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BACKGROUND: Hemorrhage is a leading cause of traumatic death.We hypothesized that state-of-the-art feature extraction andmachine learning techniques
could be used to discover, detect, and continuously trend beat-to-beat changes in arterial pulsewaveforms associated with the progression to
hemodynamic decompensation.

METHODS: We exposed 184 healthy humans to progressive central hypovolemia using lower-body negative pressure to the point of hemodynamic
decompensation (systolic blood pressure 9 80 mm Hg with or without bradycardia). Initial models were developed using continuous
noninvasive blood pressure waveform data. The resulting algorithm calculates a compensatory reserve index (CRI), where 1 represents
supine normovolemia and 0 represents the circulatory volume at which hemodynamic decompensation occurs (i.e., ‘‘running on empty’’).
Values between 1 and 0 indicate the proportion of reserve remaining before hemodynamic decompensationVmuch like the fuel gauge of a
car indicates the amount of fuel remaining in the tank. A CRI estimate is produced after the first 30 heart beats, followed by a new CRI
estimate after each subsequent beat.

RESULTS: The CRImodelwith a 30-beat window has an absolute difference between actual and expected time to decompensation of 0.1, with a SD
of 0.09. The model distinguishes individuals with low tolerance to reduced central blood volume (i.e., those most likely to develop early
shock) from those with high tolerance and are able to estimate how near or far an individual may be from hemodynamic
decompensation.

CONCLUSION: Machine modeling can quickly and accurately detect and trend central blood volume reduction in real time during the compensatory phase of
hemorrhage as well as estimate when an individual is ‘‘running on empty’’ and will decompensate (CRI, 0), well in advance of meaningful
changes in traditional vital signs. (J Trauma Acute Care Surg. 2013;75: 1053Y1059. Copyright * 2013 by Lippincott Williams & Wilkins)
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Acute hemorrhage initiates a complex cascade of physiologic
responses that are triggered andmediated by cellular signals,

resulting in awide array of cardiopulmonary changes throughout
the body. Some of these changes can be measured using stan-
dard vital signs (e.g., heart rate [HR], systolic and diastolic blood
pressures, electrocardiography, respiratory rate, and pulse ox-
imetry). Researchers and clinicians who have studied and ob-
served how these parameters change in the setting of acute blood
loss have long assumed that hypotension and other signs and
symptoms of hemorrhagic shock mark the beginning of circu-
latory compromise, rather than the beginning of decompensation.
This fundamental assumption has been based on the obser-
vation that humans are able to compensate for large volumes of
blood loss with little change in standard vital signs. As a result,
unrecognized volume loss during the compensatory phase
of hemorrhage can quickly lead to poor tissue perfusion,

progressive acidosis, and sudden, unexpected hemodynamic
decompensation, a condition that is usually recognized in its
latter stages when resuscitative therapy is less effective and more
difficult to control.

We hypothesized that state-of-the-art feature extraction
and machine learning techniques could be used to analyze hu-
man vital sign waveform data, to reveal subtle waveform fea-
tures that trend and correspond with the compensatory phase of
hemorrhage. We further hypothesized that the resulting algo-
rithm could differentiate low-tolerant (i.e., those most likely to
develop early shock) fromhigh-tolerant subjects, well in advance
of clinically significant changes in currently available vital signs.
We took our clue from recent work in robotics, which has used
similar machine learning methods to design and develop au-
tonomous robot navigation systems for use in unknown, outdoor
unstructured environments. A key issue in the field of autono-
mous robot navigation is the need to identify safe or navigable
paths far enough ahead of the robot, to allow smooth trajectories
at acceptable speeds. A similar issue exists in clinical medicine
and in particular the management of acute blood loss: clinicians
need to know the clinical trajectory of a patient, so that they can
anticipate the needs of the patient and intervene early, when the
physiology is less complex and more likely to respond to therapy.

