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Post-Cardiac Arrest Management: 
Time to Cool it on Cooling?
In this issue, Kalra1 et al re-evaluate the practice of therapeutic hypothermia following post-cardiac 
arrest through a meta-analysis of 11 randomized controlled trials.
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Therapeutic hypothermia after postcardiac arrest has become a recommended component of care for 
survivors. Despite this recommendation, recent randomized clinical trials have failed to support the 
benefit of targeted temperature management on important end points such as all-cause mortality 
and neurological outcomes. In this infographic, we review the timeline of the development of the 
current recommendations, visualize the clinical trials that have provided data to guide clinical care, and 
summarize a recent meta-analysis that synthesizes the high-quality data available to date.

The Infographic is composed by Jonathan P. Wanderer, MD, MPhil, Vanderbilt University 
School of Medicine (jon.wanderer@vanderbilt.edu), and Naveen Nathan, MD, Northwestern 

University Feinberg School of Medicine (n-nathan@northwestern.edu). Illustration by Naveen 
Nathan, MD.
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“Medical reversal” describes the publication of 
clinical data that contradict previously pub-
lished data and establishes a new “evidence-

based” standard. Worrisome at best (and harmful at worst), 
reversal is surprisingly common, and exists in nearly all 
medical specialties. Recent high-profile examples include 
vertebroplasty for spinal fractures1 and hormone therapy 
in postmenopausal women.2 The failure of initial reports 
of tight glucose control3 and daily sedative interruption4 to 
withstand subsequent scrutiny suggests that the evidence 
base underlying perioperative critical care may have a simi-
larly unstable foundation.

Although the reasons for reversal are incompletely 
understood, potential mechanisms include fraud, error, 
inadequate statistical analysis, mechanistic plausibility,5 and 
cognitive biases. Underlying many of these possibilities is 
a tacit understanding that the later article is “true,” and the 
earlier, “reversed” findings must have been incorrect. But 
3 other frames are possible: the earlier studies were correct 
(and the later studies were wrong), both earlier and later 
findings were correct (implying that the phenomenon being 
studied has changed over time), or neither finding is correct, 
and the truth lies elsewhere. In seeking an explanation for 
reversal, the choice of frame is not always easy because an 
adequately powered randomized prospective study design 
may not protect the finding against the subsequent reversal.6

In this issue of Anesthesia & Analgesia, Kalra et al7 publish 
the results of a meta-analysis of targeted temperature man-
agement (TTM) (cooling) after cardiac arrest. The authors 
identified 11 trials from 1966 to 2016 containing 4782 
patients. Individual trials varied in rates of bystander car-
diopulmonary resuscitation, cooling protocol, and method. 
After multivariate random-effects modeling, the authors 
concluded that TTM had no effect on mortality rates or cere-
bral performance status.

Anesthesia & Analgesia readers who are familiar with 
TTM research may wonder why another meta-analysis of 
TTM is needed. The history of TTM fits a classic reversal 

scenario: multiple small clinical trials with unclear con-
sensus, followed by high-profile randomized clinical trials 
establishing a clinical “truth.” In the case of TTM, 2 small 
but high-profile trials were published in the same 2002 issue 
of the New England Journal of Medicine,8,9 with an accompa-
nying editorial10 citing as evidence of correctness that the 2 
studies were performed on different continents, produced 
similar effect sizes, and that a plausible mechanism existed 
for the protective effect. By 2010, cooling to 32°C–34°C was 
enshrined in American Heart Association guidelines for car-
diopulmonary resuscitation11 and strongly recommended 
by 5 professional critical care societies.12

Then came the reversal. A 2013 study of 950 patients (>4 
times the combined number of 213 in the initial 2002 trials) 
randomized patients to 33°C vs 36°C after cardiac arrest, and 
found no difference in survival or neurological outcome.13 
Also published in the New England Journal, this study was 
intensely discussed, garnering an Altmetric score of 470 by 
January 201414 and 664 as of August 22, 2017, placing it in 
the top 5% of all research outputs scored by Altmetric.

Despite this apparent reversal, little has changed regard-
ing the recommended use of temperature management after 
cardiac arrest in 2017. Both the 2016 Cochrane15 and the 2015 
American Heart Association updates16 continue to recom-
mend postarrest cooling. Critical care and emergency medi-
cine specialists argue over cooling method, duration, timing, 
target, and applicability. With TTM, the net result of literature 
reversal is more, not less cognitive diversity.

