
Copyright 2016 American Medical Association. All rights reserved.

Will This Hemodynamically Unstable Patient Respond
to a Bolus of Intravenous Fluids?
Peter Bentzer, MD, PhD; Donald E. Griesdale, MD, MPH; John Boyd, MD; Kelly MacLean, MD;
Demetrios Sirounis, MD; Najib T. Ayas, MD, MPH

IMPORTANCE Fluid overload occurring as a consequence of overly aggressive fluid
resuscitation may adversely affect outcome in hemodynamically unstable critically ill
patients. Therefore, following the initial fluid resuscitation, it is important to identify which
patients will benefit from further fluid administration.

OBJECTIVE To identify predictors of fluid responsiveness in hemodynamically unstable
patients with signs of inadequate organ perfusion.

DATA SOURCES AND STUDY SELECTION Search of MEDLINE and EMBASE (1966 to June 2016)
and reference lists from retrieved articles, previous reviews, and physical examination
textbooks for studies that evaluated the diagnostic accuracy of tests to predict fluid
responsiveness in hemodynamically unstable adult patients who were defined as having
refractory hypotension, signs of organ hypoperfusion, or both. Fluid responsiveness was
defined as an increase in cardiac output following intravenous fluid administration.

DATA EXTRACTION Two authors independently abstracted data (sensitivity, specificity, and
likelihood ratios [LRs]) and assessed methodological quality. A bivariate mixed-effects binary
regression model was used to pool the sensitivities, specificities, and LRs across studies.

RESULTS A total of 50 studies (N = 2260 patients) were analyzed. In all studies, indices were
measured before assessment of fluid responsiveness. The mean prevalence of fluid
responsiveness was 50% (95% CI, 42%-56%). Findings on physical examination were not
predictive of fluid responsiveness with LRs and 95% CIs for each finding crossing 1.0. A low
central venous pressure (CVP) (mean threshold <8 mm Hg) was associated with fluid
responsiveness (positive LR, 2.6 [95% CI, 1.4-4.6]; pooled specificity, 76%), but a CVP greater
than the threshold made fluid responsiveness less likely (negative LR, 0.50 [95% CI,
0.39-0.65]; pooled sensitivity, 62%). Respiratory variation in vena cava diameter measured
by ultrasound (distensibility index >15%) predicted fluid responsiveness in a subgroup of
patients without spontaneous respiratory efforts (positive LR, 5.3 [95% CI, 1.1-27]; pooled
specificity, 85%). Patients with less vena cava distensibility were not as likely to be fluid
responsive (negative LR, 0.27 [95% CI, 0.08-0.87]; pooled sensitivity, 77%). Augmentation
of cardiac output or related parameters following passive leg raising predicted fluid
responsiveness (positive LR, 11 [95% CI, 7.6-17]; pooled specificity, 92%). Conversely, the lack
of an increase in cardiac output with passive leg raising identified patients unlikely to be fluid
responsive (negative LR, 0.13 [95% CI, 0.07-0.22]; pooled sensitivity, 88%).

CONCLUSIONS AND RELEVANCE Passive leg raising followed by measurement of cardiac
output or related parameters may be the most useful test for predicting fluid responsiveness
in hemodynamically unstable adults. The usefulness of respiratory variation in the vena cava
requires confirmatory studies.
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Clinical Scenario

A 66-year-old woman with a body mass index of 31 (calculated as
weight in kilograms divided by height in meters squared) is admit-
ted to the intensive care unit (ICU) with suspected sepsis of pulmo-
nary origin. Following intubation, she was resuscitated with 3 L
of Ringer lactate and her systolic blood pressure stabilized at
105 mm Hg. Now, she has been in the ICU for 6 hours. A central
venous line and an arterial line have been placed, and she has
received another 3 L of Ringer lactate and 0.5 L of 5% albumin. She
is lightly sedated and receiving norepinephrine, 0.2 μg/kg/min,
to maintain the target mean arterial pressure of 65 mm Hg.
Auscultatory examination reveals a few crackles at the posterior
bases, and heart sounds are normal. She is receiving pressure sup-
port ventilation with an inspiratory fraction of oxygen of 0.5. Arte-
rial hemoglobin oxygen saturation is 90%. Heart rate is 105/min
and regular. Her serum lactate is 3.2 mEq/L. Central venous pres-
sure is 8 mm Hg. Her urine output is 0.3 mL/kg/h and creatinine
has increased from 1.0 to 1.6 mg/dL since admission. One minute
following a passive leg-raising maneuver, her pulse pressure has
increased by 7%, and her cardiac output, measured by echocardi-
ography, increases minimally (by <10%). Will she respond to addi-
tional fluid administration?

