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Cardiopulmonary resuscitation can restore spontaneous circulation in up to 50% of
patients suffering from cardiac arrest. However, most of these patients still die
during the postresuscitation period. Mortality is largely due to neuronal injury
after global cerebral ischemia. There is, therefore, a clear need for therapies, which
restore and protect brain function after cardiac arrest. Several years ago, mild
therapeutic hypothermia was introduced into clinical practice. It represents the first
treatment to improve both survival and neurological outcome of patients after
out-of-hospital cardiac arrest, according to randomized clinical trials. In addition to
therapeutic hypothermia, various other therapeutic options are currently being
investigated experimentally and/or clinically. These include thrombolytic therapy,
specific infusion regimens, or antiapoptotic drugs. In this article, we review both
the pathophysiological background and the efficacy of different measures that
might be useful for cerebral resuscitation.
(Anesth Analg 2009;108:971–9)

Cardiac arrest occurs frequently and is still often
fatal. Nationwide registries are presently being in-
stalled1,2; however, data extrapolated from single
studies suggest that resuscitation is attempted in
about 500,000 individuals each year in North America
and in the same number in the European Union.3–5

Spontaneous circulation can be restored in 20%–50%
of these patients3,4 (Fig. 1). Unfortunately, although,
many of these patients still die during the postresus-
citation period. Two percent to 15% of patients who
are resuscitated after out-of-hospital cardiac arrest are
discharged alive from the hospital. Most deaths dur-
ing the postresuscitation period can be attributed to
neuronal damage, which develops as a consequence of
global cerebral ischemia during cardiac arrest.6 Fur-
thermore, 40%–50% of surviving patients suffer from
permanent impairment of cognitive functions, such as
memory, attention, and executive functioning.7,8

Multistage algorithms have been developed for
cardiopulmonary resuscitation (CPR); however, when
it comes to cerebral resuscitation, i.e., restoring and
protecting brain function after cardiac arrest, our
possibilities are still limited. The purpose of this article
is to review different approaches to cerebral resusci-
tation. These include not only mild therapeutic hypo-
thermia, which is the current clinical standard, but

also various experimental methods which might find
their way to the clinic in the future.

PATHOPHYSIOLOGY OF CARDIAC ARREST
Cascades of Death

Cardiac arrest is a state of global ischemia and the
brain is extremely susceptible to this condition. Only
5–6 s after the onset of circulatory arrest, the patient
loses consciousness.9 Without a supply of blood, cere-
bral tissue oxygen tension declines continuously
reaching 0 after about 2 min.10 Simultaneously, neu-
ronal energy in terms of adenosine triphosphate is
depleted and metabolites, such as adenosine, lactate,
and hydrogen ions, accumulate in the cells.11,12 Dys-
function of the cell membrane ion pumps leads to a
severe breakdown in cellular homeostasis. One par-
ticular consequence is a massive accumulation of
calcium in the cell cytosol when calcium efflux pumps
fail, voltage-gated calcium channels open, and ligand-
gated channels are activated by released excitatory
amino acids, such as glutamate and aspartate.13,14 This
calcium overload is considered a key factor in cellular
toxicity.15

If the ischemia persists long enough, neuronal
necrosis ultimately ensues throughout the brain.16

However, neuronal energy is recovered rapidly upon
reperfusion because of CPR and return of spontaneous
circulation.11,12 Therefore, reperfusion does stop neu-
ronal degeneration to a certain degree; yet it does not
necessarily completely restore function. During reper-
fusion, free radicals form when the oxygen supply is
restored, which might even aggravate cellular dam-
age.17 The main characteristic of the reperfusion pe-
riod is that refueling adenosine triphosphate gives the
cell the opportunity to actively react to the damage.
This is associated with the expression of immediate
early genes, a complex machinery involving both cell
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survival and cell death cascades.18–21 The morphologi-
cal correlate of “subnecrotic” cellular damage is de-
layed neuronal death, which shows typical signs of
apoptosis and occurs mainly in so-called selectively
vulnerable brain areas such as the CA-1 sector of the
hippocampus, the nucleus reticularis thalami or dis-
tinct layers of the cortex18–20 (Fig. 2).