In principle, meta-analysis is an ideal solution. By com-
bining the results of several studies, meta-analysis increases 
statistical power, facilitates understanding of variability 
between studies, and allows generalization of results to a 
wider population. The TTM landscape, dotted with mul-
tiple small studies and divergent results, is tailor made for 
meta-analysis, and multiple groups have obliged with both 
negative17,18 and positive results.16 However, meta-analysis 
also presumes that an absolute truth underlies all studies, 
but it is detected with varying accuracy and precision. What 
if that assumption is wrong, and the story of TTM really is 
one in which one (or more) of the dueling studies is incor-
rect? Does it then make sense to lump the results of correct 
and incorrect studies together? In such cases, meta-analyses 
may result in less, not more, truth.

Even when all studies are correctly performed, repeated 
meta-analyses raise an issue akin to that encountered during 
interim analyses of a randomized controlled trial. Stopping 
early when data are few and the likelihood of an outlier effect 
is high risks a type 1 error, whereas addition of multiple 
negative trials with high heterogeneity risks never reaching 
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clear significance. Aware of this challenge, meta-analysts 
have responded with trial sequential meta-analysis (TSA), 
a Bayesian modification of standard meta-analysis in which 
thresholds for significance or futility are adjusted based on 
available data. With TSA, thresholds for significance are 
raised when few data exist (and the likelihood of a false posi-
tive is high) and lowered when a wealth of data are available 
(and the likelihood of identifying a real effect with further 
studies is low). A 2017 treatise on TSA19 includes a sample 
TSA-based analysis of TTM explaining why early meta-anal-
yses may have found a benefit, why later efforts (including 
Kalra et al7) are more inconclusive, and why future trials or 
meta-analyses of TTM are likely to be futile.

Deciphering whether the TTM story represents reversal 
or fertile ground for meta-analysis may not be easy. Kalra 
et al7 found considerable variation among studies in age, 
time to return of spontaneous circulation, percentage of 
bystander cardiopulmonary resuscitation, a large 12–28-
hour variation in cooling duration, and multiple cooling 
techniques, including helmet, ice packs, and intravenous 
administration of cold fluid.11 Which of these elements may 
affect TTM results (if at all) is unknown. In a 2016 analysis of 
Cochrane reports, outcomes graded as having a high quality 
of evidence had no better concordance among individual tri-
als than did outcomes graded as having a low quality of evi-
dence.20 Observations such as these are disquieting because 
they suggest that only time can reveal the true answer.

So what should readers of Anesthesia & Analgesia make 
of repeated meta-analyses of TTM (or any other topic)? 
First, just as readers are critical of individual studies, so 
should they be appropriately thoughtful about meta-anal-
ysis results. Questions of applicability, generalizability, and 
actual benefit (as opposed to control group harm) are ger-
mane to both types of data. To the above, we would add the 
possibility that meta-analyses in fields in which reversal has 
occurred may be incorporating the results of not just under-
powered, but also flawed research.

Absent a need to clarify 1 or more of the above questions, 
repeated meta-analyses, especially for low-certainty data, may 
be an exercise similar to “p hacking,” in which analyses are 
repeatedly run to extract a statistically significant finding, rather 
than to answer a hypothesis.21 Alternatively, repeat meta-anal-
yses may serve a useful role in highlighting overlooked gaps 
in the data and pointing out questions for future investigation. 
Regardless, the role for repeated meta-analyses remains unclear, 
and such studies may confuse as much as they clarify. E
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In recent years, therapeutic hypothermia and targeted 
temperature management (TTM) have been increas-
ingly used in the postresuscitation care of patients who 

have suffered cardiac arrest. Many mechanisms have been 
thought to confer benefit in therapeutic hypothermia after 
cardiac arrest. These mechanisms are thought to affect all 3 
levels of injury after cardiac arrest: ischemic injury, imme-
diate reperfusion injury, and delayed reperfusion injury.1 

Almost a decade ago, 2 large randomized controlled trials 
(RCTs) in humans demonstrated improvement in mortality 
and neurologic outcomes with therapeutic hypothermia use 
after cardiac arrest.2,3

