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Role of Central and Mixed Venous Oxygen Saturation
Measurement in Perioperative Care
Stephen J. Shepherd, M.R.C.P., M.B.B.S.,* Rupert M. Pearse, F.R.C.A., M.B.B.S., M.D.†

Complications after major surgery are a leading cause of
morbidity and mortality. The etiology of postoperative compli-
cations is complex, but poor cardiorespiratory reserve appears
to be a key factor. There is increasing interest in the use of
central and mixed venous oxygen saturation to guide therapeu-
tic interventions during the perioperative period. However, a
detailed understanding of the physiologic principles of venous
oximetry is essential for safe and effective use in clinical prac-
tice. Venous oxygen saturation reflects the balance between
global oxygen delivery and oxygen consumption, which may be
affected by a wide range of factors during the perioperative
period. The purpose of this article is to describe the physiology
and measurement of mixed and central venous oxygen satura-
tion and to explore the findings of clinical investigations of
their use in perioperative care.

IT is estimated that 234 million major surgical procedures
are performed worldwide each year.1Complications after
major surgery are a leading cause of morbidity and mortal-
ity. High-risk surgical patients account for more than 80%
of deaths but less than 15% of in-patient procedures.2,3

Data from across the developed world confirms that
poor outcomes after high-risk surgery are a global prob-
lem.4–6 Even for those patients who survive to leave
hospital, postoperative complications remain an impor-
tant determinant of long-term survival.6 It is therefore
essential that we seek to improve outcomes for patients
undergoing major surgery.

The etiology of postoperative complications is com-
plex, but poor cardiorespiratory reserve appears a key
factor. A number of reports indicate that poor outcomes
after major surgery are strongly associated with derange-
ments in tissue oxygen delivery that may in turn relate to
impaired microvascular flow.7–10 The use of fluid and
inotropic therapy to enhance tissue oxygen delivery may
reduce the incidence of postoperative complications.11–14

There is an increasing body of literature describing
changes in central (ScvO2) and mixed venous oxygen
saturation (SvO2) during the perioperative period, which,
along with a recent study in patients with severe sep-
sis,15 has led to interest in the use of venous saturation as
a therapeutic goal for surgical patients. However, the
complexities of the physiology of venous oxygen satu-
ration are poorly recognized. A detailed understanding
of these principles is essential for the safe and effective
application in clinical practice. The aim of this article is to
describe the physiology and measurement of SvO2 and
ScvO2 and to describe the findings of the clinical investiga-
tions of the use of these variables in perioperative care.

Materials and Methods

Searches of the MEDLINE and Cochrane CENTRAL
databases from January 1968 to December 2008 were
performed by both authors using the following search
terms: (venous saturation OR venous oximetry OR SvO2

OR ScvO2) AND (surgery OR surgical OR � *operative OR
operation). Only articles published in English were in-
cluded, but no restrictions were placed on source. A
further online search was then carried out using the
Google Scholar search engine by using the following key
words: venous saturation, venous oximetry, surgery,
ScvO2, SvO2. The resulting abstracts were screened to
identify relevant investigations in adult patients under-
going major surgery. Studies were excluded if they had
not been published in a peer-reviewed journal. Bibliog-
raphies of relevant articles were also screened. Manu-
scripts were screened initially by title and then by ab-
stract before obtaining the full text of relevant articles.

Physiology of Venous Oxygen Saturation
The terms central (ScvO2) and mixed venous oxygen

saturation (SvO2) refer to the hemoglobin saturation of
blood in the superior vena cava and proximal pulmonary
artery, respectively.16 Rearrangement of the Fick equa-
tion illustrates that venous oxygen content is determined
by arterial oxygen content, oxygen consumption and
cardiac output.17 The quantity of dissolved oxygen is
small under standard conditions; therefore, the more
conveniently measured variable of hemoglobin satura-
tion is preferred. This is summarized in the equation
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below, where CO refers to cardiac output, CaO2 refers to
arterial oxygen content, CvO2 refers to venous oxygen
content, and VO2 refers to oxygen consumption.

