial infection, broad-spectrum antibiotics are the most likely
drug to provide effective treatment without identifying the organism behind the infection. Overuse of broad-spectrum antibiotics,
however, can contribute to the persistence of MDR bacteria. Zarrilli and colleagues (2004) discovered that 2 epidemics of MDR A.
baumannii were caused by 2 distinct clones selected in part by the high use of broad-spectrum antibiotics in the ICU. To limit the
use of broad-spectrum antibiotics while still ensuring the infection is being treated, culture-directed antimicrobial therapy is highly
recommended.[6,15] This approach helps to prevent selection of antimicrobial-resistant bacteria by guiding physicians toward
effective and appropriate initial treatment.[6,15] Erbay and colleagues (2009) considered "appropriate" initial treatment to include at
least 1 antibiotic that is active against the pathogen in vitro. This study concluded that a 48-hour or more delay in administration of
appropriate antimicrobial therapy had an adverse influence on the clinical outcome in patients with A. baumannii bacteremia.

Protocols for using antibiotics in the military have changed dramatically over the years. Antibiotics were not introduced until World
War II and the Korean War, where soldiers carried pouches of sulfanilamide powder and simply dumped it into wounds to stave off
infection.[17] Penicillin was used increasingly after its first use in 1942 when the British used it to sterilize wounds and the U.S.
medics saved the then powerful drug for systemic administration. By the end of World War II, penicillin was the go-to drug for
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aggressive debridement and wound management.[18] Both penicillin and streptomycin were commonly used in the Korean War to
prevent infection in wounds, the consequences of which were observed when soldiers presented with wounds infected by
organisms resistant to both drugs.[19] Hospital-acquired infection and transmission also became a hot topic during World War II,
and medical personnel as well as patients began to wear masks. Instruments were sterilized and infection control practices were
put into place, most of which are still used and accepted today.[20–22] These practices are important during this current war, where
we are seeing an increased ratio of wounded:fatal casualties. Along with this increase in wounded soldiers, there is a surge in
wound infections and transmission.[23,24] The military has greatly improved its treatment methods for wounded soldiers, and it has
adopted methods to reduce the rate of isolation of resistant organisms. When a soldier presents to a field hospital with an injury,
aggressive debridement and culture-directed antimicrobial therapy are the primary tools of fighting infection (no longer broad-
spectrum antibiotics), but it is extremely difficult to prevent infection by an organism lurking on the walls, the tables, and even the
bed sheets.[15,25,26] Strict infection control and a thorough understanding of the organism itself is a critical part of stopping the
spread of A. baumannii from 1 ICU to the next.

Inter- and Intrahospital Transmission

Since A. baumannii is a well-documented hospital pathogen and most infections involve ICU and trauma patients, it is
understandable that this organism should thrive in military treatment hospitals. These hospitals receive wounded servicemen
directly from the field or from other hospitals, sometimes 2 or 3. This intrahospital transmission poses a threat not just for military
treatment facilities, but also for civilian hospitals.[2] Acinetobacter baumannii has the ability to live on dry environmental surfaces in
an ICU for up to 13 days—10 days more than other gram-negative bacteria.[27] Other studies have shown similar abilities by A.
baumannii in humid conditions and on bed rails.[28,29] It is this ability to survive for long periods coupled with its ability to
demonstrate a number of antimicrobial resistance genes that have made A. baumannii a successful hospital pathogen.[2,27,30]

Acinetobacter baumannii is ubiquitous in the hospital setting. It is entirely too easy to carry the pathogen from 1 patient to another
or from 1 hospital to another, as was seen in both a nationwide outbreak in France and a city-wide outbreak in Brooklyn, NY. In
early September 2003, an alert went out through France's national hospital acquired infection notification system when, within a
month, 4 hospitals in a single district reported 5 clusters of A. baumannii, all of which had similar susceptibility profiles and
harbored a gene usually found within enterics and Pseudomonas aeruginosa, VEB-1. VEB-1, an extended spectrum !-lactamase
gene, gives the organism resistance to all penicillins, cephalosporins, extended-spectrum cephalosporins, and monobactams.[31]

