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Pulse Wave Analysis to Estimate Cardiac Output
Karim Kouz, M.D., Thomas W. L. Scheeren, M.D., Daniel de Backer, M.D., Bernd Saugel, M.D.

Cardiac output (CO)–guided therapy is a promising 
approach to hemodynamic management in high-risk 

patients having major surgery1 and in critically ill patients 
with circulatory shock.2 Pulmonary artery thermodilu-
tion remains the clinical reference method for CO mea-
surement,3 but the use of the pulmonary artery catheter 
decreased over the past two decades.4 Today, various CO 
monitoring methods with different degrees of invasiveness 
are available, including pulse wave analysis.5 Pulse wave 
analysis is the mathematical analysis of the arterial blood 
pressure waveform and enables CO to be estimated con-
tinuously and in real time.6 In this article, we review pulse 
wave analysis methods for CO estimation, including their 
underlying measurement principles and their clinical appli-
cation in perioperative and intensive care medicine.

Pulse wave analysis Methods and underlying 
Measurement Principles
Pulse wave analysis methods estimate CO by mathemati-
cally analyzing the arterial blood pressure waveform. The 
arterial blood pressure waveform is a complex signal deter-
mined by various physiologic factors, including left ventric-
ular stroke volume, aortic compliance, vascular resistance, 
and wave reflection phenomena.

In addition to CO, pulse wave analysis allows assessing 
dynamic cardiac preload variables, i.e., pulse pressure varia-
tion and stroke volume variation related to positive pressure 
ventilation.7 In patients with sinus rhythm and controlled 
mechanical ventilation with a tidal volume of at least 8 ml/
kg predicted body weight, pulse pressure variation and 
stroke volume variation can be used to predict fluid respon-
siveness (i.e., an increase in CO by fluid administration).8

Pulse wave analysis methods can be classified into inva-
sive, minimally invasive, and noninvasive methods (fig. 1).5,9 
Pulse wave analysis methods can be further classified into 
externally calibrated, internally calibrated, and uncalibrated 
methods depending on the type of calibration they use to 
calibrate pulse wave analysis–derived CO.

Invasive Externally Calibrated Pulse Wave Analysis

Invasive externally calibrated pulse wave analysis methods 
calibrate pulse wave analysis–derived CO to an external 

reference CO value measured using an indicator dilution 
method (transpulmonary thermodilution or lithium dilu-
tion).5,9 CO measurement using indicator dilution methods 
requires a (central) venous catheter for indicator injection 
upstream in the circulation and a dedicated arterial catheter 
and measurement system to detect downstream indicator 
temperature or concentration changes.5,9–11

The VolumeView system (Edwards Lifesciences, 
USA) and the PiCCO system (Pulsion Medical Systems, 
Germany) calibrate pulse wave analysis–derived CO to 
transpulmonary thermodilution–derived CO. To measure 
CO using transpulmonary thermodilution, a bolus of cold 
crystalloid solution is injected in the central venous circu-
lation.10 The cold indicator bolus injection causes changes 
in blood temperature that are detected downstream using a 
thermistor-tipped arterial catheter. From the thermodilu-
tion curve that represents the changes in blood temperature 
over time, CO can be calculated using a modified Stewart–
Hamilton formula.9,10 Transpulmonary thermodilution is 
considered a clinical reference method for CO measure-
ment and has been validated against pulmonary artery ther-
modilution.10,12 Common sources of measurement error 
include indicator loss, regurgitation, or recirculation that 
can affect the thermodilution curve and alter CO measure-
ments.10 Thus, regurgitation caused by valvulopathies and 
intracardiac shunts represents an important limitation.10,13

The VolumeView system is an invasive externally cal-
ibrated pulse wave analysis system that uses a thermis-
tor-tipped femoral arterial catheter and a central venous 
catheter for transpulmonary thermodilution CO mea-
surements.14,15 To estimate CO, the VolumeView pulse 
wave analysis algorithm considers conventional arterial 
blood pressure waveform features based on a three-ele-
ment Windkessel model to estimate aortic impedance and 
advanced waveform features. Advanced waveform features 
are derived from the entire arterial blood pressure wave-
form and reflect changes in vascular tone and compliance 
that can be assessed by skewness and kurtosis calculations.

