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Abstract 
Catecholamines are endogenous neurosignalling mediators and hormones. They are integral in maintaining homeo-
stasis by promptly responding to any stressor. Their synthetic equivalents are the current mainstay of treatment in 
shock states to counteract myocardial depression and/or vasoplegia. These phenomena are related in large part to 
decreased adrenoreceptor sensitivity and altered adrenergic signalling, with resultant vascular and cardiomyocyte 
hyporeactivity. Catecholamines are predominantly used in supraphysiological doses to overcome these pathological 
consequences. However, these adrenergic agents cause direct organ damage and have multiple ‘off-target’ biologi-
cal effects on immune, metabolic and coagulation pathways, most of which are not monitored or recognised at 
the bedside. Such detrimental consequences may contribute negatively to patient outcomes. This review explores 
the schizophrenic ‘Jekyll-and-Hyde’ characteristics of catecholamines in critical illness, as they are both necessary for 
survival yet detrimental in excess. This article covers catecholamine physiology, the pleiotropic effects of catechola-
mines on various body systems and pathways, and potential alternatives for haemodynamic support and adrenergic 
modulation in the critically ill.
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Impact of inflammatory shock on the 
cardiovascular system
Recognition of pathogen-associated molecular patterns 
(PAMPs) related to microorganisms and/or release of 
intracellular damage-associated molecular patterns 
(DAMPs) from injured cells, such as mitochondria, heat 
shock proteins and intracellular cytokines, triggers a sys-
temic inflammatory host response [1]. Indeed, DAMPs 
act through similar receptors to those that recognise 
PAMPs [2, 3]. This inflammatory response modulates 
multiple downstream pathways ranging from immune 
to cardiovascular, hormonal to coagulation, metabolic to 
bioenergetic [4]. When inflammation is excessive and/or 
dysregulated, macro- and microcirculatory abnormalities 
ensue [5]. Myocardial depression, excessive vasodilation 

and increased capillary leak, resulting in hypovolae-
mia and tissue oedema, may all impede delivery of suf-
ficient oxygen and substrate to meet cellular metabolic 
demands. This will be compounded by mitochondrial 
dysfunction that further compromises ATP production 
[6]. Cells may defend themselves by reducing metabolic 
activity to lessen the risk of activating death pathways, 
but at the cost of a decreased functionality [7]. Therefore, 
‘inflammatory’ shock constitutes the hallmark of sepsis, 
but also a final common pathway of any form of severe, 
protracted tissue hypoperfusion or cellular poisoning.

Therapeutic interventions targeting microcirculatory 
and mitochondrial dysfunction are currently lacking, so 
management of inflammatory shock focuses on treating 
the macrocirculatory abnormalities while correcting/
removing the underlying trigger event. Hypovolaemia is 
ubiquitous during the early stages of inflammatory shock, 
due to both external losses and capillary leak. However, 
even after volume expansion, patients often remain 
haemodynamically compromised due to myocardial 
depression and vasoplegia.
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Myocardial dysfunction is commonplace during shock 
states. Systolic and diastolic dysfunction occurs in up to 
50 and 25 % of patients with septic shock, respectively [8, 
9]. Serum troponin and natriuretic peptides are elevated 
[10, 11] indicative of both myocardial injury and dysfunc-
tion, and both prognosticate for poor outcomes. Myo-
cardial dysfunction is usually reversible in survivors of 
sepsis, with little or no obvious long-term consequences 
on cardiac function [12]. Several mechanisms contribute 
to myocardial depression [8], including reduced numbers 
and functionality of β1-adrenoreceptors, voltage-acti-
vated calcium (Ca2+) channels and ryanodine receptors, 
resulting in decreased intracellular Ca2+ and less actin–
myosin cross-bridge formation. In addition, the sarco-
plasmic reticulum has reduced Ca2+ reuptake affecting 
diastolic relaxation, while myofibrils show reduced Ca2+ 
sensitivity, and mitochondrial dysfunction makes less 
energy available for the contraction–relaxation process.

