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T herapeutic temperature man-
agement (TTM), elegant in
conception, can be simple to
perform, such as when a he-

modynamically stable cardiac arrest sur-
vivor is uneventfully cooled and re-
warmed with a commercial hypothermia
device, or can be complex, such as when
a spontaneously breathing patient with
traumatic brain injury develops persis-
tent neurogenic fever and shivers uncon-
trollably when normothermia with ice
packs and cold fluid is initiated. TTM can
be performed using conventional modal-
ities, readily available in most hospitals,
or with one of several newer devices now
commercially available. These techniques
are better described as being complimen-
tary rather than competing; temperature
management is complex, and the circum-
stances and patients highly varied, so that
routine administration of TTM favors fa-
cility in a variety of modalities.

Overview of Cooling

Mechanisms. Induction and mainte-
nance of hypothermia or normothermia
requires interruption of the body’s nor-
mal thermoregulation mechanisms, as
well as active heat exchange. Commonly
employed techniques for preventing heat
production through shivering are sum-
marized in Appendix 1. Removal of heat is
achieved via four mechanisms: conduc-
tion, convection, radiation, and evapora-
tion (1).

Heat conduction involves thermal en-
ergy transfer between molecules within a
material, or between materials in direct
contact with one another, and is an in-
trinsic property of a material. Water and
metal conduct heat well, whereas neo-
prene and ceramic materials conduct
poorly and are therefore used as insula-
tors. Convection relates to thermal en-
ergy transferred by molecular movement
within a fluid or gas. Convective heat
transfer may be driven by motion caused
by heat itself (such as heat rising into the
air) or by an external force driving the
motion of the medium (such as a fan
blowing air onto a patient). Radiation is
heat transfer via electromagnetic radia-
tion, and is therefore independent of mat-
ter. Evaporation, the heat transfer of liq-
uid to gas phase change (e.g., sweating),
plays a small role in human heat transfer
under normal circumstances (2), but is
sometimes used in conjunction with con-

vection (for example, spraying patients
who are then cooled by evaporation un-
der the stimulus of fans).

Therapeutic hypothermia (TH) can be
induced by each of these mechanisms of
heat transfer or by mechanisms in com-
bination. Heat transfer is frequently nec-
essary to cool patients when elimination
of heat production alone is inefficient in
achieving a therapeutic core temperature
in the clinical setting.

Phases of Temperature
Modulation in Therapeutic
Hypothermia

Temperature modulation during ther-
apeutic hypothermia may be broken
down into four phases: induction, main-
tenance, decooling, and normothermia.
Each of these phases requires active con-
trol of heat transfer and management of
physiological compensatory mechanisms,
as well as monitoring for and prevention
of associated complications.

In the setting of cardiac arrest, animal
and human data support initiation of
cooling as soon as possible after return of
spontaneous circulation (ROSC) (3–8).
Conversely, although it is clear that in
animal models the induction of hypother-
mia before arrest or at the time of arrest
is neuroprotective (4, 9), no human study
has shown that time from initiation of
therapy to therapeutic temperature is a
significant predictor of outcome, and the
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optimal rate of cooling is unknown. The
optimal duration of TH is also unknown,
although in the setting of cardiac arrest,
improved outcomes have been demon-
strated with 12 (10) and 24 (11) hrs of TH
at 32°C to 34°C, whereas hypothermia for
neonatal asphyxia is commonly per-
formed for 72 hrs (12, 13) and hypother-
mia for the cerebral edema associated
with liver failure may be performed for as
long as 5 days (14, 15). After 5 days of
TTM, the risk for developing ventilator
associated pneumonia in intubated pa-
tients may rise precipitously (16).

Decooling is increasingly understood
to be safest when performed with active
temperature modulation, resulting in a
controlled return to normothermia over
12 to 24 hrs (17), as opposed to a passive
approach in which the patient’s intrinsic
thermoregulatory mechanisms are re-
stored, and in which the rate of decooling
may be very rapid and frequently associ-
ated with “rebound” fever. Fever in the
first 72 hrs after ROSC is associated with
poor outcome (18, 19). Although un-
proven, an increasing body of evidence
(20–23) supports the cautious prevention
and treatment of fever in the setting of
critical neurological illness, and many
clinicians attempt to maintain a core
temperature of 36°C to 37.5°C until at
least 72 hrs after ROSC (24). Decooling is
associated with electrolyte shifts (25), va-
sodilation, and the “postresuscitation”
syndrome (26–28), and may be the most
challenging period of postarrest care, in
terms of hemodynamic instability and
complications (29). Therefore, devices
and methods used for therapeutic hypo-
thermia must provide the ability to rap-
idly and accurately control heat exchange
and maintain the goal temperature in a
steady range.

When hypothermia is employed for
the management of elevated intracranial
pressure (ICP) (30–32) or for hepatic en-
cephalopathy and cerebral edema, slow
decooling is particularly important, as
rapidly rising brain temperature may re-
sult in ICP crisis, brain herniation, and
death (17). Under these circumstances,
invasive continuous ICP monitoring
should be utilized to maintain cerebral
perfusion pressure (CPP) and ICP goals
during decooling.