Cerebral Circulation Disorders
Return of cardiac function does not automatically

restore normal cerebral circulation. Depending on the
duration of the ischemic period, cerebral vessel dys-
function develops, which likely contributes to neuro-
nal damage. Experimentally, different phenomena can
be distinguished. First, reperfusion fails completely in
circumscribed areas of the brain (no-reflow phenom-
enon).22–24 These areas increase with the duration of
ischemia.22,24 No-reflow is probably caused by capil-
lary congestion because of edema of endothelium and

perivascular glia,25 blood cell sludging,26,27 leukocyte
adhesion,25,28 and disseminated intravascular coagu-
lation.26,29–31

Local no-reflow is paralleled by global cerebral
hyperemia during the early period of reperfusion.32,33

This is probably caused by the accumulation of me-
tabolites such as adenosine, lactate, or hydrogen ions
during ischemia,12 which are potent vasodilators.
However, within the first hour after reperfusion, reac-
tive hyperermia is followed by a global reduction in
cerebral blood flow (delayed hypoperfusion).32–34 This
phenomenon is probably caused by cerebral vaso-
spasms because of dysfunctional nitric oxide and
endothelin metabolism.35–37

Systemic Sequelae
In addition to primarily cerebral injury, ischemic

damage also occurs, of course, in other vital organs,
leading to so-called postresuscitation disease.38 Typi-
cally, myocardial function is markedly reduced after
circulation is restored.39–41 Both systolic contractility and
diastolic relaxation are impaired, leading to pronounced
hemodynamic instability. The underlying pathophysiol-
ogy of this myocardial stunning is often complex. Like
the brain, the myocardium is particularly susceptible to
the state of global ischemia.42 Additionally, as the cause
of cardiac arrest is often of cardiac origin (e.g., 50%–70%
of patients have myocardial infarction), this exacerbates
the damage to the heart.40 Even therapeutic interven-
tions during CPR could cause further damage to the
heart, namely, electrical defibrillation43 and administra-
tion of epinephrine.44

Cardiac arrest induces systemic inflammation, whereby
leukocytes and complement are activated and levels of
cytokines increased.45,46 Furthermore, coagulatory
cascades are activated immediately but without con-
comitant stimulation of endogenous fibrinolysis.29,47

Pathological changes in the different organ systems
can further affect one another. Activation of coagula-
tion contributes to cerebral no-reflow.26,29–31 Systemic
inflammation impairs myocardial function.48 Hemo-
dynamic instability worsens cerebral perfusion, be-
cause autoregulation of the cerebral vessels is often
defective after cardiac arrest.49 Moreover, and irre-
spective of all the specific interactions, the simple
truth is that the brain will only survive if the rest of the
body does.

BASIC THERAPEUTIC GOALS
After ischemia the brain is highly susceptible to

disturbances in general physiological homeosta-
sis.49–51 The first goal of all therapeutic measures
should be to establish an optimal environment for
cerebral recovery. The international guidelines on
CPR recommend maintaining normotension, normo-
glycemia, and normocapnia.52,53 However, “normal”
target values originate from healthy individuals. We
do not entirely know whether they are always ideal

Figure 1. Outcome after cardiopulmonary resuscitation
(CPR). The study included 338 patients suffering from
out-of-hospital cardiac arrest of cardiac etiology. ROSC �
restoration of spontaneous circulation.3

Figure 2. Selectively vulnerable areas of the rat brain. Neu-
ronal degeneration after cardiac arrest is seen particularly in
the CA-1 sector of the hippocampus, the nucleus reticularis
thalami (NRT), the putamen, and distinct layers of the
cortex. Neurons of the hippocampus are visualized by Nissl
staining. The black arrow indicates the border between
degenerated neurons in the CA-1 sector (red arrows) and the
adjacent, less vulnerable CA-2 sector.128
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for the injured brain too, or whether we must do even
better.

Concerning arterial blood pressure, animal experi-
mental data suggest that increasing blood pressure
might improve outcome.54 This might be due to
impaired cerebral autoregulation after ischemia.49

However, no data in this regard are available from
clinical studies.