CO �
CaO2 � CvO2

VO2
� CvO2 � CaO2 �

VO2

CO

Where oxygen supply is insufficient to meet metabolic
requirements, increased tissue oxygen extraction results in
a decrease in the oxygen content of effluent venous blood.
Venous oxygen saturation therefore reflects the balance
between global oxygen delivery (DO2) and global oxygen
consumption (VO2).18 VO2 and DO2 both fluctuate signifi-
cantly during the perioperative period, and it is of particu-
lar importance to recognize that changes in venous satura-
tion may reflect a variety of physiologic and pathologic
changes (fig. 1). The safe use of venous saturation as a
therapeutic goal depends on the prompt recognition of the
cause of any derangement. Regional variations in DO2 and
VO2 are also commonplace and clinically relevant differ-
ences in the oxygen content of venous blood are to be
expected in different parts of the circulation.19–22 In com-
mon with other global physiologic variables, the apparent
simplicity of a single variable is often associated with a lack
of sensitivity to detect regional abnormalities in an appar-
ently stable patient. There is little published data describing
the normal value of venous saturation in health. Although
commonly quoted as 70%, the available data suggest this
may vary from 70% to 80% in healthy individuals.23,24 Val-
ues of SvO2 and ScvO2 may often be as low as 65% in
hospital in-patients before elective surgery.25

Oxygen Delivery as a Determinant of Venous
Oxygen Saturation
Global oxygen delivery is determined by cardiac out-

put and the oxygen content of arterial blood as shown in

the equation below,26 where DO2 refers to oxygen de-
livery and CO to cardiac output where the Bunsen sol-
ubility coefficient for O2 at 37°C is 0.02.27

DO2 � CO � ��SaO2 � Hb � 1.34� � �0.02 � PaO2��

Adequate tissue oxygen delivery therefore depends on
the adequacy of both respiratory and cardiovascular
function. If oxygen consumption, hemoglobin concen-
tration, and arterial saturation remain constant, changes
in SvO2 are therefore directly proportional to those in
cardiac output; this relationship has been demonstrated
in several studies in man.24,28 In a study of healthy
volunteers, orthostatic hypotension resulted in a de-
crease in cardiac output from 4.3 to 2.7 l min�1 at the
onset of presyncopal symptoms.24 Over the same time
period, ScvO2 decreased from 75% at baseline to 60%.24

A clinical series of patients undergoing one-lung ventilation
demonstrated that cardiac output increased in response to
sudden decreases in arterial saturation; as a consequence,
SvO2 remained unchanged.28 Several reports describe re-
duced venous saturation in patients with a reduced cardiac
output due to myocardial infarction and/or heart fail-
ure.29–34 Changes in ScvO2 and SvO2 in these circumstances
reflect both the severity of hemodynamic disturbances and
response to treatment.29–32

The affinity of hemoglobin for oxygen is affected by
the partial pressure of oxygen (fig. 2). It may be antici-
pated from the oxyhemoglobin dissociation curve that,
at higher partial pressures of oxygen, increases in PO2

will result in only small increases in hemoglobin satura-
tion. At lower partial pressures, such as those typical of
venous blood, the same incremental rise in PO2 will
result in a greater increase of hemoglobin saturation due
to the greater oxygen affinity of deoxyhemoglobin.35

Consequently, the change in venous saturation in re-

Fig. 1. Common physiologic, pathologic, and therapeutic factors that influence venous oxygen saturation (ScvO2 and SvO2) during the
perioperative period. Safe use of venous saturation as a therapeutic goal requires prompt recognition of all causes of any
derangement.
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sponse to a step change in fractional inspired oxygen
concentration may differ considerably from simulta-
neous changes in arterial hemoglobin saturation. Clinical
and laboratory investigations have shown that an in-
crease in fractional inspired oxygen concentration re-
sults in a greater increase in oxygen saturation of venous
than arterial blood.36,37 The administration of supple-
mental oxygen may therefore be sufficient to rectify
significant abnormalities in venous saturation even
though these abnormalities may not specifically result
from alveolar hypoxia. In situations where ScvO2 or SvO2

values are being used as hemodynamic endpoints for the
administration of intravenous fluid or inotropic thera-
pies, an increase in venous saturation resulting from an
increase in fractional inspired oxygen concentration may
be misinterpreted as an indication of adequate hemody-
namic resuscitation. The potential for such simple interven-
tions to mask the effects of shock emphasizes the impor-
tance of a detailed understanding of venous oximetry.