Therapeutic Hypothermia

At experienced centers, therapeutic
hypothermia in adults is routinely per-

formed after cardiac arrest, in patients
awaiting liver transplant with cerebral
edema from acute liver failure, and for
the control of refractory elevated ICP.
These indications are reviewed elsewhere
in this supplement. Among cardiac arrest
survivors, it is standard to perform ther-
apeutic hypothermia in all patients, inde-
pendent of the initial heart rhythm or
location of the arrest (33, 34), unless one
or more of the following conditions exist:

1. The patient can follow verbal com-
mands;

2. More than 8 hrs have elapsed since
ROSC;

3. There is life-threatening bleeding or
infection;

4. Cardiopulmonary collapse is immi-
nent, despite vasopressor or mechani-
cal hemodynamic support;

5. An underlying terminal condition ex-
ists.

Prehospital initiation of hypothermia
typically relies upon rapid bolus admin-
istration of 30 to 40 mL/kg cold (4°C)
isotonic resuscitation fluid (35, 36) by
emergency medical service providers, tar-
geting a core temperature of 32°C to
34°C. This prehospital approach is effec-
tive at decreasing the time to therapeutic
temperature—an endpoint supported by
animal data—and one large (insuffi-
ciently powered) randomized trial dem-
onstrated a trend toward better neurolog-
ical outcomes (36). The initiation of
hypothermia in the field, however, puts
the decision to cool—a complex question
with significant management repercus-
sions—into the hands of emergency med-
ical service providers, preventing physi-
cians from performing a precooling
neurological assessment and potentially
leading to some patients being cooled un-
necessarily. Furthermore, arrest patients
are often hypothermic on presentation,
and accurate core temperature is not typ-
ically measured in the field, so there is
potential for accidental overcooling. Fi-
nally, induction of hypothermia rapidly
drives down the serum potassium (20),
and the lack of baseline potassium mea-
surement and rapid correction could lead
to repeat cardiac arrest on the basis of
hypokalemia. Despite these concerns,
prehospital TH appears to be safe (36),
and remains a promising approach that
not only decreases the time to therapeu-
tic temperature (35), but if applied by
emergency management service proto-
cols, may increase the overall utilization

of TH (37–39), resulting in important ep-
idemiological gains (40).

Simultaneous evaluation and treat-
ment of cardiac and neurological injuries
of the cardiac arrest survivor may require
that TH be initiated during cardiac cath-
eterization and revascularization. Induc-
tion can be performed with sedation, pa-
ralysis, and cold fluid infusion, or with
sedation, paralysis, and a commercial
surface or intravascular cooling device.
This aggressive multidisciplinary ap-
proach (41), often in patients with shock
or even requiring aortic counterpulsa-
tion, has been reported in several studies,
and despite a greater reported incidence
of periprocedural bleeding, seems to re-
sult in excellent overall neurological and
mortality outcomes (42–46).

Baseline neurological assessment of
the cardiac arrest survivor, performed be-
fore sedation and neuromuscular block-
ade, should include an assessment of the
Glasgow Coma Scale, cranial nerves, re-
flexes, general motor tone, convulsive or
nonconvulsive seizure activity (47, 48),
and myoclonus (49). Rarely, catastrophic
hemorrhagic or ischemic stroke may
present as cardiac arrest, and if the cir-
cumstances of the arrest are unclear,
noncontrast computed tomography scan
of the head should be obtained at the
time of initial evaluation. Figure 1 out-
lines the initial 72 hrs of management
after ROSC.

The maintenance phase typically oc-
curs in an intensive care unit and is a
period in which metabolic and hemody-
namic homeostasis is paramount. It may
include adequate but not excessive mean
arterial pressure to maintain brain perfu-
sion despite a state of cerebral autoregu-
latory failure (50); volume-cycled me-
chanical ventilation targeted to normal
pH (hypercarbia should be avoided) and
otherwise in accord with the principles of
lung-protective ventilation; a perfusing
heart rhythm and treatment of the un-
derlying ischemic state if necessary; anti-
biotic prophylaxis if pulmonary infiltrates
are present (51, 52); maintenance of a
blood glucose level of 120 to 160 mg/dL
(53, 54, 55); normal electrolyte levels
with special attention to potassium, mag-
nesium, and phosphate (20, 56); cautious
medication dosing taking into account
the radical reduction in drug metabolism
and duration of action caused by hypo-
thermia (57–59); and the aggressive
treatment of shivering, with neuromus-
cular blockade if necessary (Appendices 1
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and 2). The decooling phase is when he-
modynamic instability is most common.