Concerning blood glucose levels, van den Berghe et
al.55 showed that tight glucose control (80–110 mg/dL
vs 180–200 mg/dL) improved outcome in the critical
care setting. However, recent studies focusing on
patients after cardiac arrest suggest that only slightly
elevated blood glucose (�150 mg/dL) might not be
associated with worsened outcome.56,57 It is possible
that during tight glucose control with insulin, periods
of hypoglycemia that could impair outcome might not
be recognized.

MILD THERAPEUTIC HYPOTHERMIA
Hypothermia has been used therapeutically in car-

diac and neurosurgery for more than 50 yr to protect
the brain from ischemia. The first reports of postisch-
emic therapeutic hypothermia were published in the
late 1950s.58–60 Systematic investigations were initi-
ated in the late 1980s and have produced a vast
amount of both experimental and clinical data show-
ing beneficial effects of mild therapeutic hypothermia
after cardiac arrest.61–71 Evidence is provided in par-
ticular by two major randomized clinical trials that
were published in 2002.61,68 Both studies investigated
mild therapeutic hypothermia in comatose adult pa-
tients after out-of-hospital cardiac arrest because of
ventricular fibrillation.

The European multicenter trial conducted by the
Hypothermia After Cardiac Arrest study group in-
cluded 275 patients, of whom 137 were cooled to
32°C–34°C for 24 h while body temperature in the
control group was not decreased.68 Regarding out-
come at 6 mo, mortality was reduced by 26% (41% vs
55%, P � 0.02) and the portion of patients with
favorable neurological outcome increased by 40%
(55% vs 39%, P � 0.09) (Fig. 3).

The Australian trial by Bernard et al.61 covered 77
patients; hypothermia of 33°C for 12 h was applied in
43 patients. At hospital discharge, the likelihood for
good neurological outcome was 85% higher in the
hypothermic group (49% vs 26%, P � 0.046).

In a subsequent individual patient data meta-
analysis, Holzer et al.72 calculated the number-
needed-to-treat to allow one additional patient to
leave the hospital with no or only minimal neurological
damage to be six. As a consequence, the International
Liaison Committee on Resuscitation recommended in
2003 that mild therapeutic hypothermia be used in
comatose adult patients after out-of-hospital cardiac
arrest because of ventricular fibrillation.73 This recom-
mendation was implemented into the revised interna-
tional guidelines on CPR in 200552,53 (Table 1). In fact,

mild therapeutic hypothermia currently represents the
only measure which has proven efficacy in cerebral
resuscitation. However, it is still underused in many
hospitals.74,75

A variety of physiological effects that are exerted by
mild therapeutic hypothermia underlie the efficacy of
this therapy. Hypothermia reduces metabolism, and
thus cerebral oxygen demands.76 There is a decrease in
reactive oxygen species77 and excitatory amino ac-
ids78,79 during hypothermia as well as direct inhibition
of apoptosis.80 Furthermore, inhibition of coagulation
cascades81 and inflammatory reactions82 might im-
prove cerebral reperfusion. Finally, hypothermia al-
ters gene expression in a complex manner, e.g., by
enhancing the expression of brain-derived neurotro-
phic factor (BDNF)83 or the antiapoptotic protein
Bcl-2,84 whereas suppressing the proapoptotic protein
Bax84 or matrix metalloproteinase-9.85 Mild therapeu-
tic hypothermia, therefore, acts broadly on different
sequelae of cardiac arrest at the same time, which
makes it the current clinical standard in cerebral
resuscitation.

Hypothermia can be induced by different methods,
e.g., surface cooling, ice-cold infusions or endovascu-
lar cooling catheters. Although there are great differ-
ences in efficacy and invasiveness among them, it is

Figure 3. Mild therapeutic hypothermia and outcome after
cardiac arrest. The study included 275 patients successfully
resuscitated after out-of-hospital cardiac arrest because of
ventricular fibrillation. Patients in the hypothermia group
were cooled to 32°C–34°C for 24 h.68

Table 1. Indications for Mild Therapeutic Hypothermia53

Unconscious adult patients with spontaneous circulation
after out-of-hospital ventricular fibrillation cardiac arrest
should be cooled to 32°C–34°C. Cooling should be
started as soon as possible and continued for at least
12–24 h.