In general, there are many similarities in the types and
amounts of data generated in robotics andmedicine. Both fields
rely on a variety of sensors to continuously investigate and
respond to real-world situations, where previous knowledge
and experience may be unknown or uncertain. A robot uses
sensors and interpretive algorithms to explore its environment
and make decisions about the actions it should perform to
reach its intended goal. Clinicians are responsible for inter-
preting growing volumes of clinical data to identify underlying
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physiologic disturbance(s), anticipate the needs of the patient,
and determine a course of action. Unfortunately, our current
generationof physiologic sensors is relatively ‘‘dumb,’’ insofar as
they are designed to generate raw vital sign data, rather than to
generate statistically unbiased, beat-to-beat ‘‘interpreted’’ infor-
mation from these raw data.

We describe a novel mathematical algorithm that is ca-
pable of identifying and monitoring patients during the com-
pensatory phase of reduced central blood volume. The original
algorithm monitored continuous noninvasive blood pressure
waveforms. This work led to the discovery that the shape of the
waveform produced by the flow of blood through an artery is
what allows the algorithm to determine the degree of com-
pensation. As a result, the current algorithm only monitors
pulse oximetry waveforms and in real time analyzes how a
select group of waveform features change over time, from
normovolemia all the way to decompensation. By simulta-
neously monitoring multiple waveform features and knowing
how these features change with central volume loss, the al-
gorithm is able to instantaneously determine how far or near a
patient may be from the point of decompensation. The algo-
rithm outputs a single value in beat-to-beat fashion, termed the
compensatory reserve index (CRI) (Fig. 1). CRI is displayed as
a fuel gauge, where the number 1 represents replete central
volume or a ‘‘full tank of gas’’ and 0 is empty. Values between 1
and 0 indicate the compensatory reserve of the patient or the
proportion of reserve capacity that remains to compensate for
central volume loss before the onset of decompensation.

PATIENTS AND METHODS

Lower-Body Negative Pressure
The US Army Institute of Surgical Research (USAISR)

has an ongoing research program using lower-body negative

pressure (LBNP) to simulate loss of central blood volume
(i.e., hemorrhage) in humans.1Y10 Subjects for the present study
were healthy, nonsmoking normotensive males or females,
with ages ranging from 18 years to 55 years. Subjects were
required to lie on their back with their lower body sealed in a
steel vacuum chamber (Fig. 2). As the vacuum chamber applied
increasing amounts of negative pressure to each subjects’ lower
body, blood was redistributed from the upper body to the lower
body (below the iliac crests). The LBNP experimental protocol
consists of a 5-minute baseline period followed by stepwise
exposure to 5 minutes of decompression at each of the fol-
lowing negative pressures: j15, j30, j45, j60, j70, j80,
j90, and j100 mm Hg. A designated physician or advanced
cardiac life support provider is present during each experiment,
and each subject is taken to a point where symptoms of hemo-
dynamic instability are evident, such as gray-out, a progressive
diminution of systolic blood pressure (SBP) less than 80mmHg,
voluntary subject termination caused by discomfort (such as
sweating, nausea, or dizziness), or until completion of the
j100 mm Hg level. In any of these instances, the LBNP is
discontinued, and blood that has pooled in the lower body is
immediately redistributed to the body as a whole. The subject
then recovers for a 1-hour period.

Continuous waveform data were collected at 500 Hz
using WinDaq data acquisition software (Dataq Instruments,
Akron, OH). Deidentified waveform data were analyzed at
Flashback Technologies, Inc. (Boulder, CO), where feature ex-
traction and advanced statistical methods were used to build
models of central volume loss culminating in collapse physiol-
ogy. Following initial evaluation of multiple signals, noninvasive
arterial blood pressure waveform data generated by a Finometer
PRO blood pressure monitor (Finapres Medical Systems, Am-
sterdam, the Netherlands; see www.finapres.com) was identified
as a feature rich signal for algorithm development. An unbiased

