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Sepsis begins when an infec-
tious agent stimulates the ex-
pression of proinflammatory,
anti-inflammatory, and apo-

ptotic biomarkers, leading a systemic
inflammatory response. The transition
to severe sepsis and septic shock is ac-
companied by imbalances between sys-
temic oxygen supply and demand,
which result in varying degrees of per-

fusion deficits (global tissue hypoxia),
including overt circulatory shock (1).
Global tissue hypoxia is both a product
and a stimulus of this systemic inflam-
matory response (2). Biomarkers that
represent the proinflammatory, anti-
inflammatory, endothelial, and apopto-
tic aspects of systemic inflammation are
interleukin-1 receptor antagonist (IL-
1ra) (3), intercellular adhesion mole-

cule-1 (ICAM-1) (4), tumor necrosis
factor � (TNF-�) (5), caspase-3 (6), and
interleukin-8 (IL-8) (7). Although bi-
omarker patterns have been examined
extensively in animal models and inten-
sive care unit patients, data during the
first few hours of hospital presentation
are limited.

Early hemodynamic optimization
strategies repeatedly have been shown
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to improve resuscitation end points, or-
gan dysfunction, and mortality, and de-
crease health care resource consump-
tion in patients with severe sepsis and
septic shock (8 –19). Because the early
inflammatory response results from
both infectious and hypoxic stimuli (2,
20), the relative pathogenic contribu-
tion of these two components remains
unknown in the early phases. The pur-
pose of this study is to determine
whether there are associations between
the magnitude and pattern of biomar-
ker response and the: a) resuscitation
strategy; b) severity of global tissue
hypoxia; c) severity of organ dysfunc-
tion; and d) mortality of patients during
the early phase of severe sepsis and
septic shock.

MATERIALS AND METHODS

Study Design. This study is an examination
of prospectively obtained biological samples
during the Early Goal-Directed Therapy
(EGDT) Collaborative Group therapeutic clin-
ical study to examine the inflammatory pat-
terns early severe sepsis and septic shock (9).
These studies were conducted under the aus-
pices of an independent, external safety and
data monitoring committee with written in-
formed consent and approved by the Henry
Ford Hospital Institutional Review Board for
Human Research.

Patient Population and Interventions. Eli-
gible patients were adults presenting with se-

vere sepsis and septic shock to the emergency
department of an 850-bed, urban tertiary care
facility. These patients or their surrogates
consented to be randomized to receive stan-
dard or EGDT according to a previously pub-
lished protocol and/or serial biomarker exam-
inations (9).

Biomarker Samples, Physiologic Scoring,
and Organ Dysfunction Measurements. Bio-
logical samples, clinical findings, and labora-
tory data were collected at hrs 0, 3, 6, 12, 24,
48, 60, and 72. Information required for the
Acute Physiology and Chronic Health Evalua-
tion II score (21), Simplified Acute Physiology
Score II (22), Multiple Organ Dysfunction
Score (23), and Sequential Organ Failure As-
sessment score (24) were obtained at each
time point except hour 3. Patients were fol-
lowed until hospital discharge.

Biomarker Immunoassays. Biomarker as-
says were performed independently by Bio-
site, San Diego, CA. Assays were performed
using immunometric (sandwich) assays with
NeutrAvidin-coated 384-well block microtiter
plates (Pierce Biotechnology, Rockford, IL)
and a Genesis RSP 200/8 Workstation (Tecan
U.S., Durham, NC). Each sample was tested in
duplicate. Before the assays, biotinylated pri-
mary antibody was diluted in assay buffer con-
taining 10 mmol/L trishydroxymethylamin-
omethane HCl (pH 8.0), 150 mmol/L sodium
chloride, 1 mmol/L magnesium chloride, 0.1
mmol/L zinc chloride, and 10 mL/L polyvinyl
alcohol (9–10 kDa). The concentration of bi-
otinylated antibody was predetermined by ti-
tration. The primary antibody (10 �L per well)
was added to the plates and incubated. After

washing, 10 g/L bovine serum albumin and 1
g/L sodium azide were added to the plate wells,
which were then incubated at room tempera-
ture. Next, the plates were washed three times
with borate-buffered saline containing 0.02%
polyoxyethylene (20) sorbitan monolaurate
(BBS-Tween).