Oxygen Consumption as a Determinant of Venous
Oxygen Saturation
Few studies have explored the relationship between

VO2 and venous saturation during the perioperative pe-
riod. This may reflect poor recognition of the impor-
tance of VO2 as a determinant of venous saturation.
Considerable changes in oxygen consumption may oc-
cur during the perioperative period. Increases in VO2

resulting from pain, anxiety, or shivering may all result in
a decrease in venous saturation,38–42 whereas the corre-
sponding treatments may rectify such derangements.43

Experimental data suggests that the extent of such de-
rangements may correlate with the magnitude of oxida-
tive stress.44 General anesthesia results in a decrease in
VO2 through reductions in general motor activity, work
of breathing, neuronal activity, and body temperature.
These changes are the result of anesthesia itself as well as
neuromuscular blockade and invasive ventilation.45–49

Volatile anesthetic agents decrease the basal metabolic

rate, with reductions in sympathetic tone and cardiac
output being more pronounced at higher doses.50 Intra-
venous hypnotics such as benzodiazepines appear to
exert similar effects on metabolic demand by blunting
the sympathetic neurohumoral response,51,52 and intra-
venous anesthetic agents such as propofol similarly re-
duce metabolic demand, with the probable exception of
ketamine, which usually increases myocardial inotropy
by increasing general sympathetic activity.53,54 Sympa-
theticolytic agents such as clonidine reduce periopera-
tive VO2.55,56 Reductions in neuronal oxygen consump-
tion occur with the administration of volatile anesthetic
agents, barbiturates, benzodiazepines, and propofol.57–61

Opiates may similarly reduce perioperative VO2.62–65

Neuraxial blockade has both sympatheticolytic and analge-
sic effects,66,67 but we are unaware of reports specifically
describing effects on VO2.

Relationship between SvO2 And ScvO2

While the determinants of ScvO2 and SvO2 are very
similar, the relationship between the two variables is
complex and they cannot be used interchangeably.68–73

Regional variations in the balance between DO2 and VO2

result in differences in the hemoglobin saturation of
blood in the superior and inferior vena cavae.74 Stream-
ing of caval blood continues within the right atrium and
ventricle and complete mixing only occurs during ven-
tricular contraction. The drainage of myocardial venous
blood directly into the right atrium via the coronary
sinus and cardiac chambers via the Thebesian veins
results in further discrepancies.16 Consequently, SvO2

reflects the balance between oxygen supply and demand
averaged across the entire body but ScvO2 is affected
disproportionately by changes in the upper body.74 In
healthy individuals, ScvO2 is usually 2–5% less than
SvO2,16 largely because of the high oxygen content of
effluent venous blood from the kidneys.22 This relation-
ship changes during periods of hemodynamic instability
because blood is redistributed to the upper body at the
expense of the splanchnic and renal circulations.75 In
shock states, therefore, the observed relationship be-
tween ScvO2 and SvO2 may reverse, and the absolute
value of ScvO2 may exceed that of SvO2 by up to 20%.73

This lack of numerical equivalence has been demon-
strated in various groups of critically ill patients, includ-
ing those with cardiogenic, septic and hemorrhagic
shock.31,68–70,76–78 This has also been demonstrated in
patients undergoing general anesthesia for cardiac71,72,79

and noncardiac surgery.69,80 Although trends in ScvO2

may closely reflect those of SvO2, absolute values differ
and the variables cannot be used interchangeably.68–72

This observation is sometimes cited in support of con-
tinued use of the pulmonary artery catheter. However,
there is no evidence to suggest one variable is of greater
clinical value than the other. As the use of the pulmonary
artery catheter declines, measurement of ScvO2 is usually