Why Is This Question Important?
Intravenous crystalloids and colloids are given to hemodynami-
cally unstable patients to increase cardiac output and improve tis-
sue perfusion.1 However, excessive intravenous fluid therapy may
create pulmonary and peripheral edema and abdominal and other
compartment syndromes and impair oxygen diffusion.2-8 A pri-
mary clinical challenge in every hemodynamically unstable patient
is to distinguish accurately between those who will respond to con-
tinued fluid administration with increased cardiac output vs those
who will not respond, thereby avoiding adverse events from unnec-
essary intravenous fluid administration. Sepsis is a common cause
of hypotension in the critical care unit and associated with high mor-
tality; moreover, the response to fluid resuscitation may also pro-
vide prognostic information.9-11

Cardiac Output in the Critically Ill
Cardiac output, the product of stroke volume and heart rate,
is an important determinant of oxygen delivery. Stroke volume
depends on ventricular end-diastolic volume (preload). The rela-
tionship between stroke volume and preload is described by
the hyperbolic Frank-Starling curve (Figure 1).12 When the heart is
operating on the steep portion of the curve, stroke volume
increases substantially when preload increases with intravenous
fluids, which means administration of fluids improves cardiac
output and oxygen delivery. In contrast, when the heart is
operating on the flat portion of the curve, further increasing pre-
load with intravenous fluids will not substantially increase
stroke volume. The shape of the Frank-Starling curve is dependent
on the individual patient’s cardiac contractility and afterload.

The clinical challenge is to determine whether an individual
patient’s heart is operating on the steep or flat portion of the Frank-
Starling curve.13,14

At presentation, hemodynamically unstable patients are com-
monly hypovolemic and will often respond to intravenous fluids
with an increase in cardiac output.15 If signs of hypoperfusion and
hypotension do not resolve after the initial fluid resuscitation, the
clinician must decide whether further intravenous fluid will aug-
ment cardiac output or if other measures (such as vasopressors or
inotropes) should be used to stabilize the patient. One approach
often used in clinical practice is not to predict responsiveness but
instead to empirically administer a fluid bolus to all patients and
evaluate the effect on cardiac output or other parameters reflect-
ing perfusion.16 This approach is indiscriminate and suboptimal
because not all patients will respond to a fluid bolus, and repeated
fluid challenges may result in considerable fluid administration
without benefit.17

How to Elicit Symptoms and Signs
of Fluid Responsiveness
Appropriate history taking and physical examination of the car-
diovascular system have been described in detail in previous
articles.18,19 A prior review, describing clinical assessment of the
central venous pressure (CVP), evaluated the jugular venous
pulse to estimate CVP.20

Methods and measures to predict fluid responsiveness can be
divided into static and dynamic tests. Static measurements
are estimates of preload by the bedside clinician following
placement of intravenous catheters and include the direct mea-
surement of CVP and pulmonary capillary wedge pressure (al-
though pulmonary artery catheters for volume assessments are
used less frequently than CVP measurement).21,22 Dynamic mea-
surements analyze changes in cardiac output or related para-
meters, in response to bedside maneuvers that reversibly and

Figure 1. Effect of Increase in Preload on Stroke Volume of Ventricles
With Normal and Decreased Contractility
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Frank-Starling curves illustrate that the effect of a given increase in preload
on stroke volume is dependent both on ventricular contractility and on
baseline preload.
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transiently change preload. The 2 most common maneuvers are
passive leg raising and positive pressure breaths during mechanical
ventilation.

Leg Raising
Passive leg raising increases preload by transferring blood pooled
in the lower extremities to the central compartment.23 In order to
maximize the change in preload induced by leg raising, the patient
is commonly semirecumbent at baseline rather than horizontal. Pas-
sive leg raising is then performed by adjusting the bed to an obtuse
angle with the upper section in a flat position and the lower section
inclined to 45° (Figure 2). Maximal change in cardiac output or re-

lated parameters occur within 60 seconds,24 and an increase sug-
gests that the patient will respond to a fluid bolus.

Respiratory Variation
Positive pressure breaths in mechanically ventilated patients tran-
siently squeeze blood into the left heart from the pulmonary circu-
lation. If the patient is on the steep portion of the Frank-Starling curve,
there should be a corresponding increase in left ventricular stroke
volume and cardiac output, resulting in increased systemic blood
pressure and pulse pressure (the difference between systolic and
diastolic pressure that reflects the product of stroke volume and pe-
ripheral vascular resistance; Figure 3).