Figure 1. The CRI is indicative of the individual-specific proportion of intravascular volume remaining before the onset of
cardiovascular collapse. The red line shows a hypothetical decline in CRI over time in the setting of blood loss caused by hemorrhage
or plasma leakage. A calculated CRI of 1 represents normovolemia, whereas a calculated CRI of 0 represents the point of
hemodynamic decompensation.
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estimate of the accuracy of the modeling approach was obtained
byusingdata fromeachhuman subject as a true test subject.Thus,
when testing on a specific test subject, only data from other
subjects were used to construct the model. The test subject data
were termed test data, and data from all other subjects were
termed learning data, with no mixing between the two sets. This
gave a statistically unbiased estimate of how accurate the
modeling approach was for a subject not in the data set, that is,
how well each approach worked on future test subjects.

Feature Extraction and Machine Learning
We hypothesized that noninvasive waveform data col-

lected during LBNP experiments contained information on the
compensatory phase of central volume loss; however, we did
not know what components of the waveforms were important,
whether some might be more important than others or whether
some were more important at different levels of compensation.
To address these questions, we turned our attention to feature
extraction and machine learning methods, which have enabled
robots to self-learn. Feature extraction is a form of dimen-
sionality reduction that may be used to facilitate pattern rec-
ognition in image and signal processing. Machine learning is
concerned with the design and development of algorithms that
can be used to automatically extract information (features)
from large volumes of data. The combination of these analytic
technologies provides a unique computational ‘‘tool’’ to rapidly
make sense of very large data sets. Our goal was to use an
unbiased approach to learn the waveform features that corre-
spond with the compensatory phase of central volume loss.

We evaluated a number of state-of-the-art discriminative
machine learning algorithms, including a number of unsupervised
and manifold techniques.11Y18 Unsupervised machine-learning
algorithms are not provided with classification labels; their task
is to develop classification labels independent of human bias and
independently search for similarity between pieces of data to de-
termine whether they can be characterized as forming a group.
These groups are termed clusters. In unsupervised classification,
often known as cluster analysis, the algorithm itself must inde-
pendently group the data. This can be a potentially difficult but
enlightening task because the algorithm works in iterative ways
to reach a stable configuration that makes sense. Our experience

developing algorithms for robotic situational awareness led us
to apply a variety of clustering algorithms to vital sign wave-
form data generated during LBNP experiments. The appropriate
clustering algorithm and parameter settings were varied, de-
pending on the individual data set and intended result(s). This
iterative process led to the selection of multiple features within
the noninvasive arterial waveform that trend the compensatory
phase of central volume loss.

CRI Algorithm
The CRI algorithm is designed to estimate the following

quantity:

CRI ¼ 1" BLV

BLV HDD
ðEq:1Þ

where BLV is the current blood loss volume of the patient
and BLVHDD is the BLV at which the patient will enter he-
modynamic decompensation.

The CRI calculation (Eq. 1) assumes knowing both an
individual’s BLV at any given time as well as that individual’s
BLVHDD caused by acute blood loss. Because of obvious ethical
reasons, acquiring reference data in actual human blood loss
studies is unacceptably dangerous to the well-being of the sub-
ject. We know, however, that LBNP closely mimics the hemo-
dynamic,6 autonomic,2 respiratory,19 and metabolic20 responses
of hemorrhage observed in anesthetized animal models.4,21

Moreover, cardiovascular responses to LBNPare reproducible in
the same subjects studiedmore thanonce in the samephysiologic
state.3 As a result, we used LBNP as a scientifically justified,
ethical substitute for modeling the reduction in central blood
volume to hemodynamic decompensation in humans. Thus, we
use the relationship L between LBNP and BLVas follows:

BLV ¼ Lq LBNP ðEq:2Þ

This allows the estimate of CRI for an individual un-
dergoing a LBNP experiment to be calculated as follows:

CRI ¼ 1j
BLV ðtÞ

BLV HDD
ÈÈ1j

Lq LBNPðtÞ
Lq LBNPHDD

¼ 1j
LBNPðtÞ
LBNPHDD

ðEq:3Þ

where LBNP(t) is the LBNP level that the individual is

Figure 2. Subject in the LBNP device (A) and the LBNP protocol (B). See Convertino et al.2
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experiencing at time t and LBNPHDD is the LBNP level at
which the individual will enter hemodynamic decompensation.