On the basis of such evidence, the 2010 American 
Heart Association guidelines recommended the usage of 
therapeutic hypothermia as a grade IB recommendation.4 
Conflicting data then began to surface regarding the use 

BACKGROUND: Targeted temperature management (TTM) with therapeutic hypothermia is an 
integral component of postarrest care for survivors. However, recent randomized controlled 
trials (RCTs) have failed to demonstrate the benefit of TTM on clinical outcomes. We sought 
to determine if the pooled data from available RCTs support the use of prehospital and/or in-
hospital TTM after cardiac arrest.
METHODS: A comprehensive search of SCOPUS, Elsevier's abstract and citation database of 
peer-reviewed literature, from 1966 to November 2016 was performed using predefined criteria. 
Therapeutic hypothermia was defined as any strategy that aimed to cool post–cardiac arrest 
survivors to a temperature ≤34°C. Normothermia was temperature of ≥36°C. We compared 
mortality and neurologic outcomes in patients by categorizing the studies into 2 groups: (1) 
hypothermia versus normothermia and (2) prehospital hypothermia versus in-hospital hypother-
mia using standard meta-analytic methods. A random effects modeling was utilized to estimate 
comparative risk ratios (RR) and 95% confidence intervals (CIs).
RESULTS: The hypothermia and normothermia strategies were compared in 5 RCTs with 1389 
patients, whereas prehospital hypothermia and in-hospital hypothermia were compared in 6 
RCTs with 3393 patients. We observed no difference in mortality (RR, 0.88; 95% CI, 0.73–
1.05) or neurologic outcomes (RR, 1.26; 95% CI, 0.92–1.72) between the hypothermia and 
normothermia strategies. Similarly, no difference was observed in mortality (RR, 1.00; 95% 
CI, 0.97–1.03) or neurologic outcome (RR, 0.96; 95% CI, 0.85–1.08) between the prehospital 
hypothermia versus in-hospital hypothermia strategies.
CONCLUSIONS: Our results suggest that TTM with therapeutic hypothermia may not improve 
mortality or neurologic outcomes in postarrest survivors. Using therapeutic hypothermia as a 
standard of care strategy of postarrest care in survivors may need to be reevaluated.  (Anesth 
Analg 2018;126:867–75)
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KEY POINTS
• Question: Does targeted temperature management affect outcomes after cardiopulmonary arrest?
• Findings: Pooled evidence from available randomized control trials indicated that targeted tem-

perature management did not improve all-cause mortality or neurologic outcomes but variability 
among studies was high.

• Meaning: The role of targeted temperature management in postresuscitation care remains unclear.
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of therapeutic hypothermia. Multiple investigations were 
published showing little impact between TTM with the 
normothermia, prehospital hypothermia, and in-hospital 
hypothermia strategies on neurologic and mortality out-
comes.5,6 This led to an alteration in the recommendation for 
the use of therapeutic hypothermia, with the 2015 American 
Heart Association guidelines7 for post–cardiac arrest care 
instead suggesting that TTM be used rather than strictly 
outlining a therapeutic hypothermia strategy. The grading 
of the recommendation was also altered to a class IB level 
B-R recommendation for out-of-hospital pulseless ventricu-
lar tachycardia and ventricular fibrillation cardiac arrest. 
Furthermore, it was changed to a class IB level C-EO recom-
mendation (consensus of expert opinion based on clinical 
experience) for out-of-hospital pulseless electrical activity 
and asystole cardiac arrests and in-hospital cardiac arrests.7 
This was also followed by the recommendation against pre-
hospital intravenous cooled fluid infusion.

Due to the conflicting data, we sought to evaluate the 
effect that TTM had through normothermia, prehospital 
hypothermia, and in-hospital hypothermia on in-hospital 
mortality and neurologic outcomes after cardiac arrest 
through systematic review and meta-analytic comparisons 
of the RCTs comparing the 3 TTM strategies.

METHODS
We searched SCOPUS from 1966 until November 2016 for 
English language RCTs detailing the use of TTM after car-
diac arrest in adult patients. The SCOPUS database indexes 
the full Medline database as well as Biobase, Embase, 
Fluidex, Geobase, and the World Textile Index. Three 
authors (P.A., N.S.B., and R.K.) used a prespecified list of 
terms to locate studies. The full search strategy is detailed 
in Supplemental Digital Content, Section 1, http://links.
lww.com/AA/C138. We also reviewed reference lists from 
original manuscripts and published systematic reviews and 
meta-analyses to identify trials that were not listed in the 
original database search. After review of abstracts, full-text 
manuscripts were retrieved for review.