The PiCCO system is another invasive externally cali-
brated pulse wave analysis system. It uses the same external 
calibration principle as the VolumeView system and thus 
also combines pulse wave analysis and transpulmonary 
thermodilution. It requires a central venous catheter and 
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a thermistor-tipped arterial catheter (Pulsiocath; Pulsion 
Medical Systems) inserted in a central artery—most often 
the femoral artery, but catheters are also available for the 
axillary and brachial artery.10 The PiCCO pulse wave 
analysis algorithm analyzes the systolic part of the arterial 
blood pressure waveform and uses the heart rate, a ther-
modilution-derived calibration factor, and the individual 
aortic compliance to estimate CO.6 Calibrating pulse wave 

analysis–derived CO to transpulmonary thermodilution 
CO helps account for individual aortic compliance.

In contrast to the VolumeView and PiCCO systems, the 
LiDCOplus system (LiDCO, United Kingdom) does not use 
transpulmonary thermodilution but transpulmonary lithium 
dilution for external CO calibration. After lithium application 
via a peripheral or central venous catheter, the lithium–con-
centration–time curve is measured by a lithium-sensitive 

Fig. 1. Classification and clinical application of pulse wave analysis monitoring methods. Pulse wave analysis systems estimate cardiac 
output and other hemodynamic variables by analyzing the arterial blood pressure waveform. Pulse wave analysis methods can be classified 
according to their invasiveness into invasive, minimally invasive and noninvasive methods. Further, the methods can be classified based on 
their type of calibration into externally calibrated, internally calibrated, and uncalibrated methods. Invasive externally calibrated methods 
calibrate pulse wave analysis–derived cardiac output to an external reference cardiac output value measured using an indicator dilution 
method. Minimally invasive internally calibrated methods consider biometric, demographic, and hemodynamic data, as well as arterial blood 
pressure waveform characteristics, to estimate cardiac output without external reference cardiac output calibration. Minimally invasive 
uncalibrated methods do not use external or internal calibration at all and solely estimate cardiac output based on arterial blood pressure 
waveform features. Noninvasive methods analyze arterial blood pressure waveforms recorded continuously with noninvasive sensors and 
estimate cardiac output using internal calibration. In patients having surgery, invasive externally calibrated methods are reserved for special 
indications (e.g., liver transplant surgery or esophagectomy). Minimally invasive internally calibrated and uncalibrated methods are used for 
perioperative goal-directed therapy in high-risk surgical patients. Noninvasive methods can be used for continuous arterial blood pressure 
and cardiac output monitoring in low- or intermediate-risk surgical patients. In critically ill patients treated in the intensive care unit, invasive 
and minimally invasive pulse wave analysis–derived continuous real-time cardiac output estimations can be used to monitor cardiac output 
during tests of fluid responsiveness (fluid challenges or passive leg raising test). AUC, area under the curve.
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electrode integrated in an arterial catheter.10,16 The area under 
this curve is inversely related to CO. The LiDCOplus pulse 
wave analysis algorithm tracks the power of the arterial blood 
pressure waveform and translates the arterial blood pressure 
waveform into a standardized volume waveform. CO is cal-
culated based on different mathematical assumptions and the 
lithium dilution–derived CO.11 A theoretical strength of the 
LiDCOplus system is that the arterial blood pressure wave-
form morphology is not as important for the estimation of CO 
as for other pulse wave analysis systems. Therefore, peripheral 
arteries can also be used for CO measurement, because dis-
turbances caused by wave reflection phenomena are reduced, 
and the system is less affected by damping. However, in 
patients receiving lithium therapy, lithium dilution may over-
estimate CO, as in patients treated with certain muscle relax-
ants (e.g., rocuronium, pancuronium), because they contain a 
positively charged quaternary ammonia ion in their chemical 
structure that can be detected by the lithium sensor.10 Because 
of a potential lithium accumulation, the number of calibration 
measurements over a short time is limited.10