Induced hypothermia might also benefit unconscious adult
patients with spontaneous circulation after out-of-
hospital cardiac arrest from a nonshockable rhythm or
cardiac arrest in hospital.

A child who regains a spontaneous circulation but
remains comatose after cardiopulmonary arrest may
benefit from being cooled to a core temperature of 32°C–
34°C for 12–24 h.
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currently not clear whether one particular technique
should be preferred to the others. No studies are
available that have compared different cooling devices
with respect to “hard” clinical end points, i.e., mortal-
ity and morbidity.

However, it is commonly accepted and recom-
mended by the guidelines that hypothermia should be
initiated with minimal delay after cardiac arrest.52,53

Surface cooling or ice-cold infusions can be used
preclinically. Kim et al.86 conducted a randomized
clinical trial in which patients were assigned to either
receiving 4°C normal saline or not in the out-of-
hospital setting. After arrival at the hospital, patients
were treated according to the local preferences, i.e.,
patients were cooled or not regardless of the random-
ization. Survival rates tended to be higher in patients
who had received out-of-hospital cooling treatment.

Possible adverse effects of hypothermia include
electrolyte and intravascular volume changes, im-
paired immune defense and impaired coagulation.
However, these complications can usually be man-
aged by intensive care strategies. The two large ran-
domized clinical trials did not find a significant
increase in severe complications when compared with
normothermia.61,68 The safety of hypothermia treat-
ment has also been confirmed by newer observational
studies.87

Therapeutic hypothermia continues to be one of the
most important topics in clinical resuscitation research
today. Questions that still need to be addressed in-
clude establishing the indications for therapeutic hy-
pothermia (intrahospital cardiac arrest and treatment
in children) and cooling characteristics (target tem-
perature, cooling rate, and duration of hypothermia)
and cooling methods (external or internal). Several
current clinical trials are focusing on these issues. To
name only two, a trial in Germany is investigating
therapeutic hypothermia in in-hospital cardiac arrest
(n � 440),88 whereas a trial being conducted in France
is comparing endovascular and surface cooling in a
randomized fashion (n � 400).89

AMELIORATING MICROCIRCULATION
Thrombolysis

There are two underlying rationales for using
thrombolytics during CPR. First, cardiac arrest is
caused by acute myocardial infarction or pulmonary
embolism in 50%–70% of patients.90–92 In these two
situations, thrombolysis represents a causal and stan-
dard therapy. Second, there is evidence that coagulation
disorders are involved in the no-reflow phenomenon,
and thus in impaired cerebral circulation after cardiac
arrest. Cardiac arrest leads to activation of coagulation
without adequate fibrinolysis.29,47 Microscopic exami-
nation of cerebral vessels shows that multiple micro-
emboli develop during cardiac arrest and resuscitation.26

Although this was not known in detail in the 1950s,
Crowell et al.30,93 had already shown at that time that

pretreatment with heparin or streptokinase improved
survival in dogs after cardiac arrest. Then, 40 yr later,
Fischer et al.31 demonstrated a strong reduction in
cerebral no-reflow in cats by postarrest thrombolytic
treatment with plasminogen activator and heparin.

Clinical investigations have been less conclusive
thus far. Several small studies suggest that thrombol-
ysis during CPR might be beneficial, particularly in
patients with pulmonary embolism, but also in those
who suffer myocardial infarction.94–97 Randomized
clinical trials investigating a general use of thrombo-
lytics during CPR have produced differing results.
Whereas Fatovich et al. found an increase in resuscit-
ability (35 patients randomized), Abu-Laban et al. did
not find any benefits from thrombolytics (233 patients
randomized).98,99 The largest amount of data are pro-
vided by the European multicenter Thrombolysis in
Cardiac Arrest trial.100 After inclusion of 1050 patients,
the study was prematurely halted, because prelimi-
nary findings indicated that there was no likely benefit
of thrombolytic therapy over placebo. Further analy-
ses are expected soon. Nevertheless, all studies have
consistently shown that thrombolysis during CPR is
largely safe and not associated with increased bleed-
ing complications.98,99

Thrombolytic therapy during CPR was included in
international CPR guidelines in 2005 but only when
pulmonary embolism52,53 or myocardial infarction53 is
suspected.