All English language RCTs evaluating the use of TTM 
in adults were eligible for inclusion. All combinations of 
cardiac rhythms (asystole, pulseless electrical activity, ven-
tricular fibrillation, and pulseless ventricular tachycardia), 
TTM strategies (prehospital hypothermia, in-hospital hypo-
thermia, and normothermia), and target temperatures were 
included. Hypothermia was defined as being 34°C or less. 
Normothermia was defined as being 36°C or more. Foreign 
language studies were excluded unless a full-text English 
translation of the study was available.

We intended to compare mortality and neurologic out-
comes in patients by categorizing the studies into 2 groups: 
(1) hypothermia versus normothermia and (2) prehospital 
hypothermia versus in-hospital hypothermia. The prehos-
pital hypothermia versus in-hospital comparison was done 
to evaluate whether the timing of hypothermia affected 
outcomes and to alleviate any concerns about the delay in 
institution of hypothermia as a cause of null results in the 
primary comparison (therapeutic hypothermia versus nor-
mothermia). These comparisons were decided on in an a 
priori fashion because the RCTs comparing the 2 approaches 
have conflicting results. The primary outcome measure 

was in-hospital all-cause mortality after cardiac arrest. The 
secondary outcome measure was the cerebral performance 
category (CPC) after TTM.8 The CPC scale is a 5-point scale 
graded from 1 to 5, where the outcome of neurologic disabil-
ity after significant damage is graded into one of the follow-
ing 5 categories: good recovery (CPC 1), moderate disability 
(CPC 2), severe disability (CPC 3), persistent vegetative state 
(CPC 4), or death (CPC 5).8 Within this scale, good neuro-
logic outcome was defined as CPC categories 1–2 and poor 
neurologic outcomes were defined as CPC categories 3–5 
for meta-analyses. Discharge to rehabilitation facilities was 
classed as CPC 2 and discharge to a nursing home was clas-
sified as CPC 3. A CPC score of 2 or less was considered a 
favorable neurologic outcome.2 Where there were multiple 
studies reporting outcomes for the same cohort, we chose 
the study with the longest and most complete follow-up.

Four authors (P.A., N.S.B., R.K., and G.A.) searched the 
titles and abstracts of all studies. Multiple authors (G.A., 
N.S.B., and R.K.) then performed data extraction. Data were 
extracted to elucidate baseline characteristics of patients 
and outcome measures in all of the included studies. All 
inconsistencies during data extraction were resolved by 
mutual consensus so that a unanimous decision was made.

Quality assessment of the included studies was per-
formed according to the Jadad scale for RCTs.9 The Jadad 
scale evaluates the quality of RCTs through assessment of 
study randomization, blinding, and description of with-
drawals and dropouts. Two authors (N.S.B. and R.K.) 
independently performed quality assessment of all of the 
included RCTs using the Jadad scale.9

The systematic review and meta-analyses were reported 
based on the recommendations outlined in the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) statement.10