Minimally Invasive Internally Calibrated Pulse Wave 
Analysis

Minimally invasive internally calibrated pulse wave analy-
sis methods consider biometric, demographic, and hemo-
dynamic data, as well as arterial blood pressure waveform 
characteristics to estimate CO without external reference 
CO calibration. These systems only require an arterial cath-
eter (most commonly inserted in the radial artery) and 
are therefore referred to as “minimally invasive” methods.5 
Compared with externally calibrated pulse wave analysis 
systems, all internally calibrated systems may exhibit poorer 
measurement performance and may become unreliable in 
patients whose biometric (e.g., weight, height), demographic 
(e.g., age, sex), and hemodynamic data used for statistical 
calibration are not in the standard range of the underlying 
database or physiologic assumptions of the pulse wave analy-
sis system.17 The latter may particularly occur during patho-
physiologic conditions, e.g., in patients having liver failure, 
septic shock, or rapid changes in vasomotor tone caused by 
rapid fluid or vasopressor administration. Additionally, the 
measurement performance is essentially determined by the 
quality of the arterial blood pressure waveform signal.

The FloTrac system (Edwards Lifesciences) is a minimally 
invasive internally calibrated pulse wave analysis system based 
on the main assumption of a close relation between pulse 
pressure (the difference between systolic and diastolic arte-
rial blood pressure) and CO. The system statistically analyzes 
pulse pressure characteristics and corrects them for waveform 
features resembling vascular tone. The system calculates the 
SD of successive pulse pressure measurements and estimates 
vascular tone using mean arterial blood pressure and arterial 
blood pressure waveform characteristics.18

The ProAQT/Pulsioflex system (Pulsion Medical 
Systems) is another minimally invasive internally calibrated 

pulse wave analysis system. It uses an algorithm very similar 
to the one used by its externally calibrated counterpart, the 
PiCCO system.19 The system estimates CO based on the 
area of the systolic part of the arterial blood pressure wave-
form and takes into account empiric demographic and bio-
metric data that are used to correct for aortic compliance.

The LiDCOrapid system (LiDCO) is based on the same 
algorithm as the LiDCOplus system. Instead of an exter-
nal calibration by transpulmonary lithium dilution, it relies 
on nomograms that incorporate patient’s age, height, and 
weight. These nomograms are used to estimate a calibration 
factor for the calculation of CO.20

The Argos CO monitor (Retia Medical, USA) uses an 
algorithm called multibeat analysis—a further development 
of long time interval analysis—to estimate CO.21–24 The 
arterial blood pressure waveform is analyzed over long time 
scales that include multiple heartbeats, and an arterial blood 
pressure waveform that would be the response to a single 
cardiac contraction is estimated. This minimizes disturbing 
wave reflection phenomena, and a theoretical central arte-
rial blood pressure waveform with a pure exponential pres-
sure decay can be estimated.22 Based on this central arterial 
blood pressure waveform and biometric patient data, the 
system estimates CO.

Minimally Invasive Uncalibrated Pulse Wave Analysis

Minimally invasive uncalibrated pulse wave analysis meth-
ods do not use external or internal calibration at all and 
solely estimate CO based on arterial blood pressure wave-
form features obtained via a radial or femoral arterial cath-
eter. The MostCare system (Vygon, France) is currently 
the only commercially available minimally invasive uncali-
brated pulse wave analysis system, and its CO values showed 
good agreement with those obtained by pulmonary artery 
thermodilution.25 It uses the pressure recording analytical 
method algorithm to continuously estimate CO. The algo-
rithm identifies specific ephemeral points of instability of 
the arterial blood pressure waveform that are mainly due 
to wave reflections by analyzing the arterial blood pres-
sure waveform in a very high resolution.26,27 This allows a 
beat-to-beat estimation of vascular impedance and makes 
the system robust against sudden changes in cardiovascular 
dynamics (e.g., changes in heart rate, cardiac contractility, 
and vascular tone).26 One major limitation of the MostCare 
system is its susceptibility to measurement errors caused 
by under- and overdamping of the arterial blood pressure 
waveform signal.26,28 Thus, damping properties of the mea-
surement systems have to be checked meticulously.

Noninvasive Pulse Wave Analysis

Noninvasive pulse wave analysis methods analyze arterial 
blood pressure waveforms recorded continuously with 
noninvasive sensors and estimate CO using internal cali-
bration.29,30 The use of noninvasive sensors to record the 
arterial blood pressure waveform makes cannulation of an 
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artery or a central vein unnecessary. Noninvasive sensors 
include finger-cuffs and sensors placed on the skin above 
the radial artery.