Therefore, LBNP studies form the fundamental frame-
work for development of the CRI.

Distinguishing Individual Variability
Based on individual tolerances to reductions in circulating

central blood volume, subjects were classified as low tolerant
(unable to complete j60 mm Hg of LBNP) or as high tolerant
(completed at leastj60 mm Hg of LBNP) based on previously
defined criteria.22 Models were built using Finometer waveform
data from 183 LBNP subjects and were tested on the 184th. This
processwas repeated 184 times. Of these 184 subjects, 57 subjects
were classified as low tolerant and 127 subjects were classified
high tolerant.

RESULTS

The final model provided the first CRI value at 30 beats
of the heart, and a new value was calculated with each sub-
sequent beat of the heart. Figure 3 demonstrates the accuracy of
the individual CRI estimation curve fit for estimated beat-to-
beat values of LBNP (green lines) compared with the actual
LBNP level (red line) in two subjects with low tolerance to
reduced central blood volume (left panels) and 2 subjects with
high tolerance to reduced central blood volume (right panels).
These curve fits were typical of all 184 subjects whose wave-
form data have been analyzed. The average correlation coeffi-
cient between the estimated CRI and the CRI reference (Eq. 3)
was r2 = 0.94, with a mean (SD) absolute difference of CRI of

0.1 (0.09). For all 184 subjects, the CRI value dropped to less
than 0.3 before the subject went into collapse. The correlation
between predicted and actual LBNP level for hemodynamic
decompensation was 0.89.

DISCUSSION

Humans are able to compensate for significant hemorrhage
throughvariousneural andhormonalmechanisms, allowing their
vital signs to remain relatively stable until these adaptive com-
pensatory mechanisms are gradually overwhelmed, resulting in
hemodynamic compromise and the onset of hemorrhagic shock.
Unfortunately, traditional vital signs such as HR, blood pressure
and SaO2 are notoriously unreliable until late in the setting of
acute blood loss, leading us and other authors to question their
value in assessing the hemodynamic state of a patient.23,24 We
previously reported that the vital signs obtained from subjects,
who are included in the cohort of those participating in the
current study, failed to change during the early period of com-
pensation to reduced central blood volume.25 Combined pa-
rameters such as the shock index (HR / SBP) and algorithms that
use waveforms frommultiparameter monitors have also failed to
reliably discriminate patientswith ongoing hemorrhage.26 These
clinical observations are supported by numerous experimental
studies, demonstrating the human body’s ability to compensate
for acute reductions in central volume (Table 1).1,2,7,20,25,27Y30

The lack of specificity associated with traditional vital signs has
limited their usefulness in the early detection and monitoring
of acute blood loss. The resulting challenge has been to find

Figure 3. CRI estimation accuracy results on 4 of the 184 LBNP subjects who went to presyncope during LBNP studies. The
red line indicates the ground truth CRI value, which can only be determined using the maximum tolerated LBNP (blood loss) after
a subject achieves hemodynamic decompensation. The green line shows the beat-to-beat CRI estimates by CipherBP. As can be
seen from the plots, there is a wide range of reserve volumes between subjects, and they can be generally classified as having low
or high tolerance to blood loss. In either case, the CRI estimates by CipherBP effectively track the true CRI value.
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physiologic waveform metrics that represent the mechanisms of
compensation.