However, positive pressure inspirations also decrease venous
return to the right side of the heart, which reduces right ventricular
preload and output, ultimately causing a delayed reduction in left
ventricular filling and preload. Depending on the individual’s loca-
tion on the Frank-Starling curve, this reduction in preload may re-
duce left ventricular stroke volume, systemic blood pressure, and
pulse pressure at the end of inspiration or during exhalation
(Figure 3). Patients who are likely to respond to fluid administra-
tion will show larger variations in pulse pressure or stroke volume
during the respiratory cycle than patients who are less likely to be
fluid responsive.

Pulse pressure variation during the respiratory cycle can be cal-
culated manually and derived from monitoring intra-arterial blood
pressure, although some hemodynamic monitors display the result
calculated from built-in algorithms (Figure 3). Real-time stroke vol-
ume variation, an indicator of cardiac output, can be derived from pulse
contour analysis that is displayed on cardiac output monitors.25,26

Respiration also induces cyclical changes in right atrial and cen-
tral venous pressures due to transmission of pressure changes
from the pleural space. Depending on the compliance of the vessel,
these cyclical changes can also result in changes in the dimensions
of the vena cava. Diameter of the inferior vena cava can effectively
be measured close to the entrance into the right atrium by using
bedside ultrasound (Figure 4).27,28 Positive pressure breaths in
mechanically ventilated patients increase the size of the inferior
vena cava, while spontaneous negative pressure breaths reduce
the size of the inferior vena cava. When the vena cava is under-
filled, the compliance is greatest so large respiratory variations in
vena cava dimensions suggest reduced intravenous volume and
predict fluid responsiveness.

Figure 3. Airway Pressure and Arterial Pressure During Controlled
Ventilation

Airway pressure during controlled ventilation
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Airway pressure and blood pressure tracings illustrating variations in pulse
pressure (PP) during pulse pressure variation (PPV).
PPV = (PPmax-PPmin/[(PPmax+PPmin)/2])*100.75

Figure 2. Performance of a Passive Leg-Raising Test
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The objective of this review is to systematically review the lit-
erature and provide summary estimates of the accuracy of the vari-
ous symptoms, signs, and measurements used to predict fluid re-
sponsiveness in patients with refractory hypotension, signs of organ
hypoperfusion, or both.

Methods
Search Strategy and Study Selection
Two of the authors (P.B. and N.T.A) conducted a computerized
search of MEDLINE and EMBASE (from 1966 to June 15, 2016)
to identify English-language studies about the diagnostic accu-
racy of components of the clinical examination or physiological
parameters that discriminate fluid-responsive from fluid-
nonresponsive hemodynamically unstable patients (eAppendix 1
in the Supplement).

Only studies that evaluated the diagnostic accuracy of some
element of the physical examination or physiological or ultrasound
parameters for fluid responsiveness were included. Studies were
limited to those of adult patients presenting to the emergency
department or ICU with hemodynamic instability. Unpublished
data were not included. No restraints were placed on type or vol-

ume of resuscitation fluids prior to study inclusion. The reference
standard for fluid responsiveness was an objective increase in car-
diac output (measured noninvasively or invasively; eTable 1 in the
Supplement) following fluid administration. Data had to be pre-
sented so that 2 × 2 contingency tables could be constructed. If
there were insufficient data to calculate likelihood ratios (LRs), the
study was not included in the analysis, and authors were not con-
tacted to obtain original data.

Studies with 20 or fewer participants were excluded. This
threshold was chosen because the CIs with these small sample sizes
would be large, the weighted contribution to a meta-analysis would
be small, and because these small studies would have high risk of
biased enrollment. Studies were excluded if the majority of pa-
tients had total irreversible loss of all brain function or were admit-
ted following thoracic or cardiac surgery because these were felt to
represent separate patient populations.

Assessment of Study Quality
Independently and in duplicate, the quality of the included studies
were graded as described for The Rational Clinical Examination,29 in
which level 1 indicates the highest quality and level 5 indicates the
lowest. Quality of the included studies was also assessed using the
Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool

Figure 4. Inferior Vena Cava (IVC) Ultrasonography

Collapsibility index of IVC = [(max IVC diameter - min IVC diameter)/max IVC diameter] x 100

B M-mode ultrasound of IVC in spontaneously breathing patient

A Longitudinal subcostal ultrasound of IVC (left) with illustration of anatomical structures in view (right)
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adapted for studies of fluid responsiveness (eAppendix 2 in the
Supplement).30 We excluded studies with level 4 or 5 evidence.