The finger-cuff method uses the vascular unload-
ing technology, also called the volume clamp method, to 
record the arterial blood pressure waveform and estimates 
CO using pulse wave analysis.29,30 In general, inflatable 
finger-cuff sensors contain an infrared photodiode and 
light detector and allow high-frequent adjustments of cuff 
pressure. The blood volume in the finger arteries usually 
changes during the cardiac cycle. The finger-cuff sensor 
measures the blood volume in the finger arteries using the 
infrared photodiode and light detector and high-frequently 
adapts cuff-pressure to keep the blood volume in the fin-
ger arteries constant. These changes in cuff pressure are 
used to reconstruct the arterial blood pressure waveform, 
which is then further analyzed using pulse wave analysis. 
To scale the finger-cuff–derived arterial blood pressure to 
brachial arterial blood pressure, different systems use differ-
ent approaches. Two commercially available finger-cuff sys-
tems for noninvasive pulse wave analysis are the ClearSight 
system (Edwards Lifesciences), formerly Nexfin (BMEye, 
The Netherlands), and the CNAP system (CNSystems 
Medizintechnik, Austria).

The ClearSight system compensates for hydrostatic arte-
rial blood pressure differences between the finger artery 
and the phlebostatic axis using a heart reference system to 
estimate brachial arterial blood pressure.31,32 The underlying 
pulse wave analysis algorithm primarily analyzes the systolic 
part of the arterial blood pressure waveform and determines 
aortic impedance based on the assumption of a three-el-
ement Windkessel model.33 The CNAP system scales the 
finger-cuff–derived arterial blood pressure waveform to 
brachial arterial blood pressure using intermittent upper-
arm cuff oscillometry.34 The pulse wave analysis algorithm 
of the CNAP system—called continuous noninvasive CO 
algorithm—estimates CO by analyzing the whole arterial 
blood pressure waveform and thereby accounting for pre-
load, afterload, contractility, and vascular compliance.35 A 
nomogram-derived calibration factor based on biometric 
data is used to obtain absolute CO values.

Radial artery applanation tonometry is another method 
for noninvasive pulse wave analysis using a mechanical sen-
sor that is placed on the skin above the radial artery.29,30,34,36 
The mechanical sensor maintains a transmural pressure of 
zero by slightly compressing the radial artery and thereby 
enables continuous recording of the arterial blood pressure 
waveform.34,36 Different systems for radial artery applanation 
tonometry are available. The DMP-Life system (Daeyomedi 
Co., South Korea) uses an array of sensors to estimate CO 
using an algorithm that analyzes the systolic part of the arte-
rial blood pressure waveform and considers biometric and 
demographic data.37,38 The T-Line system (Shanshi Medical, 
China; formerly, Tensys Medical, USA) uses a single sen-
sor that is integrated in a bracelet and electromechanically 

adjusted to identify the optimal applanation pressure.36 The 
system estimates CO using a complex mathematical model 
that incorporates arterial blood pressure waveform charac-
teristics, biometric, and demographic data.39

General limitations for noninvasive pulse wave analysis 
methods are the same as those of invasive and minimally 
invasive pulse wave analysis methods. In addition, nonin-
vasive pulse wave analysis methods have specific techni-
cal limitations. The main limitations for finger-cuff–based 
pulse wave analysis systems are clinical conditions impairing 
finger perfusion such as vascular diseases, circulatory shock, 
or high-dose vasopressor therapy.34,40 The main limitation 
of radial artery applanation tonometry is that active or pas-
sive movements of the patient’s extremity or the mechan-
ical sensor disturb and impair the arterial blood pressure 
waveform signal quality and thus make pulse wave analysis 
unreliable.

Clinical application of Pulse wave analysis
The decision to use—or not use—a certain pulse wave 
analysis system in an individual patient or clinical setting is 
influenced by numerous factors. These include patient-cen-
tered factors; the invasiveness, measurement performance, 
clinical applicability, and signal stability of the pulse wave 
analysis system; institutional factors such as the availabil-
ity and the costs; and personal experience with monitor-
ing systems of the caregiver.41 A profound understanding of 
pulse wave analysis measurement principles and strengths 
and limitations of pulse wave analysis systems is important 
for clinicians to choose the appropriate pulse wave analysis 
system for the individual patient.