A “postresuscitation” syndrome—
characterized by increased inflammatory
cytokine levels, vasodilation, and hypo-
tension (22)—has been described, fre-
quently exacerbating the cutaneous vaso-
dilation routinely associated with
decooling, and myocardial dysfunction
related to acute myocardial infarction,
defibrillation injury (60), or cardiomyop-
athy (61). Even episodic hypotension af-
ter cardiac arrest is associated with
higher mortality (33, 62), and decooling
is the period in which elevated ICP and
low CPP are most likely to develop. Slow
decooling avoids violent hemodynamic
fluctuations, with a goal rate of 0.2°C to
0.33°C per hour until the patient is at
36.5°C or 37°C, but physiological fluctu-
ations may be seen if shivering occurs.
Fluid boluses, inotropes, and vasopres-
sors may be necessary to maintain CPP
during decooling, and if significant he-
modynamic instability or signs of ele-
vated ICP occur, it is sometimes neces-
sary to slow or stop the temperature
decooling process. We discontinue neuro-
muscular blockade when the patient tem-

perature reaches 35°C, and wean sedation
when the body temperature reaches 36°C.

Control of Postcooling Fever
and Therapeutic Normothermia

Because “rebound” fever is common
and harmful (18, 19, 21, 23, 63, 64), and
because brain injury may be attenuated
by fever control (65), it is common prac-
tice after cardiac arrest to maintain nor-
mothermia after decooling and until 72
hrs have elapsed since ROSC (29). When
a commercial cooling device is utilized,
this is easily achieved by leaving the de-
vice in place after the patient reaches goal
temperature, resetting target tempera-
ture to 36.5°C to 37.5°C, and employing
an aggressive shiver-control protocol
(Appendices 1 and 2). When conventional
cooling techniques are employed, con-
trolled decooling and subsequent main-
tenance of normothermia require partic-
ular nursing vigilance, with attention to
the onset of fever spikes, and frequent
adjustments to the application of cooling
measures. An algorithm for therapeutic
normothermia in nonintubated patients
is offered in Figure 2.

Fundamental to the induction, main-
tenance, and withdrawal of TTM are the
following concerns:

1. After cardiac arrest, serum potassium
should be aggressively replaced if
�3.8 mEq/dL at the onset of TH, and
should be reassessed every 3 to 4 hrs
during the induction phase.

2. Accurate, continuous core tempera-
ture measurement must guide TTM,
preferably by bladder, rectal, central
venous, or esophageal measurement.
In oliguric patients, bladder tempera-
ture may poorly reflect core tempera-
ture, and other monitoring sites are
preferred.

3. When neuromuscular blockade (NMB)
is employed to control shivering or aid
in induction, a rapid and thorough
neurological examination and verifica-
tion of adequate sedation should pre-
cede NMB administration. Either em-
pirical heavy sedation or sedation
monitoring with processed electroen-
cephalography (EEG) are appropriate
during the full period of NMB (Fig. 3).

4. Although the U.S. Food and Drug Ad-
ministration has approved multiple

Figure 1. Treatment of the cardiac arrest survivor. ROSC, return of spontaneous circulation; MAP, mean arterial pressure; Cath, catheter; PCI,
percutaneous coronary intervention; GCS, Glasgow Coma Scale; IVF, intravenous fluid: normal saline or lactated Ringer’s solution; NMBA, neuromuscular
blockade agents; CPP, cerebral perfusion pressure; T, temperature.
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devices for temperature modulation,
and although these devices have been
routinely utilized in cardiac arrest
survivors, no device is currently ap-
proved for treatment of hypoxic-
ischemic encephalopathy after cardiac
arrest, so the application of any tem-
perature management device consti-
tutes “off-label” application in that
population.

5. The incidence of pneumonia is be-
tween 30% and 50% in intubated
cardiac arrest survivors treated with
hypothermia (10, 66, 67), presum-
ably due to aspiration at the time of
cardiac arrest and the immunosup-
pressive effects of TTM (68, 69). Pre-
liminary data suggest that when pul-
monary aspiration is suspected at
the onset of TH, prophylactic antibi-
otics should be strongly considered
(51, 52).

6. The incidence of seizures after cardiac
arrest is between 19% and 34% (48,
49, 70–72), and cannot be detected
without EEG monitoring in the para-
lyzed patient. Continuous EEG moni-
toring should be considered if convul-
sive or nonconvulsive seizures are
suspected. If continuous EEG is not
available, then patients should be se-
dated with antiepileptic sedatives dur-
ing therapeutic hypothermia (Fig. 3).

7. During decooling, hemodynamic in-
stability is common, and as cutaneous
vasodilation and an inflammatory post-
arrest state develop, clinicians should
be prepared to administer intravenous
isotonic fluids to maintain adequate
preload. When shock is present, mon-
itoring of cardiac output, global tissue
perfusion, or brain perfusion is sug-
gested to guide interventions. Options
for hemodynamic monitoring include

invasive or noninvasive cardiac output
measurement (73), assessment of
urine output if kidney function is nor-
mal, repeated assessments of adequate
tissue perfusion by either central ve-
nous or jugular venous oxyhemoglo-
bin saturation measurement (74), or
direct invasive monitoring of brain
metabolism (75–79).