Fig. 2. Oxy-hemoglobin dissociation curve illustrating the dif-
ference in gradient at PO2 levels typical for arterial and venous
blood. The greater affinity of deoxy-hemoglobin results in a
greater step change in sulfur dioxide (SO2) in venous blood than
in arterial blood after an increase in fractional inspired oxygen
concentration. This phenomenon has the potential to cause
confusion in cases where venous saturation is employed as an
endpoint for hemodynamic therapy.
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more convenient than SvO2, although ScvO2 measure-
ments cannot be cannot be used to calculate VO2 or
shunt fraction.72

Measurement of Venous Oxygen Saturation
Cardiac catheterization was first performed in 1929 by

Werner Forssmann, a major advance that allowed the
measurement of SvO2 and hence application of Fick’s
principle to measure cardiac output.81,82 However, it
was not until 1970 that the introduction of the balloon-
tipped pulmonary artery catheter facilitated the routine
clinical measurement of SvO2.81 Reports of the clinical
utility of ScvO2 predate those of SvO2 by several
years.29,33 Measurement of venous saturation may be
performed either intermittently by blood sampling and
cooximetry or continuously through the use of a spec-
trophotometric catheter.

Intermittent Blood Sampling and Cooximetry
Cooximetry involves the measurement of hemoglobin

saturation by spectrophotometry by using widely avail-
able blood gas analysis technology. The differences in
light absorption spectra between oxygenated and deoxy-
genated hemoglobin allow calculation of the hemoglobin
saturation of blood. This also allows the identification of
other forms of hemoglobin such as methemoglobin and
carboxyhemoglobin. Cooximetry is a reliable and well-es-
tablished technique. However, in clinical practice it may be
inconvenient to make frequent measurements by using this
approach. Specific errors result from sample contamina-
tion, delayed measurement, and sampling from the incor-
rect site.83,84 As with any form of venous oximetry, inter-
pretation errors may arise due to intracardiac shunts,
tricuspid regurgitation, and catheter misplacement.84

When taking blood samples, syringe aspiration should be
gentle enough to avoid high negative pressure that may
increase the aspiration of pulmonary capillary blood and
hence produce falsely high readings for oxygen saturation.

Continuous Measurement Using an Indwelling
Fiberoptic Catheter
The introduction of optical fiber technology has al-

lowed the continuous measurement of venous saturation
by spectrophotometry using indwelling pulmonary ar-
tery or central venous catheters. The major benefit of
this approach is the provision of continuous data allow-
ing the detection of sudden fluctuations in venous satu-
ration, which are common during the perioperative pe-
riod.85,86 The principle disadvantages of this technology
are the additional cost and signal drift, although the latter
can be addressed by recalibration. Advances in the tech-
nology have addressed the problem of interference from
other optically active compounds such carboxyhemoglo-
bin and bilirubin.

Observational Studies of Perioperative Changes in
ScvO2 and SvO2

Abnormalities of venous saturation are common dur-
ing and after major surgery and are associated with an
increased incidence of postoperative complications.87–91

Reductions in ScvO2 and SvO2 also have prognostic sig-
nificance in heart failure, trauma, and sepsis.92–95 These
observations are no surprise, given the wide range of
pathologic abnormalities that affect venous saturation in
the perioperative period.87–89

Noncardiac Surgery
Two studies have been performed in noncardiac sur-

gical patients with complementary findings. In the first
observational study of 117 patients, the lowest recorded
value of ScvO2 in the early postoperative period was
independently associated with subsequent complica-
tions, the optimal cut-off for the lowest ScvO2 value
being 64.4%.87 Interestingly, a considerable decrease in
ScvO2 was observed within the first hour after surgery,
possibly as a consequence of increased VO2 after the
cessation of general anesthesia (fig. 3). In a further mul-
ticenter observational study of 60 patients, the mean
value of ScvO2 was found to be reduced at various time
points throughout the perioperative period in patients
who developed complications.88 The optimal cutoff
value in this study for the mean ScvO2 value was 73%.
These investigations not only provide strong evidence
to support the role of ScvO2 as a therapeutic target,
but they are also highly consistent in suggesting the
most appropriate target value to be an ScvO2 value of
approximately 75%. However, these findings do not
indicate how venous saturation should be used as a
therapeutic goal. A range of factors influence VO2,
DO2, and therefore venous saturation during the peri-
operative period, not all of which are pathologic in
nature. The most appropriate therapy to achieve a
venous saturation endpoint may vary.