All pulse wave analysis systems discussed in this review 
have been investigated against pulmonary artery or 
transpulmonary thermodilution in method comparison  
studies.10,17,42,43 Those method comparison studies are 
highly heterogenous regarding their study design, patient 
population, clinical setting, and results and, therefore, are 
hardly comparable with respect to the measurement perfor-
mance of the investigated pulse wave analysis system. Even 
though there are studies showing clinical interchangeabil-
ity between pulse wave analysis–derived CO measurements 
and reference indicator dilution CO measurements, the 
pooled overall results indicate that CO measurements by 
either method are not interchangeable.

Pulmonary artery thermodilution remains the clinical 
reference method for CO monitoring.3 Pulmonary artery 
catheterization additionally provides numerous advanced 
hemodynamic variables that help guiding therapy in 
patients having cardiac surgery (in combination with trans-
esophageal echocardiography) or liver transplant surgery or 
in patients with pulmonary hypertension or right ventric-
ular failure.5 However, pulmonary artery catheterization is 
an invasive procedure associated with potential complica-
tions. This may be one of the reasons for a decrease in the 
use of the pulmonary artery catheter over the last years.4 

Copyright © 2020, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.

John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel




 Anesthesiology 2020; XXX:00–00 5

Pulse Wave Analysis

Kouz et al.

Although the CO measurement performance of pulmo-
nary artery thermodilution is superior to that of pulse wave 
analysis, pulse wave analysis may be a reasonable choice for 
CO monitoring in a broad spectrum of surgical and criti-
cally ill patients.

Pulse Wave Analysis in Perioperative Medicine

Major surgery under general anesthesia causes marked 
hemodynamic alterations and impaired tissue oxygenation.44 
Perioperative goal-directed therapy based on advanced 
hemodynamic monitoring has thus been proposed to opti-
mize CO and global oxygen delivery. Goal-directed therapy 
refers to protocolized hemodynamic treatment strategies 
that are used to titrate fluids, vasopressors, and inotropes to 
predefined target values of hemodynamic variables to opti-
mize global cardiovascular dynamics and maintain adequate 
organ perfusion pressure and oxygen delivery.45 There is 
evidence that goal-directed therapy can improve postoper-
ative outcomes and reduce postoperative mortality in high-
risk patients having major surgery.46,47 Pulse wave analysis is 
frequently used in studies of goal-directed therapy because 
it provides CO and dynamic cardiac preload variables that 
can be used as target variables.46,48

Minimally invasive internally calibrated pulse wave 
analysis (ProAQT/Pulsioflex system) was used in a multi-
center randomized controlled trial in patients having major 
abdominal surgery investigating the impact of goal-directed 
therapy on postoperative complications compared with 
routine care.49 In goal-directed therapy group patients, the 
individual optimal CO was determined after anesthetic 
induction by giving fluids until pulse pressure variation was 
less than 10%. During surgery, fluids, vasopressors, and ino-
tropes were titrated according to pulse pressure variation, 
the individual CO, and a mean arterial blood pressure of 
more than 65 mmHg. Patients treated with goal-directed 
therapy had significantly less postoperative complications 
compared with routine care patients.49

In the Optimisation of Perioperative Cardiovascular 
Management to Improve Surgical Outcome (OPTIMISE) 
trial,47 the to-date largest randomized controlled trial on 
goal-directed therapy, minimally invasive internally cali-
brated pulse wave analysis (LiDCOrapid system), was used 
to optimize blood flow by maximizing stroke volume with 
repetitive colloidal fluid boluses and the inotrope dopexam-
ine in high-risk patients having major abdominal surgery. 
The primary endpoint—a composite of moderate or severe 
postoperative complications—occurred less frequently in 
goal-directed therapy group patients compared with rou-
tine care group patients. However, the clinically important 
difference in the incidence of postoperative complications 
was not statistically significant.

Based on the OPTIMISE trial, the OPTIMISE II tri-
al—an international multicenter pragmatic randomized con-
trolled trial in high-risk patients having major surgery—is 
currently being carried out.50 Minimally invasive internally 

calibrated (FloTrac system) or noninvasive (ClearSight sys-
tem) pulse wave analysis is used to maximize stroke volume 
with fluid challenges and low-dose dobutamine or dopex-
amine. Stroke volume variation less than 5% or an absence 
of a sustained rise in stroke volume after a fluid challenge 
are considered indicators of fluid nonresponsiveness. The 
primary endpoint of the study is the incidence of postoper-
ative infection within 30 days of randomization.