Statistical Analysis
Statistical analyses were performed by Comprehensive 
Meta-Analysis version 2.2.046 (Biostat, Englewood, NJ) and 
STATA version 14.1 (StataCorp LP, College Station, TX). To 
estimate summary effects, a random effects model using the 
DerSimonian and Laird11 method was used in our investiga-
tion. The Mantel-Haenszel model was then used to estimate 
the heterogeneity for the meta-analyses.12 Heterogeneity 
was estimated using the I2 statistic proposed by Higgins and 
Thompson.12 Summary treatment effects and results were 
presented as risk ratios (RR) with 95% confidence intervals 
(CIs). Funnel plots were generated to outline the publication 
bias. We used log RR as the x-axis variable to exhibit esti-
mated treatment effect for the included studies and plotted 
standard error as the y-axis variable to provide a measure of 
sample size.13 Publication bias was assessed using the Egger 
regression intercept.14 The Egger regression test is a simple 
linear regression to detect asymmetry of the funnel plot on 
the logarithm scale of the risk ratio.14 The 1-sided Egger test 
was used because the 2-sided test may produce a false pub-
lication bias or inconsistency in the tail.15,16 Based on the esti-
mated standard normal deviate (treatment effect size divided 
by standard error) and the precision (the inverse of standard 
error) of the included studies, an Egger regression line is gen-
erated. If there is symmetry in the funnel plot, the intercept 
should be nonsignificant. In other words, the intercept value 
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should be zero or near zero, and deviation of intercept from 
zero suggests publication bias. However, the power of the 
Egger regression test proportionally increases with number 
of studies.14,16 A limited number of studies may have low 
power to detect publication bias. In case of significant het-
erogeneity in primary outcome among either comparison, 
meta-regression analyses were conducted in post hoc fash-
ion using a mixed-effects (unrestricted maximal likelihood) 
meta-regression model to explore the reasons for the hetero-
geneity. The variables used for meta-regression were age, 
bystander cardiopulmonary resuscitation (CPR), presenting 
rhythm, and duration of return to spontaneous circulation 
(ROSC) on treatment effects comparisons between hypother-
mia and normothermia trials. Power calculations were per-
formed assuming a 20% reduction in mortality and adverse 
neurologic outcome as a clinically important treatment effect 
for the hypothermia versus normothermia comparison.5 
Conversely, for the prehospital hypothermia versus in-hospi-
tal hypothermia comparison, a 15% reduction mortality and 
adverse neurologic outcome was considered clinically impor-
tant.17 These calculations were based on the assumptions that 
the number of patients and the outcome rate in the control 
group are equal to those in our meta-analysis. A 2-sample 
proportions the Pearson χ2 test was used to compute power.

RESULTS
Eleven RCTs (Figure  1) with 4782 patients were eligible for 
analyses (Table 1).2,3,5,18–25 The results of this systematic review 
and meta-analyses are presented as per the PRISMA exten-
sion statement (Supplemental Digital Content, Table 1, http://
links.lww.com/AA/C138).10 All included studies were graded 
as good to excellent based on the Jadad scale (Supplemental 
Digital Content, Table 2, http://links.lww.com/AA/C138).

There was variation in the individual characteristics of 
the trials. The mean/median age of the patients in the pre-
hospital hypothermia, in-hospital hypothermia, and nor-
mothermia arms ranged from 63 to 67, 61 to 67, and 59 to 
69 years of age, respectively. Mean/median ROSC time in 
the prehospital hypothermia, in-hospital hypothermia, and 

normothermia arms ranged from 26 to 32, 21 to 30, and 22 
to 28 minutes, respectively. All combinations of presenting 
rhythms during out-of-hospital cardiac arrest were studied. 
There was a predominance of male patients in nearly all 
study arms (Table 1).

There were also variations in the resuscitation and cooling 
protocols of the trials. Percentage of bystander CPR varied 
from 26% to 73% among all study arms. The prehospital and 
in-hospital hypothermia arms of the trials had target temper-
atures ranging from 32 to 34°C. The duration of cooling in the 
prehospital hypothermia and in-hospital hypothermia arms 
ranged from 12 to 28 hours. Multiple methods of cooling were 
used, such as cooling via a helmet, ice packs, and intravenous 
infusion of cooled fluids (Table 1). These interventions were 
studied in 2 groups: (1) the hypothermia versus normother-
mia comparison (studies = 5 and patients = 1389)2,3,5,18,23 and 
(2) the prehospital hypothermia versus in-hospital hypother-
mia comparison (studies = 6, patients = 3393).19–22,24,25

Hypothermia Versus Normothermia
Among the 5 RCTs that compared the hypothermia and 
normothermia strategies,2,3,5,18,23 702 patients received hypo-
thermia as part of postarrest care, whereas 687 received 
normothermia. We observed no difference in all-cause mor-
tality rates in the hypothermia versus normothermia com-
parison (RR, 0.88; 95% CI, 0.73–1.05; Figure 2A). Similarly, 
we did not observe any difference in the rates of favorable 
neurologic outcome in the hypothermia versus normother-
mia comparison (RR, 1.26; 95% CI, 0.92–1.72; Figure 2B).