For each sample, 10-�L aliquots were added
to each plate well and the plates were incubated.
Following this incubation, the plates were
washed three times and alkaline phosphatase–
conjugated antibody (10 �L per well) was
added to each plate well and further incubated.
The concentration of the alkaline phosphatase–
conjugated antibody was predetermined to en-
sure a linear profile in the dynamic range of
interest. After additional incubation, the plates
were washed nine times with BBS-Tween.
AttoPhos substrate (S1011, Promega, Madi-
son, WI), a fluorescence-enhancing substrate
previously diluted in AttoPhos buffer (S1021,
Promega), was then added to aid in the mea-
surement of the activity of antibody-conju-
gated alkaline phosphatase bound in each
well. The plates were then scanned in a flu-
orometer (Tecan Spectrafluor, Tecan U.S.) us-
ing an excitation wavelength of 430 nm and an
emission wavelength of 570 nm. Each well was
scanned 6 times at 114-sec intervals, and the
rate of fluorescence generation was calculated.
Calibration curves were derived from eight
points tested at multiple locations on the assay
plate using a 4-parameter logistic fit, from
which sample concentrations were subse-
quently calculated.

Each plate included calibration wells con-
sisting of multiple analyte concentrations and

Figure 1. Study design and overview. The study algorithm compares the biomarker patterns of the early goal-directed and standard therapy groups
(biomarker setting I) and groupings of global tissue hypoxia severity (biomarker setting II).
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control samples. Calibration curves for each
biomarker assay were generated for IL-1ra
(150 –30,000 pg/mL), ICAM-1 (2.5–900 ng/
mL), TNF-� (20 –2,000 pg/mL), caspase-3
(0.1–200 ng/mL), and IL-8 (15–3,000 pg/mL).
Assay results were sent to the Henry Ford
Hospital Department of Biostatistics and Epi-
demiology, which maintained the database
and performed the statistical analyses inde-
pendent of the study investigators.

Biomarker Response Comparison Group
Methods. Biomarker patterns initially were
compared between the standard and EGDT
groups (comparison setting I, Fig. 1). Then,
biomarker patterns were compared after strat-
ification of all patients into three groups based
on the severity of global tissue hypoxia at each
time point (comparison setting II, Fig. 1).
These groups represent the range from a state
of oxygen supply dependency or hypodynamic
to a normodynamic and hyperdynamic state.
These three groups were subdivided into se-
vere global tissue hypoxia (lactate level �4
mmol/L and central venous oxyhemoglobin
saturation [ScvO2] �70%), moderate global
tissue hypoxia (lactate level, �2 to �4.0
mmol/L, and ScvO2, �70%), and resuscitated
group or resolved global tissue hypoxia (lac-
tate level, �2 mmol/L, and ScvO2, �70%) (11,
25–27).

Statistical Methods. The two-sample Stu-
dent’s t-test, Wilcoxon’s rank-sum test, and
chi-square test were employed to compare de-
mographic, baseline clinical data, and organ
dysfunction scores between the EGDT and the
standard therapy patients. Two-way (one
grouping factor and one repeated measures
factor) analysis of covariance was used to ex-
amine overall biomarker differences between
EGDT and standard therapy patients within
specific time intervals of interest (3–72 hrs,
6 –72 hrs, and 12–72 hrs), controlling for
hour-0 mediator concentrations. To account
for non-gaussian distributions, logarithmic
transformations were performed on biomarker
concentrations before executing the repeated
measures analysis of covariance, with p � .05
accepted as statistically significant. The
Kruskal-Wallis test was used to compare me-
diator concentrations at all individual time
points among the three resuscitation groups,
again controlling for the multiple testing by
using the Bonferroni method of multiple com-
parison adjustment to reduce significance
level for each test to p � .006.