8. Although neuromuscular blockade
agents (NMBAs) are commonly pro-
vided during the entire period of in-
duction and maintenance, it is reason-
able to forego additional NMBA after
induction is achieved, by aggressive
application of a shivering protocol
(Appendix 2). Because of the extreme
metabolic costs involved, shivering at
Bedside Shivering Assessment Scale 2
or 3 (80) should not be tolerated.
When NMBA is provided, corticoste-
roids should be avoided, due to the

Figure 2. Suggested algorithm for therapeutic normothermia in the nonintubated patient. IVF, intravenous fluid; BSAS, Bedside Shivering Assessment
Scale (Appendix 1).
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additive risk for critical illness myop-
athy and prolonged neuromuscular
weakness (81–82).

9. Focal counterwarming—in which the
face, neck, and extremities are actively
warmed while the torso or central ve-
nous system is cooled—reduces shiv-
ering and discomfort, while paradoxi-
cally augmenting the cooling process
through the mechanism of cutaneous
vasodilation.

Cooling Methodologies

Conventional Surface Cooling and
Cold Fluids. After neurological assess-
ment, sedation, the placement of a con-
tinuous core temperature monitor, and
neuromuscular blockade, cold saline or
Ringer’s lactate solution (4°C) is admin-
istered at a dose of 30 to 40 mL/kg. This
intervention—which has been shown to
decrease temperature by 2°C to 4°C with-
out causing a decrease in left ventricular

systolic function or cardiac output and
without frequent pulmonary edema (83–
85)—is the best-studied method of TH
induction, supported by multiple safety
and efficacy trials, and should be the first
line for induction in conventional cooling
methodology. Subsequently, cooling can
be maintained with ice packs applied to
the neck, groin, and axillae, and with
widely available rubber cooling blankets
or mats routinely utilized in the operat-
ing room. Because these mats can cause
skin damage at contact points when
placed under the patient, some centers
advocate placing these mats over the
patient, with sheets draped above to
create a tent in which cold air is
trapped around the patient. Ongoing
infusion of cold fluid has not shown to
be an effective method to maintain ther-
apeutic hypothermia (86).

Conventional cooling techniques are
clearly effective at reducing body tem-
perature, and should be considered a

good method of inducing hypothermia,
and an adequate, although tricky,
means of maintaining 32°C to 34°C
when other technologies are unavail-
able. Drawbacks include the lack of an
internal feedback loop (making accu-
rate temperature maintenance diffi-
cult), a high incidence of overcooling
(87), the need for extreme nursing vig-
ilance and experience to maintain the
goal temperature, and difficulty in con-
trolling the rate of decooling. Conven-
tional cooling is inexpensive and con-
venient, utilizing widely available
technology on hand in almost all hos-
pitals, but because of the potential for
overcooling and high level of nursing
vigilance required should be evaluated
in a cost-effectiveness analysis against
techniques involving commercial cool-
ing devices.

Commercial Surface Cooling Devices.
The widely available Arctic Sun device
(Medivance, Louisville, CO) employs pro-
prietary heat-exchange pads that adhere
to the skin, utilizing a hydrophilic gel
that conducts heat and maintains close
contact between the skin and pads. These
pads cover approximately 40% of the
body surface area, and circulating water
temperature is continuously modulated
by a servo mechanism to maintain core
body temperature at goal. Generally well
tolerated, this system has advantages that
include temperature control that may be
less rigid than with intravascular systems
(88) but remains well within the target
range studied in the Hypothermia After
Cardiac Arrest trial (10); relative safety
due to the infrequency of overcooling and
lack of vascular complications; relative
ease of maintenance of normothermia af-
ter cooling; thoughtful design sparing
the femoral and subclavian sites for cath-
eterization, allowing for defibrillator pad
placement under the heat-exchange pads;
and compatibility with cardiac catheter-
ization by virtue of the radiolucent na-
ture of the device (89–91). Disadvantages
include the high cost of the unit and the
disposable pads, and the potential for rare
but serious skin complications (92),
which should be considered in patients
receiving high-dose vasoconstrictors or
with severely impaired left ventricular
function.

CoolBlue (Innercool Therapies, San
Diego, CA), KoolKit (Cincinnati SubZero
Products, Cincinnati, OH), and Ther-
moWrap (MTRE Advanced Technologies,
Rehovot, Israel) are among the recently
introduced, somewhat less expensive gar-

Figure 3. Options for sedation during therapeutic normothermia. NMB, neuromuscular blockade;
SAS, Sedation and Agitation Scale (137); RASS, Richmond Agitation and Sedation Scale (138); T,
temperature; BIS, bispectral index; EEG, electroencephalography.
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ment-type surface cooling devices with-
out the gel-adhesion system discussed
above. These systems all employ servo
mechanisms, which enhance safety and
decrease nursing work, cooling by con-
duction as water circulates through pads
that encircle the patient but do not ad-
here directly to the skin. These devices
may be acceptable surface cooling alter-
natives to the Arctic Sun system, but ex-
perience with the systems is relatively
limited, and both safety and cooling effi-
cacy should be demonstrated in clinical
trials.