Vascular dysfunction is a hallmark of acute critical illness. 
Vascular tone and often blood pressure are compromised 
despite high levels of endogenous and exogenous vasopres-
sors. Mechanisms contributing to vasoplegia include over-
production of vasodilatory mediators, such as nitric oxide 
and eicosanoids; alterations in the main hormonal axes, 
with catecholamine hyporesponsiveness, vasopressin defi-
ciency, dysfunction of the hypothalamic–pituitary–adrenal 
axis and renin–angiotensin–aldosterone system; decreased 
Ca2+-sensitivity; and activation of vascular smooth muscle 
ATP-sensitive potassium channels [13–15].

Although the pathogenesis of inflammatory shock is 
multifactorial and not yet fully understood, it does not 
include catecholamine deficiency. Endogenous epineph-
rine and norepinephrine levels in serum are markedly 
elevated in septic patients [16, 17]. However, catecho-
lamines exert a plethora of other non-haemodynamic 
effects. They are a key component of the stress response, 
a finely tuned cardiovascular, metabolic, immune and 
neurobehavioural process preserved through the course 
of evolution [18]. While integral to coping with acutely 
demanding situations, the stress response—and thus cat-
echolamine overload—may be detrimental if its magni-
tude and/or duration is excessive.

Physiological effects of catecholamines
To better understand how persistently supraphysiologi-
cal endogenous and/or exogenous catecholamine levels 
can produce maladaptation in stressful disease states, it is 
useful to first describe their pleiotropic actions in normal 
physiology.

Catecholamines function as both neurotransmit-
ters when released into the synaptic space, and hor-
mones when released into the bloodstream. They 
are produced from tyrosine hydroxylation to DOPA 

(L-3,4-dihydroxyphenylalanine), with subsequent cell-
specific reactions producing dopamine, norepinephrine 
and epinephrine (Fig.  1). Catecholamines are stored in 
cytosolic granules and released via a Ca2+-dependent 
mechanism triggered by the action potential in adrener-
gic synapses and by sympathetic discharges in the adre-
nal medulla. Adrenergic receptors are G-protein coupled 
and comprise α, β and γ subunits. The α-subunit deter-
mines the signal transduction pathway, with receptors 
classified depending upon which α-subunit they contain. 
Gs and Gi receptors stimulate and inhibit, respectively, 
the cyclic adenosine monophosphate/protein kinase A 
(cAMP/PKA) pathway, ultimately leading to phosphoryl-
ation (Gs) or de-phosphorylation (Gi) of target proteins. 
Gq receptors stimulate the inositol 1,4,5-triphosphate/
diacylglycerol (IP3/DAG) pathway, ultimately increasing 
intracellular Ca2+ (Fig. 2) [19].

Central nervous system
Neurons located in the locus coeruleus and the lateral 
tegmental field represent the core of the noradrener-
gic system. These receive inputs from, and send outputs 
to, virtually every region of the central nervous system. 
All adrenoreceptor subtypes are found within the cen-
tral nervous system, but α1-receptors predominate. The 
noradrenergic system is crucial for many physiological 
(sensory perception and anti-nociception, muscle tone 
and contraction, modulation of the autonomic nervous 
system, regulation of body temperature and hormone 
secretion, sleep–wake cycle) and cognitive (arousal 
and attention, memory storage and recall, learning and 
behavioural adaptation) functions. Its alterations are 
implicated in psychiatric disorders including anxiety, 
depression and post-traumatic stress [20].