Spearman’s rank-correlation test (�) with
the Bonferroni method of significance level
adjustment was used to examine all individual
time point correlations between inflammatory
biomarker concentrations, resuscitation end
points, and organ dysfunction scores, when
appropriate. For each inflammatory mediator,
repeated measures analysis of variance was
used to test for overall differences between
hospital survivors and nonsurvivors in a si-
multaneous evaluation of all nine time points,
again using logarithmic transformations to
account for non-gaussian distributions. The

Kruskal-Wallis statistic was used to compare
the baseline biomarker concentrations be-
tween patients who received vs. did not receive
vasopressor support, red blood cell transfu-
sions, and dobutamine therapy. Except as
noted above, a two-tailed probability level of
p � .05 was statistically significant.

RESULTS

There were no statistically significant
differences among the demographic,
baseline clinical data, antibiotic therapy,
or baseline organ dysfunction scores be-
tween the standard and EGDT groups
(Table 1). There were no significant dif-
ferences in hour-0 biomarker concentra-
tions between the standard and EGDT

groups (comparison setting I, Fig. 2A).
EGDT resulted in lower levels of IL-1ra
(p � .026) and ICAM-1 (p � .033) from 3
hrs to 72 hrs, TNF-� (p � .031) and
caspase-3 (p � .024) from 6 hrs to 72 hrs,
and IL-8 (p � .049) from 12 hrs to 72 hrs
(Fig. 2A). The peak biomarker concentra-
tions also were significantly lower in the
EGDT compared with the control resus-
citation group over 72 hrs (Table 2).

There were no significant differences
in baseline biomarker concentrations
among the three patient groups stratified
by tissue hypoxia (comparison setting II,
Fig. 2B). The most severe global tissue
hypoxia group had significantly higher
concentrations than the moderate global

Table 1. Demographic, baseline physiologic, and clinical data for the standard and early goal-directed
therapy (EGDT) groupsa

Standard
Therapy

Early Goal-Directed
Therapy

No. of patients 119 124
Demographics

Age, yrs 64 � 17 68 � 17
Sex, % male 50 50.8

Study entry time
Emergency department arrival to study entry, hrs 1.5 � 1.9 1.3 � 1.5

Entry criteria variables
Temperature, °C 36.6 � 2.2 35.9 � 3.2
Heart rate, beats/min 115 � 27 117 � 32
Systolic blood pressure, mm Hg 109 � 35 107 � 36
Respiratory rate, breaths/min 30 � 11 32 � 11
PaCO2, mm Hg 31 � 16 32 � 16
White blood cell count, K/�L 14.3 � 9.9 13.8 � 8.4
Blood lactate, mmol/L 6.9 � 4.5 7.8 � 4.7

Selected baseline laboratory tests
Serum anion gap, mEq/L 22 � 9 22 � 7
Serum creatinine, mg/dL 2.6 � 2.1 2.6 � 2.0
Serum urea nitrogen, mg/dL 45 � 33 46 � 31
Serum glucose, mg/dL 240 � 295 293 � 368
Serum total bilirubin, mg/dL 1.7 � 2.4 1.2 � 1.7
Serum �-glutamyl transpeptidase, U/L 113 � 220 118 � 160
Serum albumin, g/dL 2.9 � 0.7 2.9 � 0.7
Arterial blood pH 7.32 � 0.19 7.30 � 0.17
Central venous oxygen saturation, % 49.5 � 14 48.6 � 12

Sepsis definitions and categories, %
Severe sepsis without shock 47 45
Septic shock 53 55
Culture positive—all cultures 77 75
Positive blood culture 36 35

Antibiotic therapy
Antibiotics in first 6 hrs, % 92 89
Adequate antibiotics, % 94 97
Duration, days 12.8 � 18.8 11.1 � 15.9

Baseline physiologic or organ dysfunction scores
APACHE II score 20 � 8 22 � 7
SAPS II 48 � 11 51 � 11
MODS 7 � 3 8 � 3
SOFA score 7 � 3 6 � 3
PaO2/FIO2 ratio, mm Hg 304 � 172 287 � 157

APACHE, Acute Physiology and Chronic Health Evaluation; SAPS, Simplified Acute Physiology
Score; MODS, Multiple Organ Dysfunction Score; SOFA, Sequential Organ Failure Assessment.