Hypertonic, Hyperoncotic Infusions
A different approach to promoting microcirculation

is the use of special infusion regimens which improve
the rheological characteristics of the blood. After
initial experiments with dextran 40 or isotonic saline,101,102

current research is focusing on hypertonic-
hyperoncotic NaCl/hydroxyethyl starch (HES) solu-
tions. Several animal studies have shown that
hypertonic-hyperoncotic solutions given during CPR,
or immediately after restoration of spontaneous circu-
lation, decrease cerebral no-reflow.31,103,104 Some stud-
ies also investigated markers of neuronal damage.
Krieter et al.105 found a decrease in release of astroglial
protein S-100 after cardiac arrest in pigs after therapy
with hypertonic-hyperoncotic infusion. Noppens et
al.104 found improvements in both neurological deficit
scores and brain histology in rats. Besides having
positive effects on cerebral microcirculation, hyper-
tonic saline also seems to ameliorate cardiac function
during and after CPR.105–107

Up to now, one clinical trial has been published on
the effect of hypertonic-hyperoncotic solutions in
CPR.108 Bender et al. randomized 66 patients who
suffered out-of-hospital cardiac arrest into two
groups. The patients received 2 mL � kg�1 � 10 min�1

of either hypertonic saline with HES (7.2% NaCl with
6% HES 200,000/0.5) or HES alone during continuous
CPR. Resuscitation success tended to be higher in
patients receiving hypertonic saline with HES (66.7%
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vs 51.5%, P � 0.21) and hospital admission rates were
also increased (57.6% vs 39.4%, P � 0.14). There were
no severe side effects of hypertonic saline. However,
larger clinical trials are needed to further elucidate the
short- and long-term effects of hypertonic-hyperoncotic
solutions after cardiac arrest.

Although hypertonic-hyperoncotic infusions hold
potential for clinical use, hypothermia and thrombol-
ysis already represent, at least in part, clinical routine
for resuscitation. Thus, it would seem logical to com-
bine these different approaches. However, each
combination must first be carefully evaluated and
experimental studies are still sparse. Lin et al.109

showed that dextran 40 and streptokinase synergisti-
cally improved cerebral recovery in dogs with cardiac
arrest as measured by electroencephalogram activity.
Safar et al.110 combined dextran 40 with hypothermia
and arterial hypertension in dogs with cardiac arrest.
This combination produced the best functional and
histological outcome these investigators had ever ex-
perienced in that particular model in 15 yr of research,
including experiments in which the animals had re-
ceived dextran, hypothermia, or hypertension alone.
Although there is still a long road ahead, these experi-
ments suggest that the future might lie in combined
therapies.

INFLUENCING APOPTOSIS
Inhibitors of Apoptosis

It has been suggested that delayed neuronal death
after cardiac arrest is caused by apoptosis.18,19 Apo-
ptosis is characterized by activation of proteolytic
cascades, which ultimately result in degradation of
cellular components. The proteolytic enzyme, caspase
3, is one of the key executioners of apoptosis. There-
fore, it seemed reasonable that neuronal damage after
cardiac arrest could be ameliorated by inhibiting
caspase 3.

This question was first addressed by Chen et al.19 In
a rat model of global cerebral ischemia produced by
four-vessel occlusion, they investigated the effects of
the caspase 3 inhibitor Z-DEVD-FMK. After 7 days of
reperfusion, they found an increased number of sur-
viving cells in the selectively vulnerable CA-1 sector of
the hippocampus along with a decrease in apoptotic
cells in CA-1. However, other groups failed to repro-
duce neuroprotective effects of this or other caspase
inhibitors in experimental global cerebral ischemia or
cardiac arrest.111–113

It is now thought that the pathophysiology of
neuronal degeneration is too complex to be reduced to
only one molecule. There are probably various other
“key” effectors independent of the caspases. One
particular target is the calpain proteolytic sys-
tem.114,115 It has been shown that inhibiting both
calpains and caspases produces a synergistic effect in
preventing neuronal damage after global cerebral
ischemia.115 However, inhibition of apoptotic cascades

is still a highly experimental endeavor. Additional
studies are required to further elucidate the therapeu-
tic effects of specific interventions.