Fig. 3. Changes in central venous oxygen saturation (ScvO2)
after major noncardiac surgery. Reductions in ScvO2 below 65%
were associated with an increased incidence of postoperative
complications. Note the significant decrease in ScvO2 in the first
hour after surgery, which may reflect increases in oxygen con-
sumption after cessation of general anesthesia (*P < 0.0001).
Adapted from Pearse R, et al. Changes in central venous satura-
tion after major surgery and association with outcome. Critical
Care 2005; 9:R694–9.
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Cardiothoracic Surgery
Alterations in SvO2 have been described in patients

undergoing cardio-thoracic surgery, although no reports
of changes in ScvO2 were identified.89–91 Derangements
in SvO2 occur before any changes in mean arterial pres-
sure or heart rate are observed,96 and they appear to
correlate well with changes in cardiac index.86 Early
work in patients undergoing both cardiac and pulmo-
nary surgery demonstrated that sustained reductions in
SvO2 below 65% were associated with a higher incidence
of complications, particularly arrhythmias.97 Increases in
oxygen extraction ratio, derived through measurement
of SvO2, have also been associated with postoperative
organ failure and prolonged intensive care stay.90,91,98

During lung transplantation, changes in SvO2 reflected
adverse clinical events, although this series is too small
to support any more detailed conclusions.99 During car-
diopulmonary bypass, SvO2 may prove a more specific
indicator of global oxygen delivery; pump flow (or car-
diac output) and metabolic rate are generally constant in
these circumstances.100,101

Trauma
The effects of hypovolemia on venous saturation have

been described in both animals and humans.73,102,103

Fluctuations in SvO2 and ScvO2 closely mirror periods of
hemorrhage and subsequent resuscitation in anesthe-
tized dogs.73,102 A case series of ten victims of mainly
penetrating trauma described similar changes in SvO2.103

Venous saturation may provide a useful indication of the
severity of blood loss that is more reliable than conven-
tional cardiovascular variables such as heart rate and
arterial and central venous pressure.102,103 A single small
case series describes the use of normal levels of SvO2 as
therapeutic target in trauma patients in which the au-
thors suggest a survival benefit.104 However, the study
has a number of limitations, and the data do not appear
to support such conclusions.

Interventional Trials Utilizing ScvO2 and SvO2 as
Therapeutic Targets in the Perioperative Period
Noncardiac Surgery Our literature search identified

only one interventional trial using ScvO2 as a therapeutic
goal in perioperative care.105 This was a multicenter trial
of 135 patients undergoing major abdominal (including
aortic) surgery. All patients received fluid challenges,
dobutamine up to 15 �g · kg�1 · min�1 and blood
transfusions to achieve predefined goals for arterial pres-
sure, urine output, and central venous pressure.105

These same therapies were administered in the interven-
tion group to achieve the additional goal of an estimated
oxygen extraction ratio of less than 27%, the value of
which was calculated using intermittent measurements
of ScvO2. Trial interventions were continued until an
unspecified time on the first postoperative day. Dobut-
amine was administered more frequently and in greater

doses to the ScvO2 group (2.6 � 4.0 �g · kg�1 · min�1 vs.
0.4 � 2.2 �g · kg�1 · min�1; P � 0.001). Volumes of
intravenous fluid and transfused blood were similar in
the two groups, although fluid challenges were com-
menced earlier stage in the ScvO2 group. Fewer patients
in the ScvO2 group developed organ failure (8 of 68
patients [11.8%] vs. 20 of 67 patients [29.8%]; P � 0.05).
The duration of hospital stay was also reduced in the
ScvO2 group (11.3 � 3.8 days vs. 13.4 � 6.1 days; P �
0.05), whereas mortality was low in both groups (2.9%
vs. 3.0%; absolute values not reported). This was an
important investigation with encouraging findings. How-
ever, there are some limitations that prevent full inter-
pretation of the results. The report provides little infor-
mation regarding the standardization of interventions
that are frequent confounders in trials of this size. In
particular, there is little or no description of those inter-
ventions likely to limit excessive VO2. These include
anesthesia, analgesia, temperature maintenance, postop-
erative sedation, ventilation, and other aspects of post-
operative critical care. It is unclear why the investigators
chose to use estimated oxygen extraction ratio as a
hemodynamic goal rather than absolute values of ScvO2.
Although this may reduce the effects of alveolar hypox-
emia as a confounder, the use of ScvO2 to calculate oxygen
extraction ratio is considered unreliable.68,73,76,80,106 In
common with a number of similar trials, the small sam-
ple size limits the generalizability of the findings.11–13