aValues are mean � SD unless otherwise indicated. There was no significant difference between
standard care and EGDT for all variables. The values in this table will differ from the original study of
EGDT as comparison settings I and II reflect a subset analysis of this study (9).
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Figure 2. A, comparison setting I of biomarker patterns between the standard and early goal-directed therapy (EGDT) resuscitation groups for the first 72
hrs. Open circles represent standard therapy patients and closed circles represent EGDT patients. Data are shown as mean values and standard deviations.
There were no significant differences in hour-0 biomarker concentrations between the standard and EGDT groups. Statistically significant group differences
were detected for interleukin (IL)-1ra (p � .026) from 0–72 hrs; intercellular adhesion molecule (ICAM)-1 (p � .033) from 3–72 hrs; tumor necrosis factor
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tissue hypoxia or resolved global tissue
hypoxia groups at one or more time
points for all of the biomarkers. The p � .006
level of significance was attained at 12 hrs
through 72 hrs for IL-1ra, 36 hrs for
ICAM-1, 12 hrs for TNF-�, 12 hrs and 36
hrs for caspase-3, and at 12 hrs through
48 hrs for IL-8. Peak concentrations of
biomarkers also were significantly higher
in the severe global tissue hypoxia groups
compared with the moderate and re-
solved global tissue hypoxia groups over
72 hrs (Table 2).

With both treatment groups com-
bined, there were significant relation-
ships between biomarker concentrations
and organ dysfunction scores at each
time point. The maximum � between bi-
omarker concentration and Acute Physi-
ology and Chronic Health Evaluation II,
Simplified Acute Physiology Score II, and
Multiple Organ Dysfunction Score, re-
spectively, occurred at the same time
point for each biomarker, all p � .003.
The maximum � with IL-1ra was 0.55,
0.45, and 0.62 at 36 hrs, respectively. The
maximum � with ICAM-1 was 0.30, 0.22,
and 0.52 at 72 hrs, respectively. The max-
imum � with TNF-� was 0.22, 0.24, and
0.28 at 6 hrs, respectively The maximum
� with caspase-3 was 0.29, 0.30, and 0.47
at 12 hrs, respectively. The maximum �
with IL-8 was 0.40, 0.35, and 0.56 at 36
hrs, respectively. The Sequential Organ
Failure Assessment score performed dif-
ferently. The maximal � (0.68 for IL-1ra,
0.51 for ICAM-1, 0.33 for TNF-�, 0.41 for

caspase-3, and 0.53 for IL-8) between the
Sequential Organ Failure Assessment
score and biomarkers was at hrs 24, 36,
12, 12, and 12, respectively, all p � .001.
Overall, the Sequential Organ Failure As-
sessment score and Multiple Organ Dys-
function Score demonstrated the highest
� to individual biomarker concentrations.
Mean biomarker levels over 72 hrs were
significantly greater in hospital nonsur-
vivors than survivors for all examined
(IL-1ra, p � .001; ICAM-1, p � .001;
TNF-�, p � .007; caspase-3, p � .001;
IL-8, p � .001).

In all treatment groups, patients
who received vasopressor support over
the first 72 hrs had significantly higher
baseline IL-1ra (p � .010) and IL-8 (p �
.002) than those who did not. Similarly,
patients who received red blood cell
transfusions had significantly higher
baseline IL-1ra (p � .031) and IL-8 (p �
.042) concentrations than those who
did not.

DISCUSSION

The transition from severe sepsis to
septic shock is accompanied by circula-
tory insufficiency ranging from oxygen
supply dependency or a hypodynamic
state to a hyperdynamic state. This state
depends on the stage of disease presenta-
tion, host cardiovascular reserve, extent
of hemodynamic optimization provided,
and other factors (11, 28, 29). It is a
prevailing hypothesis that the persistence

of oxygen supply dependency leads to
global tissue hypoxia, accumulation of
oxygen debt, inflammation, organ dys-
function, and increased mortality (20, 27,
30–32). It is from this hypothesis that
early titrated hemodynamic optimization
is one of the integral components in al-
tering the pathogenesis and outcomes of
this disease.