In this case study, the isolates were resistant to all drugs save for colistin and imipenem. This clonal outbreak spread from 4
hospitals to 53 hospitals and from Northern France to 4 distant regions. In 1999, 15 hospitals in Brooklyn, NY, reported high rates
of MDR A. baumannii infection. Twelve percent of the strains were resistant to all commonly used drugs, and the only effective
treatment was an older, fairly toxic drug. Ribotyping of the isolates revealed that 1 strain was responsible for two-thirds of the
infections and was present in each of the 15 hospitals.[32] After an investigation into the cause of this A. baumannii epidemic, it
was believed that the transfer of colonized patients from hospital to hospital along with the rotation of medical staff and students
may have contributed to the spread of A. baumannii.[32]

Infection Control

As easily transmitted as A. baumannii is, it is becoming increasingly important for hospitals to update their infection control
procedures. In 2006, the CDC released a report describing guidelines to prevent the transmission of MDR organisms. The steps
the CDC recommends all health care facilities take include improvement of hand hygiene, use of contact precautions until the
patient tests culture-negative for the target organism, active surveillance cultures, education of hospital personnel, improved
environmental cleaning, and better communication about patients with these infections to not just personnel within the facility but
also between facilities.[33] Several hospitals found success placing all admitted soldiers from Operation Iraqi Freedom or Operation
Enduring Freedom (OIF/OEF) under contact precautions until cultures showed neither infection nor colonization with A. baumannii.
[9,34–36] One particular study found that each time a patient underwent pulsatile lavage debridement of wounds, that patient's risk
of developing a MDR A. baumannii infection increased by 60% due to the aerosolization of the pathogen during the procedure.
This aerosolization lead to widespread environmental contamination, and the hospital had to remove all upholstered items from the
ICU and stopped pulsatile lavage therapy in the ICU patients, after which there was a significant decrease in the number of
infections.11 Obviously, stress needs to be placed on environmental disinfecting. Studies have reported lower rates of infection
when the rooms and equipment were cleaned completely and more frequently.[2,27,33] Bleach solutions and other disinfectants
should be used in rooms and on equipment often and thoroughly to effectively control transmission of A. baumannii. In 1 study, it
was found that an outbreak of Acinetobacter was caused by the incomplete disinfection of reusable ventilator tubing.[37]

Desiccation is also a popular way to stave off environmental contamination as it keeps the area dry and free of the effects of
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humidity. However, a few studies have found clinical and outbreak strains of A. baumannii to be more resistant to desiccants than
culture-type strains from the American Type Culture Collection (ATCC). The reason for this is not well understood, but it may be
due to natural selection.[38,39] Another type of cleaning used to prevent the formation of biofilms is biocides. Biofilms further
facilitate the persistence of A. baumannii in the clinical environment by the exchange of resistance genes and resistance
mechanisms.[40] Furthermore, biofilm-forming bacteria are more resistant to disinfectants such as biocides.[40] One study found
that residual biocide in the environment actually contributed to an increased range of drug resistance. This is due to the fact that
biocides at the subminimum inhibitory concentration induced biofilm formation. This, of course, raises concerns about the
inappropriate use of biocides and disinfectants.[41] Despite the fact that A. baumannii poses a serious risk to patients, it is possible
to prevent transmission and infection in the hospital. In fact, the CDC reports that from 1982 to 2005, more than 100 reports have
been published documenting the success of various control interventions to lessen the burden of not only A. baumannii but
methicillin-resistant Staph aureus (MRSA) and other MDR pathogens.[33] Several of these interventions are listed in Table 1.