The fastest cooling system now on the
market is probably the Thermosuit Sys-
tem (Life Recovery Systems, Kinnelon,
NJ), a cold water immersion system that
has been shown to cool human-sized
swine to 33°C in only 30 to 45 mins, a
remarkable feat (93). Unfortunately, a
reasonable pool of human safety data is
not yet available (94), and real caution
should be exercised with the technology,
due to the risks of rapid cooling causing
unrecognized electrolyte shifts, the in-
herent dangers of defibrillating a patient
immersed in water, and the potential for
overcooling. Furthermore, the system is
for induction only, with no mechanism
for the maintenance of goal temperature,
so conventional or other commercial
techniques must be used for the mainte-
nance and decooling phases. Because of
the radical difference in both rate and
method of cooling compared with other
devices, we believe this promising system
should undergo additional clinical testing
to demonstrate safety in human subjects
before it is routinely utilized to induce
therapeutic hypothermia in cardiac arrest
survivors.

Commercial Intravascular Cooling.
Intravascular cooling devices are subject
to the complications of central venous
catheterization, including injury during
placement, catheter-related bloodstream
infection, and venous thrombosis (95).
Nonetheless, intensivists are experienced
with central venous catheterization, and
employ validated central line bundles to
minimize the likelihood of catheter-
related bloodstream infection (96). Fur-
thermore, central venous catheters are
frequently required for vascular access
and hemodynamic monitoring in cardiac
arrest survivors, and the placement of an
intravascular cooling device does not al-
ways require additional venous access.

The Alsius temperature management
system, compatible with several different
proprietary intravascular cooling cathe-

ters, has been used to cool thousands of
cardiac arrest patients in Europe and
North America, providing excellent con-
trol of the induction, maintenance, de-
cooling, and normothermia phases (63,
97–99). Furthermore, the Alsius system
serves as both cooling device and central
venous catheter, allowing for the admin-
istration of vasopressors and caustic med-
ications, blood draws, monitoring of cen-
tral venous pressure, and central venous
sampling for intermittent ScvO2 analysis
to assess systemic oxygen delivery. As
with the surface cooling systems de-
scribed, a servo mechanism varies circu-
lating water temperature, preventing
large core temperature variations during
therapy.

The Celsius Control System (Inner-
cool Therapies) is a servo-controlled tem-
perature modulation system in which wa-
ter circulates through a metallic catheter
with a textured surface in the inferior
vena cava (100, 101). It is highly effective
in providing precise temperature control
(102). The turbulent blood flow induced
by the catheter’s surface and intended to
facilitate heat exchange raises concerns
about venous thrombosis and catheter-
related bloodstream infection. Because
the Celsius Control system does not serve
as a central venous line, it requires an
independent central venous access. The
system is not appropriate for mobile or
awake patients requiring TTM, because
the large-bore femoral insertion site re-
quires that the patient be still and mini-
mally bent at the waist. Additionally,
some clinicians have expressed concerns
about how the device is secured: If the
patient were inadvertently bent at the
waist, the catheter could migrate beyond
the intended depth of insertion.

Like the commercially available sur-
face cooling systems, intravascular cool-
ing systems are expensive (88, 103, 104)
to purchase and utilize, but cost-effec-
tiveness data, currently unavailable, may
well demonstrate that these up-front ex-
penses are offset when nursing time,
complications, and patient outcomes are
taken into consideration.

Less Commonly Used Cooling Tech-
niques and Devices. There are other fea-
sible methods of inducing hypothermia,
including medications (such as neuroten-
sin), extracorporeal circuits, body cavity
lavage, whole-body ice water immersion,
continuous veno-venous hemofiltration,
and air-conduction hypothermia devices
such as that used in the landmark Hypo-
thermia After Cardiac Arrest randomized

trial (10). Cooling helmets have been ex-
tensively studied (105–108), but in adults
are less effective in maintaining the goal
temperature than other modalities, and
are not widely in use. These modalities
have recently been reviewed at length
elsewhere (109), and although they may
be promising or appropriate in individual
circumstances, none is in widespread
enough use, has amassed adequate clini-
cal safety and efficacy data, or is conve-
nient and cost-effective enough that it
may be considered a routine part of a
therapeutic hypothermia program at the
time of this writing.