Prehospital Hypothermia Versus In-Hospital 
Hypothermia
Among the 6 RCTs that compared the prehospital hypothermia 
and in-hospital hypothermia strategies,19–22,24,25 1722 patients 
received prehospital hypothermia as part of postarrest care, 
whereas 1671 received in-hospital hypothermia. We observed 
no difference in all-cause mortality rates in the prehospital 
hypothermia versus in-hospital hypothermia comparison 
(RR, 1.00; 95% CI, 0.97–1.03; Figure 3A). Similarly we did not 

Figure 1. Flow diagram for study 
selection.
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observe any difference in the rates of favorable neurologic out-
come in the prehospital hypothermia versus in-hospital hypo-
thermia comparison (RR, 0.96; 95% CI, 0.85–1.08; Figure 3B).

Meta-regression to Explore Heterogeneity in  
All-Cause Mortality Across Trials
We observed a substantial heterogeneity in treatment effect 
for mortality across trials comparing hypothermia and nor-
mothermia (I2 = 44%; Figure 2A) No heterogeneity was seen 
in trials comparing prehospital hypothermia and in-hospi-
tal hypothermia (I2 = 0%; Figure 3A).

We conducted a post hoc analysis to see if age, bystander 
CPR, presenting rhythm, and time to ROSC would explain 

this heterogeneity. In studies comparing normothermia 
and hypothermia, we observed a significant trend toward a 
favorable effect of hypothermia on all-cause mortality with 
decreasing proportion of patients undergoing bystander 
CPR (P = .04). The other characteristics were not related to 
treatment effect of mortality (P > .05; Table 2).

Publication Bias
Publication bias was assessed using the Egger regression 
intercept for the primary outcome for the normothermia 
versus hypothermia and prehospital hypothermia versus 
in-hospital hypothermia comparisons. We did not observe 
any significant publication bias (Figure 4A, B).

Figure 2. A, Forest plot comparing all-cause mortality between hypothermia and normothermia. B, Forest plot comparing favorable neurologic 
outcome between hypothermia and normothermia. The blue diamond depicts the point estimate and the 95% confidence interval. The red 
dotted lines represent a random effects generated overall estimate. This was generated with a random effects model using the method of 
DerSimonian and Laird,11 with the estimate of heterogeneity calculated from the Mantel-Haenszel model. Data are presented with risk ratios 
and 95% confidence intervals. CI indicates confidence interval; HT, hypothermia; NT, normothermia; RR, risk ratio.
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Power Calculation
We observed that >90% power would be achieved for mor-
tality comparisons for both the hypothermia versus normo-
thermia and prehospital hypothermia versus in-hospital 
hypothermia comparisons under this premise. For favorable 

neurologic outcome, the hypothermia versus normothermia 
comparison would achieve a power of >80%, whereas the 
prehospital hypothermia versus in-hospital hypothermia 
comparison would achieve a power of 62%. The prehospital 
hypothermia versus in-hospital hypothermia comparison 

Figure 3. A, Forest plot comparing all-cause mortality between prehospital hypothermia and in-hospital hypothermia. B, Forest plot comparing 
favorable neurologic outcome between prehospital hypothermia and in-hospital hypothermia. The blue diamond depicts the point estimate and 
the 95% confidence interval. The red dotted lines represent a random effects generated overall estimate. This was generated with a random 
effects model using the method of DerSimonian and Laird,11 with the estimate of heterogeneity calculated from the Mantel-Haenszel model. 
Data are presented with risk ratios and 95% confidence intervals. CI indicates confidence interval; IH, in-hospital hypothermia; PH, prehospital 
hypothermia; RR, risk ratio.

Table 2.  Meta-regression to Assess the Effect of Predictors of Mortality (Hypothermia Versus 
Normothermia)

Variable Range
β Estimate (95% CI) 

Hypothermia Versus Normothermia P Value
Mean trial age (y) 59–67 0.01 (−0.044 to 0.068) .671
Mean trial time to ROSC (min) 21–29 0.01 (−0.060 to 0.300) .764
% trial bystander CPR 28–73 0.007 (0.0001 to 0.014) .046
% shockable rhythm 46–100 −0.002 (−0.012 to 0.007) .602

The interpretation is valid in between the specified range of variables. β estimate >0 indicates risk ratio >1. Meta-regression analyses were conducted using a 
mixed-effects meta-regression (unrestricted maximal likelihood) model.
Abbreviations: CI, confidence interval; CPR, cardiopulmonary resuscitation; ROSC, return to spontaneous circulation.
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may be affected by a future trial as the power to detect a 
clinically important treatment effect in neurologic outcome 
was low (Supplemental Digital Content, Table 3, http://
links.lww.com/AA/C138).