Molecular Characterization of Resistance Mechanisms

One of the chief problems facing hospitals, clinicians, and military health care personnel in regards to A. baumannii today is
multi-drug resistance. The CDC describes any species resistant to 3 or more antimicrobials as MDR.[33] It is no surprise that A.
baumannii has become resistant to a number of antimicrobials. It is bombarded by drugs and is in close association with other
gram negatives in the clinical setting. As such, it has acquired an impressive array of resistance mechanisms on top of its own
intrinsic abilities. Acinetobacter baumannii, along with other gram negative pathogens, can acquire new mechanisms via plasmids,
integrons, and transposons. These structures and their basic functions are depicted in Figure 1. Interestingly, studies have
observed that many outbreak strains of A. baumannii have a class 1 integron. The class 1 integron is responsible for the
transferring and recruitment of multiple resistance genes and has been demonstrated to be present in 88% of biofilm-forming A.
baumannii strains in 1 study. Class 1 integrons have also been linked to outbreak strains in military treatment facilities treating
repatriated soldiers in both the United States and the United Kingdom.[4,42] A resistance mechanism common to A. baumannii and
other gram negative bacteria are enzymes. Genes coding for these enzymes can be passed from cell to cell via the mechanisms
discussed previously. A common enzyme is !-lactamase, which hydrolyzes and confers resistance to the penicillins,
cephalosporins, and carbapenems.[43–45] Other enzymes A. baumannii can acquire are acetyltransferases, phosphotransferases,
and nucleotidyl transferases, which all promote resistance to fluoroquinolones and aminoglycosides. Mutated genes can also be
acquired from other bacteria. Mutations can alter bacterial targets of antimicrobials, reducing their affinity for the bacteria and
increasing the minimum inhibitory concentration (MIC) for the drug. An example of a point mutation would be a mutation in the gyrA
and parC genes. If there were point mutations in both genes, the isolate would have an increased MIC for all available
fluoroquinolones.[43] Table 2 lists the most common resistance genes and genes coding for resistance mechanisms found in A.
baumannii.

Table 1. A List of Interventions for Controlling the Transmission of MDR Hospital Pathogens33

Effective Control Measures for MDR Pathogens

Education of staff, patients, and visitors

Emphasis on hand washing

Use of antiseptics for hand washing

Contact precautions and glove use

Segregation of cases

Change in antimicrobial use

Surveillance cultures of patients

Surveillance cultures of staff

Environmental cultures

Extra cleaning and disinfection

Dedicated equipment
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Table 2. Genes Conferring Antibiotic Resistance and Resistance Mechanisms in Acinetobacter Baumannii

Enzyme
Group,
Gene
Name

Description Antibiotic Resistance Clinical Significance References

!-Lactamase Genes

ADC
Chromosomally integrated
cephalosporinase

Extended-spectrum
cephalosporins

A. baumannii's most common
mechanism of resistance to
!-lactam antibiotics

14

VIM
Acquired metallo-
!-lactamase

All !-lactams except
monobactams, evades all
!-lactamase inhibitors

Hydrolyzing capabilities and ability
to transfer to other gram negatives
make VIM a new nosocomial threat

14, 61

IMP
Stronger carbapenem-
hydrolyzing activity than OXA

Carbapenem resistance

Has a history of spreading very
quickly to many other
gram-negative organisms and to
other countries

32, 60

OXA
A group of carbapenem-
hydrolyzing oxacillinases

Carbapenem resistance

There are more than 15
oxacillinase genes. They are
separated into at least 4 groups.
More genes of this type continue to
be discovered.

32, 60

TEM A broad-spectrum enzyme
Narrow-spectrum
cephalosporins, all
penicillins except temocillin

TEM-1 has been found to sustain
many combinations of mutations in
its active site, broadening the list of
antibiotics it can become resistant
to.