Growth Factors
Apoptotic cell death is highly regulated. Physiolog-

ically, a variety of apoptosis-inducing factors are
counterbalanced by different antiapoptotic, i.e., sur-
vival, factors. In pathological settings such as cerebral
ischemia, apoptosis is induced by a massive release of
death signals such as that from mitochondrial cyto-
chrome c.116 Theoretically, if it were possible to amplify
survival factors in the same way, cell death should be
prevented. Such an approach might be initiated by
administering growth factors, which have antiapop-
totic properties. Interestingly, endogenous nerve
growth factor (NGF) and BDNF are upregulated in
neurons after cerebral ischemia20; the expression of
BDNF is even enhanced by therapeutic hypother-
mia.83 Administration of exogenous growth factors
after cerebral ischemia has produced inconclusive
results.

One of the first such studies was conducted by
Shigeno et al.117 They gave NGF or vehicle intracere-
broventricularly before and after induction of global
cerebral ischemia in gerbils (four-vessel occlusion).
After 1 wk of reperfusion, a significant reduction in
neuronal cell death was observed in CA-1 in both NGF
pre- and posttreatment groups. However, subsequent
work suggested that this treatment effect was tran-
sient and diminished after 4 wk, leading to the same
degree of neuronal degeneration in NGF- and vehicle-
treated animals.118

Kiprianova et al.119 investigated postischemic intra-
cerebroventricular infusion of BDNF in rats with
global cerebral ischemia (four-vessel occlusion). This
treatment regimen completely prevented neuronal
death in CA-1 after 7 days of reperfusion. In contrast,
Popp et al.120 failed to show any beneficial effects of
BDNF after cardiac arrest in rats.

Similarly conflicting results have been reported for
other growth factors such as insulin-like growth factor
I,121,122 granulocyte colony-stimulating factor123,124 or
erythropoietin.125–127 Although some groups demon-
strated positive effects of these growth factors,122,123,125

others failed to show any benefit for outcome.121,124,126

In conclusion, it is still not known whether any growth
factor is capable of improving outcome after cardiac
arrest.

It is certainly too simple to assume that it does not
matter whether we reduce cellular death cascades
(selectively, for example, with caspase inhibitors or in
a much broader way with hypothermia) or activate
cellular protection (e.g., with growth factors). Cells in
a state of reduced energy and substrate levels might
fail to respond to stimulation by growth factors.
“Stepping on the gas” under such circumstances
might perhaps even accelerate degeneration.
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SUMMARY
Neuronal injury is one of the key factors in determin-

ing outcome after cardiac arrest. Cerebral resuscitation
starts with rapid restoration of spontaneous circulation
by immediate CPR and defibrillation and continues in
the postresuscitation period. Basic measures consist of
good critical care practice, such as maintaining normo-
tension, normoglycemia, and normocapnia. In addition,
several more specific postresuscitation treatment options
have been explored in recent years. All therapies for
cerebral resuscitation must face the challenge presented
by the complex pathophysiological network, which is
activated by global ischemia. An effective therapy
should act on multiple pathways simultaneously. This is
what therapeutic hypothermia does. Two large random-
ized clinical trials have proven that mild therapeutic
hypothermia is effective in improving both survival and
neurological outcome of patients after out-of-hospital
cardiac arrest. Mild therapeutic hypothermia of
32°C–34°C for 12–24 h is, therefore, clearly recom-
mended by the 2005 international guidelines on CPR.
Other cerebral resuscitation approaches are currently
being investigated experimentally and/or clinically.
Thrombolytic therapy, specific infusion regimens, or
antiapoptotic drugs might perhaps complement mild
therapeutic hypothermia in the future.
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18. Böttiger BW, Schmitz B, Wiessner C, Vogel P, Hossmann KA.
Neuronal stress response and neuronal cell damage after
cardiocirculatory arrest in rats. J Cereb Blood Flow Metab
1998;18:1077–87

19. Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH,
Simon RP. Induction of caspase-3-like protease may mediate
delayed neuronal death in the hippocampus after transient
cerebral ischemia. J Neurosci 1998;18:4914–28

20. Lindvall O, Ernfors P, Bengzon J, Kokaia Z, Smith ML, Siesjö
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expression levels of Fas/CD95 and Fas ligand in differentially
vulnerable brain areas in rats after global cerebral ischemia.
Neurosci Lett 2003;338:247–51

22. Ames A III, Wright RL, Kowada M, Thurston JM, Majno G.
Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol
1968;52:437–53
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Nurmi J, Castrén M. Strict versus moderate glucose control after
resuscitation from ventricular fibrillation. Intensive Care Med
2007;33:2093–100

58. Benson DW, Williams GR Jr, Spencer FC, Yates AJ. The use of
hypothermia after cardiac arrest. Anesth Analg 1959;38:423–8

59. Ravitch MM, Lane R, Safar P, Steichen FM, Knowles P.
Lightning stroke. Report of a case with recovery after cardiac
massage and prolonged artificial respiration. N Engl J Med
1961;264:36–8

60. Williams GR Jr, Spencer FC. The clinical use of hypothermia
following cardiac arrest. Ann Surg 1958;148:462–8

61. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W,
Gutteridge G, Smith K. Treatment of comatose survivors of
out-of-hospital cardiac arrest with induced hypothermia.
N Engl J Med 2002;346:557–63

62. Bernard SA, Jones BM, Horne MK. Clinical trial of induced
hypothermia in comatose survivors of out-of-hospital cardiac
arrest. Ann Emerg Med 1997;30:146–53

63. Busto R, Dietrich WD, Globus MYT, Ginsberg MD. Postisch-
emic moderate hypothermia inhibits CA1 hippocampal isch-
emic neuronal injury. Neurosci Lett 1989;101:299–304

64. Carroll M, Beek O. Protection against hippocampal CA1 cell
loss by post-ischemic hypothermia is dependent on delay of
initiation and duration. Metab Brain Dis 1992;7:45–50

65. Felberg RA, Krieger DW, Chuang R, Persse DE, Burgin WS,
Hickenbottom SL, Morgenstern LB, Rosales O, Grotta JC.
Hypothermia after cardiac arrest: feasibility and safety of an
external cooling protocol. Circulation 2001;104:1799–804

66. Hachimi-Idrissi S, Corne L, Ebinger G, Michotte Y, Huyghens
L. Mild hypothermia induced by a helmet device: a clinical
feasibility study. Resuscitation 2001;51:275–81

67. Horn M, Schlote W, Henrich HA. Global cerebral ischemia and
subsequent selective hypothermia. A neuropathological and
morphometrical study on ischemic neuronal damage in cat.
Acta Neuropathol 1991;81:443–9

68. Hypothermia after Cardiac Arrest Study Group. Mild thera-
peutic hypothermia to improve the neurologic outcome after
cardiac arrest. N Engl J Med 2002;346:549–56

69. Leonov Y, Sterz F, Safar P, Radovsky A, Oku K, Tisherman S,
Stezoski SW. Mild cerebral hypothermia during and after
cardiac arrest improves neurologic outcome in dogs. J Cereb
Blood Flow Metab 1990;10:57–70

70. Yanagawa Y, Ishihara S, Norio H, Takino M, Kawakami M, Takasu
A, Okamoto K, Kaneko N, Terai C, Okada Y. Preliminary clinical
outcome study of mild resuscitative hypothermia after out-of-
hospital cardiopulmonary arrest. Resuscitation 1998;39:61–6

71. Zeiner A, Holzer M, Sterz F, Behringer W, Schörkhuber W,
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Böttiger BW. Effects of the intracerebroventricular application
of insulin-like growth factor 1 (IGF-1) and its N-terminal
tripeptide (GPE) on cerebral revocery after cardiac arrest in
rats. J Neurosurg Anesthesiol 2005;17:232–3
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