Statistical Methods
Two authors (P.B., K.M, or N.T.A.) independently extracted data from
each article to construct 2 × 2 contingency tables for each clinical
finding and calculated the sensitivity, specificity, and LRs. For each
study, the exact 95% CIs were calculated. Data analysis was facili-
tated using Stata 10.0 (StataCorp). For meta-analyses of findings for
fluid responsiveness, only those findings that were evaluated in more
than 3 studies and with more than a total of 100 patients were sum-
marized because of the belief that otherwise, the data would be in-
sufficient to draw meaningful conclusions.

A bivariate mixed-effects regression model was used to pool the
sensitivities and specificities across studies using the midas com-
mand in STATA. When a bivariate model failed to converge, a uni-
variate random-effects regression model was used to pool the sen-
sitivities and specificities across studies using the metan command
in STATA. Effect measure modification of CVP thresholds on the
pooled sensitivities and specificities was assessed. Using the midas

command in STATA, univariable meta-regression to model CVP cut-
offs (as a continuous variable) on the pooled sensitivities and speci-
ficities was done.

In addition, pooled LRs and diagnostic odds ratios (ORs) were
calculated. A diagnostic OR is a measurement of the performance
of a diagnostic test (ratio of the odds of test positivity if the patient
has the disease divided by the odds of test positivity if the patient
does not have the disease). The between-study heterogeneity for
the pooled LRs for a diagnostic test was quantified using the I2

statistic31 (degree of heterogeneity: 25%, low; 50%, moderate; or
75%, high). Because of the importance of pleural pressure changes
on the dynamic parameters, subgroup effects by type of ventila-
tion (spontaneous vs controlled) and tidal volumes (median or mean;
!7 mL/kg vs <7 mL/kg) were examined.

Publication bias was assessed using the Deeks test.32 The Deeks
test (a plot of the lnOR against 1/effective sample size) was devel-
oped especially for meta-analyses of diagnostic test accuracy. Pub-
lication bias was examined when there were 10 or more studies for
a diagnostic test.33

Results
A total of 651 articles were found. We retained 13 quality level 2 stud-
ies and 37 quality level 3 studies with a total of 2260 patients
(Figure 5 and eTable 1 in the Supplement). In all studies, indices were
measured prior to assessment of fluid responsiveness. The QUADAS
criterion that describes whether the patients were consecutively en-
rolled was the most frequent missing criterion (eAppendix 2 and
eTable 2 in the Supplement).

Prevalence of Fluid Responsiveness
The patient characteristics most commonly used to identify pa-
tients for inclusion were hypotension (76% of studies), oliguria
(60%), skin mottling (48%), tachycardia (48%) and the physi-
cian’s overall clinical impression of hypovolemia (34%). The most
common criteria for excluding patients were presence of arrhyth-
mias (60% of studies), cardiogenic pulmonary edema (24%),
significant valvular disease (20%), low ratio of fraction of inspired
oxygen to arterial oxygen partial pressure (20%), and right ventricu-
lar or left ventricular failure (18%). Fluid responsiveness was de-
fined as an increase in cardiac output of at least 15% in 78% (39 of
50) of the studies and an increase of at least 10% to 12% in 22% (11
of 50) of the studies. The summary prevalence of fluid responsive-
ness was 50% (95% CI, 42%-56%).

Patient Characteristics
Physical examination findings that were present at inclusion were
reported in 10 studies (402 patients).34-43 The most common find-
ings were oliguria (median, 49% [interquartile range {IQR}, 27%-
66%]), hypotension (median, 30% [IQR, 9.1%-53%]), and tachy-
cardia (median, 22% [IQR, 0%-35%]). The most commonly
reported cause of hemodynamic instability was sepsis (median,
71% [IQR, 60%-94%]), which was followed by nonseptic systemic
inflammatory response syndrome (eg, in the setting of pancreatitis,
trauma, or major surgery) (median, 23% [IQR, 12%-34%]). The
approximate median of patients who were treated with vasopres-
sors at inclusion was 66% (IQR, 50%-85%). All studies were

Figure 5. Screening Process for Studies of Fluid Responsiveness
in Hemodynamically Unstable Adults

383 Excluded after review of titles
and abstracts

651 Records identified through MEDLINE
and EMBASE searches (1966-June 2016),
retrieved articles, reviews, and textbooks

218 Excluded
109 Did not address clinical question
59 Did not include patients of interest
16 Review articles
9 Studies included ≤20 patients
9 Tests assessed in ≤3 articles and

in ≤100 patients in total
7 Data not extractable
3 Level 4 and 5 studies a
2 Retracted articles
2 Article not in English
2 Dual reporting b

