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Abstract

It is often difficult to accurately predict when, why, and which
patients develop shock, because signs of shock often occur late, once
organ injury is already present. Three levels of aggregation of
information can be used to aid the bedside clinician in this task:
analysis of derived parameters of existing measured physiologic
variables using simple bedside calculations (functional
hemodynamic monitoring); prior physiologic data of similar
subjects during periods of stability and disease to define quantitative
metrics of level of severity; and libraries of responses across large
and comprehensive collections of records of diverse subjects whose
diagnosis, therapies, and course is already known to predict not only
disease severity, but also the subsequent behavior of the subject if

left untreated or treated with one of the many therapeutic options.
The problem is in defining the minimal monitoring data set needed
to initially identify those patients across all possible processes,
and then specifically monitor their responses to targeted therapies
known to improve outcome. To address these issues, multivariable
models using machine learning data-driven classification
techniques can be used to parsimoniously predict cardiorespiratory
insufficiency. We briefly describe how these machine learning
approaches are presently applied to address earlier identification of
cardiorespiratory insufficiency and direct focused, patient-specific
management.
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Managing acutely ill patients is often
challenging. Bedside assessments of
cardiorespiratory status and evolving
systemic processes, such as sepsis, acute lung
injury, and hemorrhage, are always
disguised by the body’s own defensive
mechanisms, which evolved to sustain life
in these stressful states without the benefit
of medicine or external life support devices.
Thus, the body often hides from the casual
observer serious internal pathological
processes until they are far advanced. To
a large extent, this is very good, because it
reflects marshaling of host adaptive and
defense processes to sustain homeostasis
and enable survival. However, within the
setting of acute illness and artificial support
environments common to modern
medicine and hospital care, it provides
a veil of varying transparency that
obfuscates the accurate and timely

identification of potentially reversible
processes until they are well along in their
course, and once end-organ and systemic
failure develop. Timely detection of
pathological processes, as well as rapid
identification of proper treatments and
verification that those treatments are
working as presumed, are the major
challenges faced by acute care clinicians.
Although new and more powerful
diagnostic tools and specific targeted
therapies are being developed, there is
much that can be ascertained about the
nature of a specific patient’s physiological
status, subliminal pathological processes,
and potential responses to therapy that can
be gleaned from existing monitoring tools
and treatments that can be applied now
in the care of this high-risk/high-reward
patient population. The approaches reflect
using both functional hemodynamic

monitoring principles and more
sophisticated analyses of existing measured
physiologic data streams now reported in
the medical record and applied in diagnosis
and management in a rudimentary fashion.

Importantly, the body’s response to
pathologic stress is often formulaic. For
example, disease processes associated with
both a low cardiac output and impaired
cardiovascular reserve, such as hypovolemia
(e.g., due to hemorrhage), cardiac pump failure
(ischemic cardiomyopathy), and obstruction
(pulmonary hypertension), are all associated
with increased sympathetic tone-induced
vasoconstriction and tachycardia. In contrast,
vasodilatory states (e.g., sepsis, hypoglycemia,
spinal shock), though also displaying increased
sympathetic output causing tachycardia, have
reduced peripheral vascular responsiveness.
Thus, these disease states manifest themselves
as decreased vasomotor tone, increased
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unstressed circulatory blood volume, and, in
acute inflammatory states (e.g., due to sepsis),
vascular endothelial injury, causing increased
plasma translocation into the interstitial
spaces. Classic physiology training underscores
these differences, as quantified by
hemodynamic monitoring and blood analysis,
as central to the diagnosis and treatment of
circulatory shock (1). Unfortunately, once
circulatory shock has resulted in inadequate
tissue perfusion manifest by hyperlactecemia
and metabolic acidosis, end-organ dysfunction
and injury are already occurring. Thus, waiting
for obvious signs of circulatory shock to
occur before starting corrective therapies
exacerbates the risks of prolonging end-organ
injury. Such delayed therapy is often associated
with a greater need for increased intensity
of therapy, with its own set of possible
complications. All in all, identifying patients
earlier in their disease state and reversing those
pathological processes before they become
resistant to therapy and induce end-organ
injury must reduce morbidity, cost, and
mortality.