Comparison of Common Methods of
Cooling. Direct comparison of methods
of TTM suffers from a paucity of con-
trolled trials comparing efficacy and
safety. One recent nonblinded study of 50
patients with an indication for either hy-
pothermia or normothermia prospec-
tively and sequentially assigned them to
one of five different cooling modalities,
and the rate of cooling and ability to
maintain a tight temperature range was
evaluated. In groups matched poorly for
severity of illness and primary diagnosis,
the investigators found water circulating
blankets, adherent gel pads, and the in-
travascular cooling device to be more ef-
ficient means of induction than conven-
tional modalities (ice packs and cold
fluids) or a surface air-cooling system,
whereas the intravascular cooling device
was the most effective at maintaining
temperature within 0.2°C of the goal
temperature (88)—a goal of uncertain
importance, because the randomized
controlled trial data supporting TH after
cardiac arrest allowed a full 1°C variation
from the target temperature (10).

The tight temperature control
achieved with intravascular catheters was
supported by an uncontrolled and retro-
spective study of patients receiving ther-
apeutic hypothermia to 33°C with either
the Innercool intravascular cooling de-
vice or rubber cooling mats and ice
packs. Although the conventional surface
cooling group achieved the goal temper-
ature and suffered an “acceptable” inci-
dence of complications (mostly shiver-
ing), conventional surface cooling
methods were more likely to result in
overcooling, and were associated with
greater temperature variability than in-
travascular catheter devices. Unfortu-
nately, infectious and thrombotic compli-
cations were not reported (102).

In febrile, brain-injured patients, the
Arctic Sun in conjunction with focal
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counterwarming was compared with rub-
ber cooling mats for the maintenance of
normothermia. Use of the Arctic Sun de-
creased overall fever burden (associated
with higher Glasgow Coma Scale), while
requiring more antishivering interven-
tions (110). A larger study in a similar
population comparing the use of acet-
aminophen plus cooling blankets to these
modalities plus the Alsius Cool Line cath-
eter-based cooling system demonstrated
a significant reduction of fever burden
with the catheter, and line-related ad-
verse events equivalent to a routine cen-
tral venous catheter (98).

One retrospective, nonrandomized
study of a large population of patients
undergoing TH after cardiac arrest with
intravascular cooling catheters suggested
that the use of an intravenous cooling
catheter was independently associated
with a higher odds ratio of survival (111).
This study had design flaws, but reflects a
growing body of data supporting the
safety and efficacy of intravascular cathe-
ters for TTM.

In Norway, 59 intensive care nurses
familiar with multiple means of deliver-
ing TTM were asked to rate ease of appli-
cation, visual patient monitoring, work

load, hygiene, and noise level related to
four different hypothermia techniques:
towels soaked in ice water, the Coolgard
intravascular cooling system, the Ther-
mowrap surface cooling system, and the
Arctic Sun surface cooling system. Al-
though the cold towels were rated as
quiet, the commercial systems were all
rated as significantly easier to use. The
Arctic Sun and Coolgard systems rated
higher in hygienic aspects, whereas the
Coolgard system was rated as the best for
visual evaluation of the patient. Con-
trolled decooling and subsequent thera-
peutic normothermia were not described
(112).

Neuromonitoring During
Therapeutic Hypothermia and
Normothermia

Although therapeutic hypothermia is
routinely performed without neuromoni-
toring of any kind, cardiac arrest survi-
vors are vulnerable to several important
causes of secondary neurological injury,
and clinicians should consider employing
neuromonitoring to detect and guide the
treatment of seizures, elevated ICP, and
inadequate cerebral blood flow due to low

CPP or the excessive cerebral and sys-
temic metabolic demands of shivering.
Table 1 outlines neuromonitoring op-
tions during TH.

Seizures

Because seizure activity after cardiac
arrest is common (47, 48), the detection
of seizures is a pressing neuromonitoring
concern. Most cardiac arrest survivors
are paralyzed during TH, and therefore
seizure activity will rarely be clinically
apparent. This alarming situation is
somewhat offset by the facts that hypo-
thermia in itself is probably antiepileptic
(113–115), and that most hypothermia
protocols include continuous infusions of
propofol or benzodiazepines. We suggest
that clinicians must either monitor with
continuous EEG, unavailable in most
centers, or treat empirically during the
period of neuromuscular blockade with
antiepileptic sedation (Fig. 3), a com-
monly employed option. When convul-
sive seizure activity is noted in the peri-
arrest period, at least one EEG should be
performed on unresponsive patients at
the time of admission, to rule out a state
of continuous nonconvulsive status epi-

Table 1. Neuromonitoring options during therapeutic hypothermia

Modality Rationale for Use Advantages Disadvantages

Continuous EEG Convulsive and nonconvulsive seizures
are common in HIE

Immediate identification of seizures Requires expertise and continuous
attention to monitor

Neuromuscular blocking agents may
obscure seizures

Early identification of shivering
Prognostication

BIS monitoring Less severely injured patients may be
aware during TH and paralysis

Titration of sedation
Early identification of shivering
Prognostication
Ease of use

Shivering confounds processed
EEG signal

ICP monitor Elevated ICP is common after cardiac
arrest

Titrate MAP to appropriate CPP Invasive

ICP rises during decooling and may
exacerbate HIE

Monitors ICP during decooling Slight elevation in procedural
bleeding risk due to TH