Although the multicenter design offsets this somewhat,
much larger trials are clearly needed to resolve the ques-
tion of effectiveness in routine clinical practice.

In an earlier study of patients undergoing peripheral
vascular surgery, the use of SvO2 as a therapeutic end-
point for inotropic therapy was not associated with any
change in outcome.107 Patients undergoing aortic recon-
struction or limb salvage procedures were admitted to
intensive care 12 hours preoperatively for pulmonary
artery catheter placement. Initial values of SvO2 were
surprisingly low but responded significantly in the inter-
vention group (59.1% to 68.8%). However, final SvO2

values were similar in the two groups (70.0% vs. 70.1%)
perhaps explaining the similar outcomes.

Cardiothoracic Surgery Polonen et al. randomized
196 patients undergoing elective cardiac surgery to a
protocol involving the administration of intravenous
fluid and inotropic therapy to attain a target SvO2 of at
least 70% in the first 8 h after surgery.108 Dobutamine
was administered in doses of up to 15 �g · kg�1 · min�1

where the target SvO2 was not achieved with intravenous
fluid alone. Control group patients were administered
intravenous fluid and dobutamine to meet goals for pul-
monary artery occlusion pressure, cardiac index, arterial
pressure, and hematocrit. SvO2 was similar in the two
groups at baseline (control group 67 � 6% vs. SvO2

group 67 � 6%), but there were greater improvements
in SvO2 in the SvO2 group (control group 69 � 5% vs.
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SvO2 group 71 � 4%; P � 0.001). SvO2-guided therapy
was associated with a reduction in both hospital stay (7
[5–8] days vs. 6 [5–7] days; P � 0.05) and the number of
patients developing complications (11 patients [5.6%]
vs. 2 patients [1.0%]; P � 0.01). It is uncertain whether
such a small mean difference in SvO2 of 2% is a true
reflection of these improved clinical outcomes. In com-
mon with other trials, the intervention protocol princi-
pally targeted SvO2 by increasing DO2. In addition, the
authors report measures in all patients that would have
minimized excessive VO2. These include postoperative
sedation and ventilation that was discontinued only
when the patient was normothermic and hemodynami-
cally stable. Hemodynamic therapy to attain a target
value for SvO2 is more appropriate in this context as
confounding causes of decreased venous saturation are
minimized. This treatment approach is possible after
cardiac surgery where postoperative intensive care ad-
mission is a standard of care; this is not always the case
for high-risk noncardiac surgery.2,3

Conclusions
ScvO2 and SvO2 reflect important pathophysiological

changes in oxygen delivery and consumption that occur
during the perioperative period. The most appropriate
clinical interventions to rectify abnormalities of venous
saturation may therefore vary widely. Supplemental ox-
ygen, respiratory support, blood products, intravenous
fluid, inotropic therapy, anesthesia, analgesia, sedation,
and rewarming are all commonly used perioperative
interventions that affect venous oxygen saturation. Small
clinical trials suggest that the use of venous saturation as
a therapeutic goal for hemodynamic therapy may reduce
postoperative complication rates. However, these stud-
ies are not large enough to demonstrate a mortality
benefit and are poorly generalizable. Further research is
required to establish the most appropriate treatment
algorithms for the use of ScvO2 and SvO2 in perioperative
care. Large, prospective, randomized control trials
should then be undertaken to confirm the effects of such
an approach on clinical outcomes.
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