50 Studies included in quantitative synthesis
(meta-analysis) c

651 Screened

268 Full-text articles assessed for eligibility

a Level 4 and 5 studies refers to grading according to The Rational Clinical
Examination (see Assessment of Study Quality). Level 4 is defined as a
nonindependent comparison of signs and symptoms with a criterion standard
among “grab” samples of patients who obviously have the target condition
plus, perhaps, normal individuals. Level 5 is defined as nonindependent
comparisons of signs and symptoms with a standard of uncertain validity
(which may even incorporate the sign or symptom result in its definition)
among grab samples of patients plus, perhaps, normal individuals.

b Dual reporting indicates that the same patients’ data were used in more than 1
article.

c The 50 studies included in the meta-analysis comprised 2260 patients.

Clinical Review & Education The Rational Clinical Examination Will This Hemodynamically Unstable Patient Respond to a Bolus of Intravenous Fluids?

1302 JAMA September 27, 2016 Volume 316, Number 12 (Reprinted) jama.com

Copyright 2016 American Medical Association. All rights reserved.

Downloaded From: http://jama.jamanetwork.com/ by a Imperial College London User  on 09/27/2016

http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2016.12310&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2016.12310
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2016.12310&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2016.12310
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2016.12310&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2016.12310
http://www.jama.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2016.12310


Copyright 2016 American Medical Association. All rights reserved.

performed in an ICU setting. In 86% of the studies it was either
clearly stated or it could be concluded from demographic data or
study methodology that the patients had been fluid resuscitated
prior to inclusion. Data regarding specific indication for fluid are
missing in most of the studies (n = 31).

Accuracy of Physical Examination
Two studies investigated the accuracy of physical examination in pre-
dicting fluid responsiveness. One study investigated the diagnos-
tic accuracy of dry mucous membranes, dry axilla, decreased tis-
sue turgor, capillary refill time greater than 2 seconds, tachycardia,
and low jugular venous pressure.44 The LR and respective 95% CIs
for all of these findings crossed 1.0. A second study investigated the
diagnostic accuracy of a systematic clinical assessment of skin tur-
gor, capillary refill time, jugular vein distension, appearance of mu-
cus membranes, pulmonary auscultation and presence or absence
of leg edema, ascites, and pleural effusions45 and found that this ap-
proach was a poor predictor of fluid responsiveness with the 95%
CIs of the LRs crossing 1.0 (positive LR, 0.93 [95% CI, 0.55-5.2] and
negative LR, 1.2 [95% CI, 0.28-5.2]).

Accuracy of Static Measurements
Invasively measured CVP was the only static measure that
was included in the analysis (Table and eTable 3 in the Supple-
ment). In these studies, the mean CVP used for the threshold to
identify fluid responsiveness was 8 mm Hg (11 cm water; range,
from 6-9 mm Hg, equivalent, 8-12 cm water). Patients with CVP
below the threshold used in each study had a modestly increased
likelihood of fluid responsiveness (summary specificity, 76%; posi-
tive LR, 2.6 [95% CI, 1.4-4.6]) while patients with a CVP above the
threshold had about half the likelihood of fluid responsiveness
(summary sensitivity, 62%; negative LR, 0.50 [95% CI, 0.39-
0.65]). At a pretest probability of 50% of fluid responsiveness,
these results confer a positive predictive value of 72% and a nega-
tive predictive value of 33%. Meta-regression of the CVP cutoff
(as a continuous variable) did not demonstrate any effect-measure
modification on either the pooled sensitivity (P = .66) or the
pooled specificity (P = .78).

Accuracy of Pulse Pressure Variation
and Stroke Volume Variation
Pulse Pressure Variation in Ventilated Patients
Because the accuracy of pulse pressure variation in response to
positive pressure ventilation might depend on tidal volume,46

studies using low (<7 mL/kg) and high (!7 mL/kg) mean or
median tidal volumes were analyzed separately (Table). The mean
threshold for pulse pressure variation was 8% (range, 5%-12%) in
low tidal volumes studies and 11% (range, 4%-15%) in high tidal
volumes studies. For this analysis, only studies that included
mechanically ventilated patients without spontaneous respira-
tory efforts and without arrhythmias were included.