For goal-directed therapy to be even more effective, per-
sonalized target values based on patients’ preoperative base-
line cardiovascular dynamics may be promising.51 In this 
regard, noninvasive pulse wave analysis systems enable clini-
cians to determine baseline CO before surgery (e.g., the day 
before surgery on the ward). In the Targeting Preoperatively 
Assessed Personal Cardiac Index in Major Abdominal 
Surgery Patients (TAPIR) trial,52 noninvasive pulse wave 
analysis (CNAP system) was used to determine the individ-
ual patient’s baseline cardiac index the day before surgery. 
In patients assigned to personalized management, clinicians 
strove to maintain this baseline cardiac index during sur-
gery—where cardiac index was measured using minimally 
invasive internally calibrated pulse wave analysis (ProAQT/
Pulsioflex system)—by using fluids and dobutamine based 
on a goal-directed therapy algorithm. The primary out-
come, a composite of major postoperative complications or 
death within 30 days of surgery, occurred less frequently in 
patients in the personalized management group compared 
with patients in the routine management group.

In addition to the use of pulse wave analysis for goal-di-
rected therapy in high-risk patients having major surgery, 
noninvasive pulse wave analysis may be useful for continu-
ous arterial blood pressure monitoring in low- or intermedi-
ate-risk patients that would otherwise have only intermittent 
arterial blood pressure monitoring. Recent randomized 
controlled trials in patients having moderate-risk noncardiac 
surgery revealed that continuous noninvasive arterial blood 
pressure monitoring reduces the amount of intraoperative 
hypotension compared with intermittent blood pressure 
monitoring using upper-arm cuff oscillometry.53,54

Pulse Wave Analysis in Intensive Care Medicine

In critically ill patients with complex circulatory shock, 
CO monitoring is recommended to diagnose the type of 
shock and to evaluate the response to fluids or inotropes.2 
For the diagnosis of the type of shock, pulmonary artery 
thermodilution or transpulmonary thermodilution are rec-
ommended2 because the diagnosis depends on accurate and 
precise absolute CO measurements and additional hemo-
dynamic variables.55

Because pulse wave analysis provides CO continuously 
and in real time, it is recommended to monitor CO during 
tests of fluid responsiveness (fluid challenges56 or passive leg 
raising test57).2 Circulatory shock—especially septic shock—is 
characterized by marked alterations in systematic vascular 
resistance.55 Invasive externally calibrated pulse wave analysis 
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systems offer the opportunity to frequently recalibrate pulse 
wave analysis–derived CO estimations and thereby improve 
the measurement performance regarding absolute CO values. 
In patients with circulatory shock, absolute CO measurement 
by minimally invasive internally calibrated or uncalibrated 
pulse wave analysis systems may become unreliable because 
of marked alterations in vasomotor tone.17 Noninvasive pulse 
wave analysis systems are not recommended in critically ill 
patients with shock because these patients will be equipped 
with an arterial catheter anyway.9

Conclusions

Pulse wave analysis is the mathematical analysis of the 
arterial blood pressure waveform and enables CO to be 
estimated continuously and in real time. In addition to 
CO, pulse wave analysis allows assessing dynamic cardiac 
preload variables, i.e., pulse pressure variation and stroke 
volume variation that can be used to predict fluid respon-
siveness in patients with sinus rhythm and controlled 
mechanical ventilation. Pulse wave analysis methods are 
classified into invasive, minimally invasive, and noninvasive 
methods. Pulse wave analysis methods are further classified 
into externally calibrated, internally calibrated, and uncali-
brated methods depending on the type of calibration they 
use to calibrate pulse wave analysis–derived CO values. In 
high-risk patients having major surgery, pulse wave analy-
sis–derived CO and dynamic cardiac preload variables can 
be used for perioperative goal-directed therapy. In criti-
cally ill patients, pulse wave analysis–derived continuous 
real-time CO estimations can be used to monitor CO 
during tests of fluid responsiveness (fluid challenges or pas-
sive leg raising test).
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