DISCUSSION
Our systematic review and meta-analyses explore and 
compare the mortality and neurologic outcomes in cardiac 
arrest patients undergoing in-hospital hypothermia, pre-
hospital hypothermia, and the normothermia TTM strate-
gies. Despite heterogeneity in the duration of cooling, target 
temperatures, and presenting rhythms, we found that there 
was no difference in mortality or neurologic outcomes when 
comparing these strategies.

There are likely several mechanistic explanations for our 
findings. Therapeutic hypothermia and TTM as a whole 
have been under investigation for well over a decade. Along 
with the release of a number of high-profile RCTs, consensus 
guidelines have moved toward protocol-driven post–cardiac 
arrest care. The emergence of therapeutic hypothermia strat-
egies may have led to the institution of formal protocols for 
post–cardiac arrest care where they were previously lacking. 
There are some data to suggest improvement in mortality 
after implementation of such protocols and this is similar to 
trends seen elsewhere in medicine, such as in the treatment of 
sepsis. Hence, we postulate that making post–cardiac arrest 
care more standardized may well have itself improved the 
outcomes of post–cardiac arrest patients, thereby neutraliz-
ing some of the effects conferred by therapeutic hypother-
mia strategies. Additionally, the physiologic effect of cooling 
on cardiac function remains unclear. There are conflicting 
data on the topic, with some reports to suggest that in trans-
plant patients there is less damage to the donor heart in the 
absence of profound hypothermia and therefore improve-
ment in cardiac function.26 Conversely, Shao et al27 reported 
benefit after starting a therapeutic hypothermia at lower 
temperatures in an animal model by potentially reducing 
cardiac myocyte death through generation of nitric oxide. 
However, this appears to itself conflict with clinical data by 

Bernard et al22 in the form of the recently published Rapid 
Infusion of Cold Normal Saline (RINSE) trial. These conflict-
ing data raise important questions about the physiologic 
implications of hypothermia on cardiac function and the tim-
ing of institution of hypothermia. We hoped to address the 
latter question through our investigation. More importantly, 
it suggests that the mechanisms are largely unclear to us 
and that manipulating this delicate physiology may induce 
harm. This is particularly important when a significant pro-
portion of deaths after use of therapeutic hypothermia are 
due to a cardiac cause. Finally, we note that there is a vast 
difference in the percentage of patients receiving bystander 
CPR before initiation of therapeutic hypothermia in the tri-
als. This ranged from 26% to 73% in the included trials.5,18 
Because early and good-quality CPR is very clearly linked to 
survival after cardiopulmonary arrest,28,29 we postulate that 
the large variation in percentage of patients receiving CPR 
may have been a confounding factor in the mortality and 
neurologic outcome results attributed to therapeutic hypo-
thermia protocols.

Our findings can also be used to draw interesting con-
clusions when compared to the existing literature base. 
There appears to be a significant interest in TTM and this 
has led to the publication of numerous meta-analyses and a 
Cochrane review that attempt to summarize the literature. 
To the best of our knowledge, our investigation remains the 
first to use meta-analyses to compare mortality and neuro-
logic outcomes between the prehospital hypothermia, in-
hospital hypothermia, and normothermia strategies. Most 
of the other investigations are limited by sole comparisons 
between the prehospital hypothermia and normothermia 
strategies.30–34 Of these published meta-analyses, 1 investiga-
tion included only nonshockable rhythms35 and another pri-
marily included the results of cohort studies.31 We also note 
the trend in the meta-analyses published after 2014 to largely 
suggest that therapeutic hypothermia does not confer a bene-
fit with regards to neurologic outcome or mortality. This may 
be affected by the inclusion of the investigation authored by 
Nielsen et al,5 which was the largest trial to suggest this. We 

Figure 4. A, Depiction of publication bias for the all-cause mortality comparison between hypothermia and normothermia. B, Depiction of 
publication bias for the all-cause mortality comparison between prehospital hypothermia and in-hospital hypothermia. Blue circles represent 
available studies. The dashed lines indicate the triangular region with pseudo 95% confidence interval. The Egger regression intercept for 
funnel plot was nonsignificant (A, 1-sided, P = .12 and B, 1-sided, P = .38).
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note that similar results were reflected in the recently pub-
lished RINSE trial authored by Bernard et al.22