A pulse pressure variation that was greater than the respective
threshold was useful to predict fluid responsiveness for low tidal vol-
umes (summary specificity, 91%; positive LR, 7.9 [95% CI, 4.1-16]) and
also for high tidal volumes (summary specificity, 84%; positive LR, 5.3
[95% CI, 3.5-8.1]). A pulse pressure variation that was less than the
thresholds predicted lack of fluid responsiveness for patients with low
tidal volume (summary sensitivity, 72%; negative LR, 0.30 [95% CI,

0.21-0.44]) and also for patients with high tidal volume (summary sen-
sitivity, 84%; negative LR, 0.19 [95% CI, 0.12-0.30]).

Stroke Volume Variation in Ventilated Patients
Studies investigating the accuracy of stroke volume variation dur-
ing positive pressure ventilation had a mean cutoff of 13% (range,
10%-20%). Stroke volume variation above respective study cutoff
had a summary specificity of 84% with a positive LR of 4.9 (95% CI,
2.8-8.5; Table).

Pulse Pressure Variation and Stroke Volume Variation in
Spontaneously Breathing Patients
The accuracies of pulse pressure variation and stroke volume varia-
tion in spontaneously breathing patients is uncertain because they
were evaluated in only 2 small studies for each parameter (eTable 3
in the Supplement).47-49 The positive LR range was 1.0 to 2.3 and
negative LR range was 0.05 to 0.98.

Of note, studies investigating stroke volume variation or pulse
pressure variation that included a mixture of mechanically venti-
lated and spontaneously breathing patients, and studies in which
it was unclear if mean tidal volume was greater than or less than
the 7 mL/kg threshold, were not included in the meta-analysis but
are presented in eTable 1, eTable 2, and eTable 3 in the Supple-
ment. There was evidence of publication bias with respect to the
pulse pressure variation in patients with a tidal volume of at least
7 cc/kg (P = .01, Deeks test) as smaller studies tended to have bet-
ter accuracy.

Accuracy of Changes in Inferior Vena Cava Diameter
Ventilated Patients
In ventilated patients without spontaneous respiratory efforts, the
mean inferior vena cava distensibility index threshold was 15%
(range, 12%-21%; Table and eTable 3 in the Supplement). An el-
evated caval distensibility index had summary specificity for fluid re-
sponsiveness of 85% (positive LR, 5.3 [95% CI, 1.1-27]) among ven-
tilated patients, while those with a caval distensibility index that was
lower than the threshold were less likely to be fluid responsive (sum-
mary sensitivity, 77%; negative LR, 0.27 [95% CI, 0.08-0.87]).All
studies used tidal volumes that were greater than 8 mL/kg. At a pre-
test probability of 50% of patients being fluid responsive, these re-
sults confer a positive predictive value of 84% and a negative pre-
dictive value of 21%. The interobserver variation of the caval
distensibility index was reported in 2 studies and was 6% and 9%
(eTable 4 in the Supplement).50,51

Spontaneously Breathing Patients
Two studies evaluated collapsibility of the inferior vena cava in spon-
taneously breathing patients (Figure 3).52,53 At a threshold of infe-
rior vena cava collapsibility of 41% (range, 40%-42%), the positive
LRs were 3.5 (95% CI, 1.1-15) and 9.3 (95% CI, 0.88-51). The nega-
tive LRs were 0.38 (95% CI, 0.13-0.93) and 0.71 (95% CI, 0.49-1.0)
(eTable 3 in the Supplement).

Accuracy of Measurements Dependent on Changes
in Preload Induced by Passive Leg Raising
Cardiac Output
Studies investigating the accuracy of passive leg raising on cardiac
output or related parameters were pooled because the underlying
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physiology was considered to be similar. Transpulmonary thermo-
dilution was most commonly used to assess response to leg raising
in ventilated patients and transthoracic echocardiography was
most common in spontaneously breathing patients. The mean
threshold in the studies was a 11% increase (range, 7%-15%) in the
hemodynamic parameters. Patients with an increased cardiac out-
put above the threshold after leg raising were much more likely to
increase cardiac output with fluid administration (summary speci-
ficity, 92%; positive LR, 11 [95% CI, 7.6-17]) than patients who did
not change cardiac output after leg raising (summary sensitivity,
88%; negative LR, 0.13 [95% CI, 0.07-0.22]) (Table). The change in
cardiac output of at least 10% after passive leg raising had the high-
est predictive value of 92% (assuming a baseline prevalence of
50%). When the cardiac output changes were less than the thresh-
old after passive leg raising, the negative predictive value of 11%
was the lowest of all tests studied.