We used novel analytic tools to analyze a large database
of continuous noninvasive waveform recordings obtained from
human LBNP subjects, who underwent controlled reductions
in central blood volume from normovolemia to decompensa-
tion. In support of our hypothesis, we were able to develop an
algorithm that accurately tracks the compensatory phase of
central volume loss for high- and low-tolerant subjects. Pre-
vious studies have shown that individuals who are tolerant to
reduced central blood volume display higher sympathetic nerve
activity and HR,31 more blood pressure oscillations,32 and
greater vasoconstrictor reserve,33 compared with low-tolerant
individuals. By leveraging recent developments in machine
learning, advanced statistical methods, and fast computing
technology, we have, in essence, teased apart the physiology of
compensation for individual subjects.

The ability of the CRI algorithm to accurately distinguish
individuals with varying tolerances to reduced central blood
volume can be attributed to a unique function of the algorithm,
which analyzes and compares the entirety of each waveform
in a window of time to trend subtle features that correspond
with varying degrees of central volume loss. This analytic
advantage is based on the relationship described by the arterial
waveform (ejection wave) and peripheral vascular resistance

(reflected wave). As such, all mechanisms associated with
compensation for central volume loss are represented in each
waveform. Thus, subtle changes in waveform features, which
are detected by the algorithm, allow it to differentiate individual
patients (i.e., those with high or low tolerance to central volume
loss) within the first 30 beats of monitoring and every beat
thereafter.25 Furthermore, because the algorithm is built upon a
learning framework, it will become more accurate and more
broadly applicable as it is exposed to increasing volumes of
modeling data. We are unaware of any other clinical algorithm
that is capable of providing real-timemoment-to-moment insight
into the compensatory phase of central volume loss for individual
patients without a reference measurement at normovolemia.

Photoplethysmography of peripheral perfusion can be
displayed by pulse oximeters, with the photoplethysmographic
(PPG) signal being derived from the infrared light absorbtion
waveform. Our realization that the entire shape of the arterial
waveform had to be modeled to maximize computational
model accuracy, in addition to existing literature on the cor-
relation between features of the pulse oximeter PPG waveform
and central blood volume,34Y36 led us to hypothesize that our
methods could be applied to the pulse oximetry waveform.
Such an approach would enable the development of a small,
lightweight noninvasive sensor for monitoring central volume
loss. With the use of the same approach, only this time applying
feature extraction and machine-learning techniques to PPG
waveforms generated by Masimo and Nonin pulse oximeters,
CRI accuracy results have been obtained for 30 high- and low-
tolerant LBNP subjects. CRI models for both devices are
similarly accurate, with mean absolute differences between
actual and expected CRI of 0.1, with an SD of 0.09. These
findings have led to the creation of a CRI monitor based on a
standard pulse oximeter signal that includes a user-friendly
‘‘bar’’ (Fig. 4) that moves up or down and changes color in
accordance with patient status: adequate compensation (green:
CRI 9 0.6), moderately compromised (amber: CRI, 0.6Y0.3),
and unstable (red: CRI G 0.3).

TABLE 1. Changes in Traditional Vital Signs and
Hemodynamic Parameters During Progressive
Central Hypovolemia

Vital Sign or
Parameter

Change During
Progressive Central

Hypovolemia Reference(s)

SBP Late Convertino et al.1

Cooke et al.27

Convertino et al.2

Diastolic blood pressure Late Convertino et al.1

Convertino et al.2

Mean blood pressure Late Convertino et al.1

Convertino et al.2

McManus et al.28

HR Not specific Cooke et al.27

Convertino et al.2

Shock index (HR / SBP) Late Vansickle et al.29

O2 saturation (pulse ox) Late Convertino et al.2

Soller et al.30

Radial pulse Late Ryan et al.7

End-tidal CO2 Late McManus et al.28

Respiratory rate Late McManus et al.28

Glasgow Coma Scale (GCS) score Late Ryan et al.7

Blood pH Late Convertino et al.2

Ward et al.20

Blood [lactate] Late Convertino et al.2

Ward et al.20

Blood base excess Late Convertino et al.2

Ward et al.20

CRI Early Convertino et al.25

Vansickle et al.29

Figure 4. CipherOx is a small bluetooth-enabled pulse oximeter
with a wrist worn CRI display, mini-USB port for battery
charging and data download.
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Key characteristics of the CRI algorithm, which make it
uniquely suited for real-time monitoring of central volume loss
caused by hemorrhage or dehydration, include the following:
1. Directly estimates how close a subject is to hemodynamic

decompensation, independent of how tolerant the subject is
to volume loss.