Partial pressure of brain
oxygen (PbtO2)

Measure of the adequacy of cerebral
perfusion

Accuracy of direct measurement
No increased morbidity when bundled

with ICP monitor

Invasive

Brain temperature Brain temperature and systemic
temperature often correlate poorly

Measures brain temperature directly
during decooling and after TH

Invasive

No increased morbidity when bundled
with ICP monitor

Microdialysis LPR is a direct measure of brain ischemia Titrates therapy to drive down the LPR Invasive
No increased morbidity when

bundled with ICP monitor
Jugular oximetry

(SjvO2)
Verifies adequacy of CBF during

TH and decooling
Titrates MAP to SjvO2 �60%
Prognostication

Multiple confounders
Requires expertise to interpret

readings
Cerebral oxygen extraction is a surrogate

for metabolic activity
Low morbidity

EEG, electroencephalography; HIE, hypoxic-ischemic encephalopathy; BIS, bispectral index; TH, therapeutic hypothermia; ICP, intracranial pressure;
MAP, mean arterial pressure; CPP, cerebral perfusion pressure; LPR, lactate-pyruvate ratio; CBF, cerebral blood flow.

Reproduced with permission from Seder and Jarrah (41).
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lepticus (116). Intermittent EEG is likely
to miss the majority of seizure activity,
however, and is a poor substitute for con-
tinuous monitoring (47). Clinicians
should be vigilant for seizure activity dur-
ing the decooling phase (117), even if
medication dosing and the clinical exam-
ination are unchanged.

Because it is difficult or even impossi-
ble to determine the true severity of brain
injury from the clinical examination and
the circumstances of the arrest at the
time of hospital admission (118), thera-
peutic hypothermia may occasionally be
performed on patients with only mild in-
jury, who are therefore at risk for awak-
ening, paralyzed, during TH. To prevent
this possibility, we routinely employ the
BIS A2000 monitor (Aspect Medical Sys-
tems, Newton, MA) during hypothermia
to verify the adequacy of sedation under-
lying NMB, and prevent awareness and
recall of the paralyzed state (119–121).
When the A2000 monitor is employed in
this way, it can also be used to detect
subtle shivering, which is reflected in a
visible increase in fine muscle activity,
and higher “electromyography power”
measurements. Our standard protocol for
use of BIS monitoring to guide sedation
and prevent awareness during TH is de-
scribed in Figure 3. We have also re-
ported on the use of this technology for
very early neuroprognostication (122,
123).

Cerebral Blood Flow

A recent consensus statement called
for greater study of “goal-directed” hemo-
dynamic targets in cardiac arrest survi-
vors (73). Beyond the usual measures of
systemic perfusion, there is strong reason
to consider the use of ICP monitoring
devices in survivors of cardiac arrest with
severe brain injury, to assure adequate
CPP, and thereby prevent ICP crisis lead-
ing to transtentorial herniation and brain
death. French investigators placed inva-
sive extradural ICP monitors in 84 con-
secutive patients with hypoxic-ischemic
encephalopathy, and found that the fre-
quency of ICP �25 mm Hg was 21.4% on
day 1 and 26.3% on day 2, with 55.9% of
patients experiencing sustained CPP �50
mm Hg on the second day. No patient
with elevated ICP survived (75). Although
performed before the era of TH, this
study and two smaller series (76, 77) sug-
gest that ICP and CPP may in fact be
significant contributors to morbidity and
mortality after cardiac arrest, and that

mean arterial pressure goals may be most
appropriately guided by invasive neuro-
monitoring data in place of empirical
strategies. When head computed tomog-
raphy shows cerebral edema or noninva-
sive ICP measurement with transcranial
Doppler technology suggests elevated ICP
(124) in a patient with prolonged down-
time and low initial Glasgow Coma Scale,
it is reasonable to consider the insertion
of a parenchymal ICP monitor to guide
therapy, especially during decooling (75–
77, 125).

ICP monitoring is increasingly accom-
panied by brain tissue oxygen monitoring
(Licox; Integra Neurosciences, Plains-
boro, NJ). In acute brain injury, the im-
provement in systemic metabolism with
hypothermia may be completely offset by
the metabolic demands of shivering
(126). Measurement of brain tissue oxy-
gen levels (PbtO2) can be a powerful in-
direct means of monitoring the metabolic
profile of TTM, or to detect brain isch-
emia when the most appropriate CPP is
uncertain (127, 128). One group recently
reported their results with cerebral mi-
crodialysis in a small number of cardiac
arrest survivors, showing a pattern of
increased brain lactate, glutamate,
glycerol, and lactate-pyruvate ratio
characteristic of neuronal injury, and
suggested that this form of monitoring
may provide real-time assessment of
ongoing neuronal injury against which
to titrate therapies (77).