The results are similar during controlled ventilation (positive LR,
11 [95% CI, 6.3-21]) or spontaneous breathing (positive LR, 7.0 [95%
CI, 3.8-13.1]) (Table). Negative LRs are similar during controlled ven-
tilation (negative LR, 0.08 [95% CI, 0.03-0.21]) or spontaneous
breathing (negative LR, 0.22 [95% CI, 0.09-0.54]).

Pulse Pressure
Studies using change in pulse pressure following passive leg
raising to predict fluid responsiveness had a mean threshold
of 10% (range, 9%-12%). An increase in pulse pressure of at least
10% increased the likelihood of fluid responsiveness (summary
specificity, 83%; positive LR, 3.6 [95% CI, 2.5-5.4]) and patients
with a smaller increase had a lower likelihood of fluid responsive-
ness (summary sensitivity, 62%; negative LR, 0.45 [95% CI, 0.36-
0.57]). At a pretest probability of 50%, these results confer
a positive predictive value of 78% and a negative predictive
value of 31%.

Limitations
The reference standard for measuring cardiac output is normally
considered to be transcardiac thermodilution via a pulmonary
artery catheter.54 However, this method is invasive, and not sur-
prisingly, the use of pulmonary catheters has decreased dramati-
cally in recent years.55 Many of the studies included in this analysis
therefore used other methods as reference tests to evaluate
response to a fluid challenge. Most of these methods demon-
strated good agreement with transcardiac thermodilution,56-58 but
some are not as well validated.59,60 In all but 6 studies, the refer-
ence standard or methods with good agreement with reference
standard was used.

Many studies excluded patients in whom withholding fluid
resuscitation would be considered unethical (eg, ongoing bleed-
ing, unresuscitated shock). Also, patients in whom fluid resuscita-
tion was considered to be potentially dangerous (eg, low ratio of
fraction of inspired oxygen to arterial oxygen pressure and/or
other signs of pulmonary edema) were excluded in some studies.
Therefore, the included patients represent a subset of critically ill
patients and the accuracy of the included tests and optimal
threshold values may be different in general medical patients who
are less ill.

The volume of fluid used to identify responders was similar or
greater than the recommended amount.61 However, the possibil-

ity cannot be excluded that the volume may have been too small in
certain patients to increase preload and cardiac output sufficiently,
thereby underestimating the fraction of patients needing fluids. We
would surmise that this could especially be the case in patients who
are extremely hypovolemic and who could be labeled as fluid non-
responders even though they require fluids.

In addition, many of the studies were small (mean, 45 patients
per study) with different inclusion and exclusion criteria.

Discussion
In at least 43 of the 50 included studies, patients received fluid
resuscitation prior to enrollment in the study. Approximately 50%
of these hemodynamically unstable patients were fluid responsive.
Traditional physical examination findings do not differentiate
responders from nonresponders, and measurement of CVP is inad-
equate. Thus, the clinical evaluation for fluid responsiveness
requires a different set of skills in which the physician integrates
observations with bedside ultrasound, real-time hemodynamic
monitoring, or echocardiography to assess cardiac output. In par-
ticular, changes in cardiac output or related parameters following
passive leg raising are useful in a wide range of patients, and varia-
tion in pulse pressure or inferior vena cava diameter with positive
pressure ventilation have reasonable accuracy in selected sub-
groups of patients.

The result that CVP is a poor predictor of fluid responsiveness
is consistent with results presented in previous meta-analyses.62,63

Ventilator settings (especially positive end-expiratory pressure), and
variations in the ratio of chest wall/lung compliance may compro-
mise the accuracy of CVP as a predictor of fluid responsiveness. Ac-
counting for these variables in an individual patient might improve
the predictive value of CVP but needs evaluation.

Spontaneous breathing efforts in intubated or unintubated pa-
tients result in variable changes in intrathoracic pressure and pre-
load for each breath and may influence the accuracy of ventilation-
induced changes in preload to predict fluid responsiveness.
Arrhythmias will cause beat-to-beat changes in preload, which are
independent of ventilation. Therefore, the majority of studies using
respiratory changes in hemodynamic parameters to predict fluid re-
sponsiveness excluded patients with irregular cardiac rhythms and
spontaneous respiratory efforts.