2. First CRI estimate produced at 30 beats of the heart; there-
after, a new CRI estimate is made after each subsequent
heart beat.

3. The algorithm does not require a baseline reading at
normovolemia. Accurate and robust CRI estimates can be
made at any stage of central volume loss, for both high- and
low-tolerant individuals.

4. Can be put into a small, portable, and easy-to-use form
factor (Fig. 4).
In contrast, othermethods (such as strokevolumeand cardiac

output), which can be used to monitor volume loss (hemorrhage)
1. Need a baseline reading at normovolemia to assess volume

status.
2. Cannot assess closeness to hemodynamic decompensation

and therefore cannot effectively assess low-tolerant individuals.
3. Have much larger, more cumbersome form factors (e.g., the

Finometer PRO, electrical bioimpedance).

Study Limitations
Ethical and real-world constraints limit the types and

amounts of data available for describing significant human
hemorrhage. For the same reason, direct comparisons between
LBNP and severe hemorrhage are not possible. However, LBNP,
as a surrogatemodel of acute blood loss leading to cardiovascular
collapse, has provided an unequaled opportunity to analyze
compensatory physiologic responses to progressive central hy-
povolemia. Although there seems to be no evidence to suggest
that injury and pain would alter the fundamental features of
the waveforms that were used to build the CRI algorithm, the
possibility that trauma, in addition to central blood loss, could
influence this relationship cannot be dismissed. Although the
LBNP protocol limits enrollment to subjects who are 18 years
to 55 years of age, newly acquiredCRImeasurements in children
3 years to 9 years of age (unpublished data) with hemorrhage
due to Dengue virus demonstrate the ability of the algorithm to
track changes in circulating blood volume in younger patients.
We do not yet know howwell the algorithmwill perform in older
age groups. Furthermore, because the LBNP protocol applies
LBNP in a controlled stepwise manner and not in a continuous
manner more akin to actual bleeding, we have not developed
models that are able to predict time to collapse; we do, how-
ever, envision a future version of the algorithm with this ca-
pability. Notwithstanding these limitations, our premise that
CRI is directly applicable to bleeding patients is supported by
the striking similarity of physiologic responses observed
during LBNP and severe hemorrhage.2,3,6,8,9,37Y40

Balancing the limitations of the current study are the sig-
nificant potential advantages of this technology. The CRI algo-
rithm provides a continuous, beat-to-beat objective interpretation
of continuous noninvasive blood pressure or PPG waveform
data that do not require specialized expertise to interpret. The
CRI algorithm does not require baseline or convalescent data,
so it can be acquired in real-time during emergent or routine

clinical encounters. Furthermore, theCRI algorithm can interpret
waveform data from widely available low-cost devices, such as
portable pulse oximeters. Thus, rapid translation of the pres-
ent findings to low-resource settings seems highly feasible and
would provide information that may not be obvious to clinicians
and other health care providers. In light of these considerations,
the present findings are highly encouraging for further evalua-
tion of the CRI algorithm in actual trauma and numerous other
clinical settings.

CONCLUSION

The application of feature extraction andmachine learning
techniques to noninvasive vital signwaveformdata, derived from
a human model of severe acute blood loss, has led to the dis-
covery of several waveform features that can be used to monitor
subjects throughout the compensatory phase of central volume
loss to a point when they are ‘‘running on empty.’’ The computer-
based methods that underlie this technology are able to tease
apart and recognize subtle, beat-to-beat changes within tradi-
tional waveform data of individual subjects, well before these
changes are clinically apparent.
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