14, 68

SHV
Plasmid-mediated. Includes
SHV-1 and at least 23
variants

Extended-spectrum
cephalosporins, ampicillin

Considered the most prevalent
extended-spectrum
beta-lactamases

14, 69

AME Genes—Aminoglycoside-Modifying Enzymes

aadB
Enzymatic inactivation by
adenylation

Kanamycin, tobramycin,
and gentamicin

aadB is a gene cassette
sometimes found in integrons,
namely Integron 1

62, 64, 66

aacC1
Enzymatic inactivation by
acetylation

Gentamicin, apramicin,
lividomicin resistance

A common gene first found in
enterics

62

aacC2
Enzymatic inactivation by
acetylation

A number of
aminoglycosides, including
those above

Also involved in nosocomial
epidemics caused by enterics. One
of a number of genes transferred
from one gram negative to another

62

aphA6
Enzymatic inactivation by
phosphorylation

Kanamycin, neomycin,
gentamicin, gentamicin B,
paromomycin, amikacin,
and others

Primarily associated with
Acinetobacter and rarely isolated
from other gram negatives

62

aadA1

Modifies the 3"-hydroxyl
position of streptomycin and
the 9"-hydroxyl position of

Streptomycin and
spectinomycin

Ubiquitous in gram-negative
bacteria

62
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Figure 1.  Plasmids are extra-chromosomal elements occurring naturally in bacteria and can be transferred between bacteria,
facilitating antimicrobial resistance if resistance genes jump to a plasmid.

Acinetobacter baumannii also has a set of its own intrinsic mechanisms. These include porins and efflux pumps. Porins are
specialized outer membrane proteins (OMP) that allow for the passage of small metabolites such as sugar, amino acids, and
ions.[46] More porins in the outer membrane of a cell makes the cell more permeable to certain antimicrobials. Acinetobacter
baumannii is considerably less permeable than other gram-negative bacteria, and researchers suggest the small number and size
of porins in the outer membrane could be a reason for the intrinsic resistance attributable to A. baumannii.[47] Also interesting is
the observation that there are 3 porins missing in A. baumannii strains resistant to imipenem, 1 of the very few drugs still
successful against most strains.[48] More research is required to elucidate the meaning behind these different porins and their

spectinomycin

Gene-Encoding Efflux Pumps

adeABC
Composed of AdeA, AdeB,
and AdeC proteins

Aminoglycosides,
quinolones, tetracyclines
and trimethoprim

Forms a proteinaceous transporter
in the cytoplasmic membrane or
extrusion of antibiotics

67

Point Mutations

gyrA Point mutation at Ser83 Quinolones 14

parC Point mutation at Ser80 Quinolones
Hujer and colleagues reported that
88% of his A. baumannii isolates
had 1 or both genes.

14
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association with antimicrobial resistance. Another impressive mechanism A. baumannii has is the efflux pump. Efflux pumps can
actively remove antimicrobials from the bacterial cell, preventing the bacteria's exposure to it.[49] The action of efflux pumps in
conjunction with porins is believed to be a very powerful resistance mechanism.[49] To put all of these mechanisms into
perspective, if an A. baumannii isolate acquired mutations in both the gyrA and parC genes and had efflux overexpression as well
as a loss of porins, the isolate would be highly resistant to all available drugs: a physician's worst nightmare.[12]

Despite everything happening inside and outside the cell walls of A. baumannii, there are still some drugs that have some potential
activity against the bacteria terrorizing ICUs. These include monobactams, some aminoglycosides, carbapenems, polymixins,
fluoroquinolones, sulbactams, and glycylcyclines.[2] Of these drugs, carbapenems have become the mainstay of treatment for
MDR A. baumannii isolates, but there are already numerous reports of resistance caused by carbapenem-hydrolyzing beta
lactamases.[50–54] Consequently, susceptibility should be determined for each and every isolate to ensure proper and effective
treatment and to prevent delay and unnecessary morbidity.[6]

Figure 2.  Integrons are another kind of mobile DNA element that can capture and carry genes in "cassettes." Being mobile,
they can integrate into transposons and a whole cassette of resistance genes can thereby easily move from bacterium to
bacterium. (59).
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Figure 3.  Transposons are segments of DNA that can move from 1 place in the genome to another. Occasionally, these
transposons contain genes conferring antimicrobial resistance. If a transposon jumps to a plasmid, those resistance genes
can move from one host cell to another (58).