A simpler and less invasive monitoring
strategy to verify adequate CPP during
therapeutic hypothermia is jugular bulb
oximetry (74, 129). The insertion of a
small catheter retrograde into the domi-
nant internal jugular vein allows for ei-
ther continuous oximetric measurement
or interval sampling of the cerebral ve-
nous drainage. When cerebral blood flow
is inadequate, overextraction of oxygen
occurs, resulting in a widened arterio-
venous oxygen gradient, or AVDO2. When
the arterial hemoglobin content and sat-
uration are constant, it is appropriate to
simply follow the jugular venous oxyhe-
moglobin saturation; a measurement O2

�55% indicates either increased cerebral
metabolic activity, or more commonly,
inadequate CPP. This indirect means of
verifying adequate cerebral blood flow is
associated with low morbidity, and may
be a less invasive means of guiding CPP
optimization. Several groups have noted
an association of cerebral oxygen extrac-
tion, calculated by jugular bulb oximetry,
and prognosis (79, 130).

CONCLUSION

All TTM should be performed under
institution-specific protocols that take
advantage of available expertise, re-
sources, and equipment. Protocolized
temperature management requires inter-
disciplinary and interdepartmental
buy-in from medical subspecialists, nurs-
ing, pharmacy, and hospital administra-
tion (131–133). In the case of hypoxic-
ischemic encephalopathy after cardiac
arrest, a system to facilitate concurrent
cardiac and neurological evaluation and
treatment must be in place. Multiple de-
vices and techniques to control heat pro-
duction and remove existing heat are now
available, simplifying temperature con-
trol. Hospitals should select the most ap-
propriate means of TTM based on both
patient factors and institutional con-
cerns. Because cardiac arrest outcomes
are better in large centers (134, 135), and
because transfer time between institu-
tions has not been shown to be an impor-
tant factor in patient outcomes (136),
cardiac arrest patients should routinely
be transferred to cardiac arrest centers,
where urgent cardiac revascularization,
appropriate neuromonitoring, and ag-
gressive neuroprotective therapies can be
rapidly initiated.
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APPENDIX 1: THERAPEUTIC
TEMPERATURE MANAGEMENT
SHIVERING PROTOCOL

Nonintubated patient

1. Acetaminophen 650 mg every 6 hrs
when temperature �35°C and 650
mg every 4 hrs when temperature
�35°C.
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2. Focal counterwarming: warm air
blanket or warm packs to face, neck,
and extremities.

3. Buspirone 30 mg (enteral) q8h plus:
a. meperidine 12.5 to 25 mg intra-
venously every 4 hrs.

4. Dexmedetomidine 0.3 to 1.5 ng/kg
per min or clonidine 0.1 to 0.3 mg
(enteral) every 8 hrs.

5. Magnesium infusion to target serum
level of 2.5 to 3.5 mg/dL.

6. Cautious intermittent administra-
tion of a low dose benzodiazepine
for comfort.

7. Reconsider therapy: If Bedside Shiv-
ering Assessment Scale is 2 or 3,
neuroprotective gains of therapy are
likely overbalanced by the metabolic
cost (80). If therapy is determined to
be necessary, intubate and proceed
as below.

Intubated patient

1. Acetaminophen 650 mg (enteral)
every 6 hrs when temperature
�35°C and 650 mg every 4 hrs
when temperature �35°C.

2. Focal counterwarming: warm air
blanket or warm packs to face, neck,
and extremities.

3. Sedate: intravenous propofol, mida-
zolam, or bolus-dose lorazepam.
Place bispectral index monitor and
follow sedation and neuromuscular
blockade algorithm (Fig. 3). Seda-
tion must be maintained through-
out the period of neuromuscular
blockade.

4. Administer 25 to 50 �g/hr intravenous
fentanyl or equivalent narcotic.

5. Monitor the Bedside Shivering As-
sessment Scale and bispectral index
every 30 to 60 mins.

6. Administer vecuronium 0.1 mg/kg by
intravenous bolus whenever Bedside
Shivering Assessment Scale �1, or ci-
satricurium 0.15 mg/kg by intravenous
bolus and 3 �g/kg per min infusion.

7. If bispectral index �50, evaluate for
and treat shivering; if index remains
�50 after shivering is eliminated,
obtain immediate electroencepha-
lography and increase sedation until
bispectral index �50.

8. Discontinue neuromuscular block-
ade daily for neurological exami-
nation and several hours before
weaning sedation.

9. Neuromuscular blockade is associ-
ated with long-term neuromuscu-
lar weakness, and should be
avoided when the synergistic fac-
tors of corticosteroids and sepsis
are present.

APPENDIX 2: THE BEDSIDE
SHIVERING ASSESSMENT
SCALE AND ASSOCIATED
ENERGY EXPENDITURES

Score Definition

0 None: no shivering noted on palpation of the masseter, neck, or chest wall
1 Mild: shivering localized to the neck and/or thorax only
2 Moderate: shivering involves gross movement of the upper extremities (in addition to

neck and thorax)
3 Severe: shivering involves gross movements of the trunk and upper and lower

extremities
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