This study examined the temporal
evolution of biomarker activity in the
more proximal aspects of disease presen-
tation, which is a distinguishing feature
compared with previous studies (33). Sig-
nificant decreases in biomarker levels
were observed as early as 3 hrs for IL-1ra
and ICAM-1, 6 hrs for TNF-� and
caspase-3, and 12 hrs for IL-8 as a result
of hemodynamic optimization strategies
(Fig. 2A). Significantly higher levels of
biomarkers were seen with increasing se-
verity of global tissue hypoxia as peak
levels of IL-1ra were observed at 12 hrs;
TNF-�, caspase-3, and IL-8 at 24 hrs; and
ICAM-1 at 36 hrs (Fig. 2B) (Table 2).
These findings were largely observed in
patients presenting during a hypody-
namic state (mean ScvO2 ranging from
48.6 � 12% to 49.5 � 14% and mean
lactate ranging from 6.9 � 4.5 to 7.8 �
4.7 mmol/L). Dr. Boulos and colleagues
(20) found that the level of mitochondrial
respiration in endothelial cells exposed to
septic human serum was significantly im-
paired. They also observed a significant
correlation between the level of mito-
chondrial respiration, cardiac output (r �

Figure 2—Continued. (TNF)-� (p � .031) and caspase-3 (p � .024) from 6–72 hrs, and IL-8 (p � .049) from 12–72 hrs. B, comparison setting II of
biomarker patterns between global tissue hypoxia groups for the first 72 hrs. The severe global tissue hypoxia group (lactate concentrations �4 mmol/L
and ScvO2 �70%) are diamonds, the moderate global tissue hypoxia group (lactate level of �2 and �4.0 mmol/L and ScvO2 �70%) are squares, and the
resolved global tissue hypoxia group (lactate level �2 mmol/L and ScvO2 �70%) are triangles. Data are shown as mean values and standard deviations.
There were no significant differences in baseline levels. The severe global tissue hypoxia group had significantly higher concentrations than the moderate
or resolved global tissue hypoxia groups at one or more time points for all of the biomarkers. The p � .006 level of significance was attained at hrs 12–72
for IL-1ra, hr 36 for ICAM-1, hr 12 for TNF-�, hrs 12 and 36 for caspase-3, and at hrs 12, 24, 36, and 48 for IL-8.

Table 2. Peak biomarker concentrations during 72 hrs in comparison settings I and II

Biomarker

Comparison Setting Ia Comparison Setting IIa

Control EGDT
Lactate �4 mmol/L

and ScvO2 �70%

Lactate �2 mmol/L
to �4.0 mmol/L
and ScvO2 �70%

Lactate �2 mmol/L
and ScvO2 �70%

IL-1ra, pg/mL 11,668.7 � 11,433.5 8,903.5 � 10,668.3 17,695.2 � 11,072.2 12,021.4 � 12,558.6 7,908.6 � 8,382.7
ICAM-1, ng/mL 424.64 � 227.02 373.51 � 221.68 537.22 � 197.4 427.95 � 214.45 396.91 � 208.38
TNF-�, pg/mL 59.2 � 119.1 57.1 � 110.9 123.87 � 143.12 69.9 � 104.75 27.88 � 31.78
Caspase-3, ng/mL 3.1 � 6.9 2.4 � 3.1 7.06 � 10.52 4.07 � 13.16 1.39 � 0.98
IL-8, pg/mL 449.64 � 892.78 371.30 � 740.90 1236.98 � 1269.31 435.82 � 964.55 96.09 � 418.24

EGDT, early goal-directed therapy; IL, interleukin; ra, receptor antagonist; ICAM, intercellular adhesion molecule; TNF, tumor necrosis factor.
aPeak concentration after hour 0.
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.52; p � .05), and mixed venous oxygen
saturation (r � .61; p � .05), suggesting
that tissue hypoperfusion or a hypody-
namic state augments the release of in-
flammatory mediators. This hypody-
namic state is generally earlier then the
hyperdynamic phase and/or pathologic
supply independency described in previ-
ous studies (26, 28, 34–41). During the
later phase of oxygen supply indepen-
dency, microcirculatory dysfunction and
cytopathic tissue hypoxia may be a more
predominant pathogenic mechanism,
leading to the development of organ dys-
function and mortality (20, 42). Thus, the
impact of resuscitation on biomarker ac-
tivity may be related to the hemodynamic
stage and severity of disease presentation.