Three levels of aggregation of information
can be used to aid the bedside clinician in this
task (Table 1). One is the analysis of derived
parameters of existing measured variables
using simple bedside calculations. The second
is using prior physiologic data of similar
subjects during periods of stability and disease
to define quantitative metrics of level of
severity. The third approach is to use libraries
of responses across large and comprehensive
collections of records of diverse subjects
whose diagnosis, therapies, and course is
already known to predict not only disease
severity, but also the subsequent behavior of
the subject if left untreated or treated with one
of the many therapeutic options. This final
approach is probably beyond the intellectual
scope of all but the most experienced and
astute observers. However, all three levels
of integration are at our disposal, and they
can be used to diagnose impending
cardiorespiratory instability, determine the
likely etiological process, and simultaneously
determine the best therapies and monitor
response to therapy.

Determining Clinically
Relevant Physiological
Parameters from Time Series
Analysis

Clinicians routinely use derived physiological
variables in their assessment of patient status,

although often without full understanding
of their determinants. Measures of mean
airway pressure, central venous pressure
(CVP), and mean arterial pressure are
routinely reported. However, mean airway
pressure is a function of multiple interacting
processes, including airway resistance, lung
and chest wall compliance, tidal volume,
positive end-expiratory pressure, inspiratory
flow pattern, spontaneous respiratory efforts,
and artificial airway characteristics; yet it

is still used effectively as a primary target
in pressure-limited ventilatory strategies.
CVP is a function of pericardial restraint,
right ventricular diastolic and systolic
function, vasomotor tone, blood volume,
and pulmonary artery pressure. Still,
dynamic changes in CVP during spontaneous
breathing can identify volume responsiveness
(2) or right ventricular failure by its
associated decrease or increase (Kussmaul’s
sign), respectively, during inspiration.

Table 1. Levels of Real-Time Data Integration to Derive Clinically Relevant Information

1. Physiologic time series analysis based on changes in measured variables to a defined
perturbation (Functional Hemodynamic Monitoring) (19)

Changes in CVP with spontaneous inspiration
Decreasing CVP: volume responsive
Increasing CVP: right heart failure, tamponade, pulmonary hypertension

Changes in coupled arterial pulse pressure and left ventricular stroke volume with
breathing or arrhythmias (PPV/SVV)

Normal ventriculo-arterial coupling 1.2–2
Increased vasomotor tone . 2
Vasodilation , 0.9

Changes in cardiac output with passive leg raising
If .15% volume responsive
If ,15% not volume responsive

PPV or SVV during positive pressure ventilation
If PPV .13% or SVV .10% volume responsive

Dynamic changes in StO2
induced by a vascular occlusion test

StO2
deoxygenation slope is decreased impaired cardiovascular regulation

Normal value thenar eminence: 212.8 (216.2, 211.3) % min21

StO2
reoxygenation slope is decreased impaired cardiovascular reserve

Normal value thenar eminence: 297.2 (213.7, 328.6) % min-1
2. Fused parametric measures of multiple physiologic variables
APACHE (10), LODS (20), SOFA (21), etc.

All these scores fuse chronic disease, age, organ function (as assessed by laboratory
values) with bedside physiologic measures to derive a severity of illness score and
prediction of future need for acute care

MEWS (22) delayed cardiorespiratory instability prediction
Requires bedside clinician to hand enter data for calculation

Vital sign index on real time cardiorespiratory instability
Fused parameter of 5-min averaged values for heart rate, respiratory rate, SpO2

and
intermittently measured (dyssynchronous) blood pressure

3. Machine learning–based pattern recognition
Heart rate variability

Predicts sepsis in neonates (23)
Not available commercially multiple variable bedside prediction systems
Potential machine learning–based tools for multifactor analysis, pattern discovery, and

display for real-time monitoring, event detection, event forecasting, and tracking
Parametric and nonparametric classification and regression
Support vector machines
K nearest neighbors
Random forests

Null-space, state space and clustering models, probabilistic graphical models, and
spectral methods

Principal component analysis
Gaussian process models
Markov random fields
Hierarchical clustering
K-means
Gaussian mixture models

Definition of abbreviations: APACHE = Acute Physiology and Chronic Health Evaluation; CVP = central
venous pressure; LODS = Logistic Organ Dysfunction Score; MEWS = Modified Early Warning System;
PPV = pulse pressure variation; SOFA = Sepsis-Related Organ Failure Assessment; SpO2