It should also be recognized that pulse pressure variation and
stroke volume variation reflect fluid responsiveness of the left ven-
tricle, which means that the accuracy of these measurements is
likely to be lower in patients with a failing right ventricle (ie, fluid
administration may not increase preload of the left ventricle).64 It
should be noted that patients with right ventricular failure may
benefit from a reduction of preload such as accomplished with
diuretics. For example, a patient in shock from a massive pulmo-
nary embolism might improve cardiac output with fluid removal
because of improved left ventricular filling secondary to a reduc-
tion of right ventricular volume. In addition, pulse pressure varia-
tion is decreased at high respiratory rates (30-40/min) indepen-
dent of volume status.65 Decreases in chest wall and lung
compliance could influence pulse pressure variation independent
of volume status, which would alter threshold values and compro-
mise accuracy.66,67 We conclude that the use of stroke volume
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variation and pulse pressure variation to assess fluid responsive-
ness is only validated in patients without spontaneous respiratory
efforts and arrhythmias, and that high respiratory rates, right heart
failure, or decreased chest wall and lung compliance may compro-
mise test accuracy.

Based on the same reasoning as previously described, all but 2
studies52,53 investigating the accuracy of respiratory variation in in-
ferior vena cava diameter included only patients without sponta-
neous respiratory efforts and without arrhythmias. Despite this at-
tempt to standardize patient populations, the 95% CI for LRs are
wide and I2 values indicate a high degree of heterogeneity. There-
fore, the accuracy of the test may differ depending on the patient
population as well as other factors related to the measurement. De-
spite the fact that the pooled LRs indicate relatively good accuracy,
the test should be interpreted with some caution.

Although the passive leg-raising test was the most broadly ap-
plicable, there are conditions in which it is of limited utility. If pre-
load is not sufficiently increased by passive leg raising, accuracy may
be compromised. The importance of a sufficient increase in pre-
load during passive leg raising is supported by the finding that ac-
curacy is higher in patients with an increase in CVP of at least 2 mm
Hg (indicative of increased preload) following passive leg raising.68

Such conditions include the use of compression stockings and intra-
abdominal hypertension.69 The presence of intra-abdominal hyper-
tension should be considered especially in patients with abdomi-
nal pathologies such as ascites and after surgery; measurement of
urinary catheter pressures is useful in detecting increased abdomi-
nal pressures.70

Critically ill patients can have complex hemodynamic presen-
tations. Therefore, relying on a single measurement to make clini-
cal decisions could lead to poor outcomes. The wide 95% CIs for
many predictors suggest that the decision to administer fluid at bed-
side should not be based solely on a test result but also on risks and
benefits of fluid administration in the clinical context. For example,
in the spontaneously breathing patient, excessive fluid administra-
tion may induce respiratory failure, resulting in intubation, and one
might be more cautious in such a patient.

In addition, administration of vasopressors may increase pre-
load while inotropes may shift the Starling curve, thereby poten-
tially changing fluid responsiveness. Fluid responsiveness is thus a
dynamic property of the patient who needs to be reassessed fre-
quently, especially if there are changes in vasoactive drugs or other
changes in status.

Another way to assess these various tests is to classify them into
3 groups: observation of the patient at a single time point (physical
examination or static parameters), dynamic changes due to small
changes in the system (respiratory changes in physiological para-
meters), and dynamic changes due to a larger perturbation of the
system (passive leg raising). Other factors such as costs, training, and
time burden may also affect the usefulness of these tests in the clini-
cal context.

Scenario Resolution
This patient exhibits several signs that could be explained by inad-
equate tissue perfusion, and it is reasonable to consider fluid ad-
ministration. An increase in pulse pressure by 7% following passive
leg raising is below the mean threshold of 10% used to identify fluid
responsiveness. Assuming a 50% pretest probability for fluid re-
sponsiveness, this finding only reduces the probability to 30% that
this patient will respond to fluid administration. To further evalu-
ate if the patient is fluid responsive, additional measurements should
be considered. Given that the patient is triggering her own breaths
and only receives pressure support via the ventilator, none of the
measurements based on respiratory variation are useful. However,
changes in cardiac output following passive leg raising have excel-
lent diagnostic accuracy. The lack of substantial increase in cardiac
output (below mean threshold of 10% in the included studies) has
a LR of 0.12 and decreases the probability of fluid responsiveness
to 10%. The patient is unlikely to respond to fluid, and other inter-
ventions to improve cardiac output should be considered.

Clinical Bottom Line
Approximately 50% of hemodynamically unstable patients remain
fluid responsive after the initial resuscitation. For intubated pa-
tients without spontaneous respiratory efforts, respiratory varia-
tion in pulse pressure appears to be useful to predict fluid respon-
siveness. Respiratory variation in the vena cava is less useful and
requires further confirmatory studies. The change in cardiac out-
put following passive leg raising appears to be the most accurate pre-
dictor of fluid responsiveness and can be used independent of ven-
tilation mode. The generalizability of the results to less ill patients
is uncertain.
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