There are bench-to-bedside correlates
to these biomarker observations. TNF-�–
induced caspase-3 activation, in particu-
lar, has been shown to cause an early
apoptotic cascade of myocardial dysfunc-
tion and cardiovascular insufficiency
within 3 hrs in animal models (6, 43).
From a therapeutic standpoint, timely
resolution of this cardiovascular insuffi-
ciency has significant outcome implica-
tions (44). Dr. Levy and colleagues (45)
have shown a significant association be-
tween the duration of cardiovascular in-
sufficiency, vasopressor use (particularly
within the first 24 hrs), and outcome. In
this study, there was a significant associ-
ation between increased IL-1ra levels and
paralleling vasopressor use. The attenua-
tion of these biomarker concentrations
and vasopressor use with EGDT provides
supportive evidence why a meta-analysis
by Dr. Kern and colleagues (46) revealed
that hemodynamic optimization appears
to be most effective when patients are
treated within 8 hrs to 12 hrs after the
disease insult and before organ dysfunc-
tion (47).

The � between biomarker levels, organ
dysfunction, and mortality has been ex-
amined in intensive care unit models of
sepsis. In this study, the maximum � be-
tween biomarker concentration and or-
gan dysfunction was 0.68 for IL-1ra, 0.52
for ICAM-1, 0.33 for TNF-�, 0.47 for
caspase-3, and 0.56 for IL-8, which com-
pares favorably to (if not improves upon)
previous studies (48–51). Most notable is
that there is a much earlier temporal
relationship between inflammation and
the onset of organ dysfunction. Mean bi-
omarker levels during 72 hrs were signif-
icantly greater in hospital nonsurvivors
than survivors for all examined, support-
ing increasing evidence that the initial

inflammatory response directly correlates
to early but not late sepsis mortality (52,
53). For future sepsis trials in particular,
these findings suggest that immuno-
modulatory agents such as anti–TNF-�
antibodies (54) and IL-1ra antagonists
(55) should be therapeutically targeted to
biomarker levels that were observed to
peak at an earlier disease stage of disease
presentation. This may partly explain the
lack of outcome efficacy in prior trials for
these very important adjuncts in the
treatment of this disease.

Previous studies have shown that the
sepsis-triggered biomarker activity is
multimodal, which was observed when
comparing the peak concentrations of
comparison setting I and II. The time to
peak biomarker concentrations in com-
parison setting II in those patients with
the greater degrees of global tissue hyp-
oxia was generally later than that ob-
served in comparison setting I, suggest-
ing a “second hit” phenomenon (56).
Delayed peaks in IL-1ra, ICAM-1, and IL-8
were observed 12 hrs later in patients
with the greater degrees of global tissue
hypoxia and were of greater magnitude
than the earlier peak concentrations in
comparison setting I. These delayed
peaks or second hits have been de-
scribed previously and associated with
increased organ dysfunction in vitro
(57, 58) and in vivo (31, 32, 59, 60).

There is evidence of a significant in-
teraction between volume therapy (which
was significantly greater in the EGDT
group during the first 6 hrs) and inflam-
mation. Dr. Dorresteijn and colleagues
(61) demonstrated that isomolar volume
loading before the administration of en-
dotoxin in the human model resulted in
significantly lower and delayed rise in
IL-8, IL-1�, and TNF-� concentrations
compared with nonhydrated controls.
Clinical signs of the systemic inflamma-
tory response syndrome also were signif-
icantly reduced. These findings may add
further understanding, not only to patho-
genic mechanisms, but also in the appro-
priate and timely introduction of conser-
vative vs. liberal fluid management
strategies in the resuscitation of severe
sepsis and septic shock patients compli-
cated by acute lung injury (62, 63).