There are also important clinical implications of our find-
ings. Induction of therapeutic hypothermia and care of thera-
peutic hypothermia is associated with a significant cost to 
modern health care system. This has been estimated to be 
somewhere between $100,000 and $160,000 per hospitaliza-
tion per patient treated.36 In the modern era, this economic 
concern cannot be discarded if the proven outcome remains 
unclear. Therapeutic hypothermia is also associated with 
significant risks during the rewarming period. If patients 
are able to achieve equally good neurologic and mortality 
outcomes without the use of the hypothermia strategy, then 
clinicians may well be able to ameliorate some of these risks 
through avoidance of therapeutic hypothermia. We also note 
that there are further trials aiming to examine the future of 
therapeutic hypothermia.37 The Therapeutic Hypothermia 
After Cardiac Arrest in Non Shockable Rhythm (HYPERION) 
trial37 is a multicenter randomized controlled superiority trial 
that aims to compare neurologic status and mortality out-
comes in patients with cardiac arrest due to a nonshockable 
rhythm. This trial aims to compare patients treated with a 
TTM strategy maintaining a temperature between 32.5°C and 
33.5°C to patients treated with a TTM strategy maintaining a 
temperature between 36.5°C and 37.5°C.37 We hope that this 
will yield information as to whether it is therapeutic hypo-
thermia or simply a TTM normothermic strategy with avoid-
ance of fever that confers neurologic or mortality benefit.

Kämäräinen et al23 note differences in the rates of 
bystander CPR in the 2 groups and minor differences in 
the end-tidal carbon dioxide measurements at the time of 
hospital admission. Hence we evaluated the effect of rates 
of bystander CPR on treatment effect using meta-regres-
sion. Both our meta-analysis and recent evidence suggests 
that conventional bystander CPR confers a clear mortality 
benefit over both no compression CPR and no bystander 
CPR.38 Such evidence highlights the need to create predic-
tion models to identify who may benefit from hypothermia, 
such as patients who have not received bystander CPR. 
Hypothermia has been demonstrated in animal models 
to reduce ischemia-reperfusion injury, suppress ischemia-
induced inflammatory cytokine surge, reduce free radicals, 
protect blood-brain barrier integrity and resultant brain 
edema/intracranial hypertension, improve brain glucose 
metabolism, reduce convulsive activity, and increased 
expression of immediate early genes which may prevent 
stress injury.39–43 The important distinction between ani-
mal and human studies is that the former are conducted 
in a tightly controlled environment with rapid and effec-
tive institution of mild hypothermia. On the other hand, 
human studies often have heterogeneity in the aforemen-
tioned. There are also key differences in the “bundle of 
care” in postarrest settings across human studies. This may 
also reduce the efficacy of hypothermia in humans. Hence 
future studies should aim to differentiate the effectiveness 
of hypothermia from other standard of care treatments that 
are instituted in postarrest settings to identify individuals 
who may benefit the most from hypothermia.

We recognize that our analyses also have limitations. 
Amalgamation of data in the form of meta-analyses has 

well-recognized limitations.13 Furthermore, we acknowl-
edge significant differences in the cooling methods, cooling 
protocols, and even the rewarming protocols of the included 
trials (Table 1). This remains a topic of great discussion and 
we hope that future studies will help to derive the optimal 
protocols for these characteristics. Moreover, in the contem-
porary trials, therapeutic hypothermia was compared to the 
standard of care. This was poorly defined given that most 
of these trials were multicenter trials, some of which took 
place over multiple countries. We acknowledge that the 
standard of care likely became more protocol-driven, and 
therefore more homogeneous, as the trials integrated newer 
consensus guidelines due to the development of an evidence 
base for postresuscitation care. However, we feel that this 
may be a more accurate depiction of modern-day care and 
this consistency in care provision should be heralded as an 
important advance in the care of post–cardiac arrest patients.

In conclusion, TTM after cardiac arrest is an integral 
part of postresuscitation care. Our analyses showed that 
the normothermic TTM strategy and the prehospital and in-
hospital hypothermia TTM strategies produced comparable 
mortality and neurologic outcomes. More RCTs are required 
to determine the ideal timing, protocol, and patient popula-
tion that would benefit from these interventions. E
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