= oxygen
saturation as measured by pulse oximetry; StO2

= tissue O2 saturation; SVV = stroke volume variation.
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The systemic arterial pressure waveform
also has many determinants, including
left ventricular (LV) stroke volume (SV),
heart rate, central arterial elastance, vasomotor
tone, and cardiac contractility. Many
physiologic parameters can be acquired
from the arterial waveform analysis. Mean
arterial pressure is calculated as the
diastolic arterial pressure plus one-third
the pulse pressure (PP; diastole to the
subsequent systole). Mean arterial pressure
is usually considered as the input pressure
for all organs of the body, except the heart,
which uses diastolic pressure as its input
pressure. A low diastolic pressure can coexist
with a nonhypotensive mean arterial
pressure if PP is high enough, so measuring
diastolic, mean, and systolic pressures are all
important in assessing organ perfusion
pressure. A low diastolic pressure usually
connotes low vasomotor tone. PP is often
used as a surrogate for LV SV, but PP is also
determined by central arterial elastance and
cardiac contractility. The body’s response to
low-flow states is to increase sympathetic
tone, causing both heart rate and peripheral
vasomotor tone to increase, such that
cardiac output is often maintained, but LV
SV decreases. Because vasomotor tone
increases, PP must increase for the same SV.
Traumatologists use the PP-to-SV ratio as
a shock index, increasing PP/SV values
reflecting increased levels of circulatory
stress (3). However, even greater insight
comes from examining the dynamic changes
in both PP and SV, as they occur during
breathing or with arrhythmias. The ratio of
PP variation (PPV) to paired SV variation
(SVV) defines a dynamic arterial elastance,
a fundamental characteristic of the central
circulation. Normal dynamic elastance varies
between 2 and 1.2, whereas values under
0.9 reflect profound vasodilation (4). Thus,
in a hypotensive patient who is volume
responsive, if the PPV/SVV is less than
0.9, then giving fluids alone will not
increase arterial pressure, although cardiac
output will increase. Those subjects also
need primary vasopressor therapy to
sustain an effective organ perfusion
pressure. Furthermore, in patients with
a stable heart rate and on mechanical
ventilation, a PPV greater than 13% or an
SVV over 10% was shown to identify those
who are volume responsive (5). Although
patients with PPV and SVV values less
than these threshold levels may also be
volume responsive, most patients with
values above these thresholds will be

volume responsive. Important caveats
limiting the generalizable use of PPV and
SVV exist, including the presence of
spontaneous breathing activity, severe
cor pulmonale, markedly increased chest
wall stiffness, and intra-abdominal
hypertension; however, as a general
guiding principle, these measures can be
applied in most patients requiring
resuscitation. Finally, near-infrared
spectroscopy measures of tissue O2

saturation are not useful in identifying
cardiovascular stress until it is well
advanced; however, when coupled to
a standardized vascular occlusion test that
allows objective quantification of local O2

desaturation and reoxygenation rates, they
clearly identify early circulatory stress (6),
subsequent response to resuscitation efforts

(7), and those critically ill patients who will
fail a weaning trial (8) or develop organ
failure (9).

Fused Parametric Measures
to Define Physiologic State

The use of fused parameters to assess patient
disease severity is not new. For example, the
Acute Physiology and Chronic Health
Evaluation (APACHE) scoring system has
evolved into an accurate means to predict
in-hospital mortality (10). Multiple other
scoring systems have been developed and
validated. However, can these approaches be
used proactively to identify patients at risk for
instability or with lower levels of instability
before overt organ system failure? Numerous

Library of Reference Data

Data Preparation

Featurization

Annotation

Machine Learning Models

Model Validation

Detection

Forecasting

Tracking

Multi-source

Multi-resolution

Multi-variate

Figure 1. Flow diagram of a typical operation of the model learning phase of a machine
learning–based pattern-recognition system. The available library of clinical data is first prepared for
training. Streams of potentially diverse data types received from multiple sources—bedside, clinical
records, medical history, patient demographics, etc., represented at varied temporal resolutions and
recencies—are featurized using any combination of expert rules, statistical characterization, data
mining, and anomaly detection techniques to extract and characterize potentially informative patterns
in data. Occurrences of the events of interest (e.g., episodes of instability) are adjudicated by
expert clinicians and annotated to serve as training examples. Annotated featurized data are then
processed by machine learning algorithms to produce reliable models for particular tasks of clinical
relevance (e.g., adverse event detection, forecasting instability, or tracking response to treatment).
Resulting models are often empirically validated using set-aside test data sets, and further validated
by expert clinicians. Results of validation can be used as feedback (dashed lines in the flow diagram)
to tune structures of the models themselves, as well as to improve feature extraction and annotation
processes (self-diagnostic algorithms, known as active learning, are often used to identify particularly
informative yet unlabeled incidents for expert annotation), and they can also be used to inform
improvements in the source data acquisition procedures, and help address data quality issues.