Laboratory Diagnostic Techniques

Early and appropriate treatment is obviously extremely important when dealing with a hospital-acquired infection. In order to begin
appropriate treatment, the organism behind the infection must be identified as quickly as possible. Acinetobacter is gram negative
and in the coccobacillus form when in its stationary phase but can be rod-shaped during periods of rapid growth.[15] It is oxidase
negative, indole negative, catalase positive, and hemolytic. Acinetobacter can be cultured on routine laboratory media due to its
ability to use various sources of nutrition and will grow at 44°C.[15] These standard laboratory techniques will identify the genus but
will not identify the species.[55] There are automated methods available today to quickly and accurately identify an isolate at the
species level. These methods are phenotypic, utilizing biochemistry and assimilation tests usually done manually to identify the
genus and species of bacteria in less time. To identify an A. baumannii isolate, a couple of analyzers that could be used are
Microscan WalkAway (Dade Behring, West Sacramento, CA) and Vitek 2 (bioMérieux, Marcy l'Etoile, France).[55–57] However,
while these analyzers will identify the isolate as A. baumannii, they are really only identifying the A. baumannii complex, but these
analyzers have the added benefit of automated susceptibility testing to guide the physician in making appropriate treatment
decisions.[55]

Another method of identification is molecular testing. Molecular testing can identify an isolate down to the genotype. A couple of
molecular methods used in laboratories today are pulsed-field gel electrophoresis (PFGE) and 16s rRNA sequencing.[58,59]

Pulsed-field gel electrophoresis is a type of gel electrophoresis used to separate large molecules of DNA up to 2000 kb. This
procedure uses 3 electric fields instead of 1.[58] One electric field runs through the central axis of the gel as in traditional
electrophoresis, and 2 more run at an angle of 120° on each side. The electric fields are alternately pulsed to slowly separate the
large DNA molecule. Pulsed-field gel electrophoresis allows a resolution of up to 1 bp, allowing the user to differentiate between
strains of bacteria, which is extremely useful in cases of an outbreak where transmission of the bacteria must be tracked.[58]
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A second molecular method employed in bacterial identification is 16s ribosomal DNA (rDNA) sequencing.[59] In this method, DNA
is isolated from bacterial colonies and amplified with primers selective for the 16s rDNA. The rDNA can then be sequenced and
results can be compared to Acinetobacter genotypes on public-domain sequence databases such as GenBank.[59] These
molecular methods are not only useful in identifying causes of bacterial infection, but they can aid a hospital in its infection control
measures, highlighting areas of weakness, and can identify the source of hospital-acquired infections.[59]

Conclusion

Acinetobacter baumannii has evolved as a hospital pathogen, due in part to excessive and inappropriate use of antibiotics. Its
transmission has been associated with war, natural disasters, and just about any other instance where one observes an influx in
hospital trauma admissions and increased transfer of patients and staff from 1 hospital to the next.[10,15,31,42] Patients infected
with a clinical isolate of A. baumannii have an average of $60,913 in additional patient charges due to the infection, and they stay
in the hospital for an average of 13 days longer than a patient without an A. baumannii infection.[11] While A. baumannii may not be
particularly virulent, it can cause unnecessary disease and expense in the critically ill patients affected by it, and the transmission
of such a pathogen should be limited. Measures to prevent the inter- and intrahospital transmission of A. baumannii must be
established in health care settings. Success in infection control has been attained by numerous others, and it can be attained by all
if health care workers are educated about the proper way to manage MDR A. baumannii.
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