The cardiopulmonary complications
pathogenically associated with IL-8, in
particular, provide further clinical in-
sight to the second hit or delayed peak
observed at 24 hrs or 12 hrs after the first
peak. Similar to findings by Dr. Hack and
colleagues (7), we found a moderate but

significant correlation between IL-8,
mean arterial pressure (� � 	0.511), lac-
tate levels (� � 0.612), and respiratory
failure/PaO2/FIO2 (� � 	0.493) (all p �
.001) from 12 to 72 hrs (64). This is
consistent with Dr. Estenssoro and col-
leagues’ (65) observation that the pres-
ence of shock during the first 24 hrs of
admission carries the greatest prognostic
predictor for prolonged mechanical ven-
tilation. This is consistent with a 15%
increase in rate of mechanical ventilation
(p � .02) and 11% higher or two-fold
increase in death rate from sudden car-
diopulmonary deterioration (p � .02)
over 72 hrs in patients receiving standard
therapy in the EGDT study (9). It is also
plausible that the higher use of mechanical
ventilation, which has been shown to in-
crease inflammation, also may impact IL-8
activity (66).

An evolution in the early pathogenic
understanding of other acute life-threat-
ening disorders—such as trauma, acute
myocardial infarction, and stroke—has
changed the pathogenic landscape of
these diseases and resulted in the devel-
opment of pivotal therapeutic interven-
tions within those “golden hours.” In the
case of acute myocardial infarction, the
substantial logistic challenges of rapid di-
agnostic, pharmacologic, and catheter-
based reperfusion interventions largely
have been overcome and have led to sig-
nificant improvement in outcomes for
this deadly disease. Similarly, in the man-
agement of sepsis, significant gaps asso-
ciated with increased mortality have ex-
isted between evidence-based discovery
and timely implementation (67, 68).
However, in recent years, multiple stud-
ies and observations have confirmed that
early application of standard operating
procedures providing early hemodynamic
optimization consistently has shown sig-
nificant outcome benefit and cost-effec-
tiveness similar to EGDT (8–10, 12–17,
19, 39, 69–77).

Limitations and Additional Consider-
ations. Adequate samples were obtained
on 92.3% of eligible patients, equally dis-
tributed between control and EGDT.
Complete sampling could not be obtained
owing to the presence of severe anemia;
patient, family, or clinician concerns
about additional blood draws; inadequate
or insufficient samples for analysis; or
patient mortality. The determination of
adequacy for assay was independent of
the investigators. The control group and
its biomarker activity is not totally repre-
sentative of “wild type or no care,” because

2021Crit Care Med 2007 Vol. 35, No. 9



these patients received a comparably
higher level of care than in most emer-
gency departments (78). As a result, the
magnitude of biomarker levels between
treatment groups may be dampened.

The mitigation of global tissue hypoxia
and prevention of related complications ap-
pears to be of greater benefit despite the
risks and concerns of significantly more
intravenous fluid, red blood cell units, and
inotropes titrated to objective end points
during the first 6 hrs in the EGDT group
(62, 79–81). The association of vasoactive
agents, such as dobutamine effects on IL-8
and fluid type on immunomodulation, is
well established (82, 83). Dobutamine use
was significantly greater in the EGDT
group compared with the control group.
However, this study was not powered to
determine how vasoactive agents and flu-
ids modulate inflammation. This study
was performed before and in parallel to
the trials examining the efficacy of re-
combinant human activated protein C
(drotrecogin alpha), intensive insulin
therapy, and corticosteroids, so these
therapies were not part of the sepsis
treatment protocol (69, 84, 85).

CONCLUSION

In early severe sepsis and septic shock,
within the first 3 hrs of hospital presenta-
tion, distinct biomarker patterns emerge in
response to hemodynamic optimization
strategies. A significant association exists
between temporal biomarker patterns in
the first 72 hrs, severity of global tissue
hypoxia, organ dysfunction, and mortality.
These findings identify global tissue hyp-
oxia as an important contributor to the
early inflammatory response, and support
the role of hemodynamic optimization in
supplementing other established therapies
during this window of opportunity.
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