Data Preparation

Featurization

Annotation

Machine Learning Models PredictionsCurrent Patient Data

Library of Reference Data

Detection

Forecasting

Tracking

Multi-source

Multi-resolution

Multi-variate

Figure 2. Flow diagram of a typical operation of the performance phase of a machine learning–based
pattern-recognition system. Current observations of the monitored patient are featurized in the same
way as the data from the reference library (access to which, depending on the types of machine
learning models in use, may be required), and processed by the previously trained models to produce
predictions.
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studies have documented that critical
physiologic changes are seen in 51–86%
of patients who suffered a subsequent
cardiopulmonary arrest on general wards,
often several hours before the arrest event
(11). Clearly, improved detection is critical in
impacting the potential to rescue of unstable
patients, and earlier detection can improve
outcomes. Using a data fusion approach
based on a review of 8 weeks of naive,
noninvasive vital sign data collection in
a step-down unit, Hravnak and colleagues
(12) proposed a biosign index to score
instability based on algorithms developed by
Tarassenko and colleagues (13). When
coupled to a nurse-driven alert and
management protocol, this real-time bedside
fused parameter alert system reduced
significant physiologic insufficiency by 400%
over the subsequent 8-week interval, and
markedly reduced nursing time needed to
treat these patients. Such approaches can
also be easily crafted for other acute care
environments.

Machine Learning–based
Pattern Recognition

The next level of the physiologic data stream
analysis combines the two above approaches
into a single process (14). Machine learning
methodology scales up correlational
analyses to potentially very highly
multivariate, high-frequency, and perhaps
multisource data that could help
empirically discover leading indicators
of instability (Figure 1). To generate
potentially informative change points in
monitored hemodynamic waveforms,
Lonkar and colleagues (15) propose to
segment each high-frequency measurement
channel into sequences of nonoverlapping
time intervals, and to independently
characterize waveform frequency spectrum

in each segment. Principal component
analysis is then applied to the spectra
observed during a specific physiologic state
(e.g., periods of stability) to envelope the
range of variability of waveform patterns
that can be expected in the particular state.
The resulting null hypothesis model serves
as a reference for extracted spectra of
hemodynamic data observed in a
monitored patient. Any substantial
departure of waveform spectra from the
range of expected variability is then treated
as a potential leading indicator of the
ongoing, emerging, or ensuing episodes
of hemodynamic instability. Saria and
colleagues (16) detect motifs (i.e., patterns
sharing a specific shape [with some
variation]) in hemodynamic waveform data.
They show that some of the detected signal
templates can be predictive of instability
in neonatal intensive care unit infants
(prediction of morbidity, 86% sensitive at
96% specificity), and better performance for
particular complications (infection, 90% at
100%; cardiopulmonary, 96% at 100%).
Various data-mining algorithms can be used
to identify which of the potentially large
number (literally thousands) of patterns
detected in data systematically coincide or
precede particular events of interest
(Figure 2). In their preliminary study, Lonkar
and colleagues (15) applied probabilistic co-
occurrence analysis to isolate such promising
indicators that significantly correlate with the
near-future tachycardia episodes that occur
between tens of minutes to a few hours in the
future, and report a recall rate of 85% at less
than 5% false discovery rate, and an area
under the receiver operating characteristic
curve score of 0.857. Large numbers of
anomalous patterns and events that can be
gleaned from waveform data, which could
potentially carry useful information, may
make their clinical interpretation a daunting

task. Guillame-Bert and colleagues (17)
propose applying temporal rule learning
methodology to extract human-interpretable
logical statements expressing the most
predictive combinations of patterns and states
that can asynchronously appear in
multivariate clinical data, irrespective of
temporal resolution of their observation
(high-frequency waveforms, heartbeat to
heartbeat, breath to breath, clinical records,
demographics, etc.). The authors report
multifold improvements of recall of
instability episodes minutes ahead of their
onset, even though the training data used to
build their model was very sparse (only
130 annotated periods of instability in an
almost 1.5 patient-year stream of vital sign
data) when compared with using single vital
sign–based or fused metrics. The machine
learning framework can also be used to
probabilistically track evolution of critically ill
patients. In their preliminary work, Pimentel
and colleagues (18) used Gaussian process
regression to represent vital sign trajectories
estimated from unevenly sampled vital sign
data. This representation enables clustering
and classification of the specific patient
trajectories to help assess current status
and expected outcomes for the monitored
individuals.

Advanced analytic solutions are readily
available and can be applied to process
existing clinical data streams in real time to
derive meaningful, specific, and clinically
relevant information, which, in turn, can be
operationalized for improved patient care
and outcomes. The basic tools to accomplish
these tasks extend beyond simple data
review and routine clinical care as is
presently done, but they are within our grasp
and are limited only by our imagination. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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