Autonomic nervous system and adrenal medulla
The sympathetic division of the autonomic nervous sys-
tem originates from the intermediolateral column of the 
thoracolumbar spinal cord. Axons (preganglionic fibres) 
leave the spinal cord and enter paravertebral sympathetic 
ganglia. Here, they stimulate ganglionic neurons, whose 
axons (postganglionic fibres) form plexuses around the 
body’s main arteries, entering target organs alongside 
the vascular supply. At the organ level, they release nor-
epinephrine that binds to α- and β-receptors of smooth 
muscle and glandular epithelial cells, the ultimate target 
of the autonomic nervous system. The adrenal medulla 
constitutes the inner portion of the adrenal gland and is 
an ectopic sympathetic ganglion; indeed, it is innervated 
by preganglionic fibres from the 7th–9th thoracic seg-
ments. In response to sympathetic stimulation, chromaf-
fin cells release epinephrine and norepinephrine into the 
circulation at a ratio of 85:15 [21].
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Cardiovascular system
Catecholamines increase cardiac output through increas-
ing heart rate and stroke volume via cardiac β1-receptors, 
and increasing venous return via venous α1-receptors. 
Vascular tone alters through activation of arteriolar 

constricting α1-receptors or dilating β2-receptors. Blood 
pressure, the product of cardiac output and vascular 
resistance, changes accordingly.

Chronotropism
Catecholamines modulate heart rate through the 
sinoatrial and atrioventricular nodes. Stimulation of β1-
receptors on nodal cells leads to phosphorylation of the 
sodium (Na+) and Ca2+ channels responsible for the 
inward “funny” current (If), leading to an influx of Na+ 
and Ca2+ and an increased frequency of cell firing.

Inotropism
Activation of cardiomyocyte β1-receptors increases the 
amount of Ca2+ that enters the cardiomyocyte. Here, 
Ca2+ binds to troponin  C, inducing a conformational 
change in the troponin complex, allowing actin and myo-
sin to bind. A higher Ca2+ concentration increases the 
number of actin–myosin bonds, ultimately increasing the 
force of heart contraction.

Myocardial energetic requirements
Ca2+ entering the cardiomyocyte during each depolari-
sation must be pumped back outside the cell or into the 
sarcoplasmic reticulum. As this transport occurs against 
both electrical and chemical gradients, it requires energy. 
ATP is also consumed to “re-load” the myosin heads. 
ATP turnover in cardiomyocytes is extremely high; 
the heart renews 6 kg of ATP (20 times its own weight) 
daily. Indeed, cardiomyocytes contain more mitochon-
dria (one-third of their volume) than any other cell type 
[22]. Catecholamines increase myocardial energy and 
therefore oxygen requirements as they increase both the 
amount of ATP required per beat (inotropism) and the 
number of beats per minute (chronotropism). Catecho-
lamine overload induces cardiomyocyte death in human 
and animal models, both in vitro and in vivo [23, 24].

Peripheral circulation
As with cardiomyocytes, vascular smooth muscle cell 
contraction is driven by myosin “loading” and “spring-
ing back”. In smooth muscle cells myosin activity is regu-
lated by phosphorylation, provided by myosin light-chain 
kinase (MLCK). Catecholamines induce either vasocon-
striction or vasodilation depending on the receptor they 
bind to, and, ultimately, upon their effect on MLCK. The 
α1-adrenoreceptors increase intracellular Ca2+ which, in 
turn, activates MLCK, thereby inducing contraction. The 
β2-adrenoreceptors induce production of cAMP, activa-
tion of PKA and phosphorylation of MLCK, inducing 
relaxation. Some vascular beds are relatively insensi-
tive to catecholamines, either because they have fewer 
adrenoreceptors, or different mechanisms and mediators 

Fig. 1 The catecholamine (red) synthesis pathway, with involved 
enzymes (green) and coenzymes/group donors (blue). The last 
biosynthetic step is restricted to some adrenergic neurons and to 
chromaffin cells in the adrenal medulla, and requires the presence of 
glucocorticoids (adapted from Wurtman [109])

Fig. 2 Catecholamines stimulate α1-, α2- and β-adrenoreceptors (red), 
which are coupled with Gq, Gi and Gs proteins (green), respectively. 
Signal transduction pathways are exemplified: effector enzymes 
are shown in orange, second messengers in purple, and green and 
red arrows indicate stimulation and inhibition, respectively. PLC-β 
phospholipase C-β, PIP2 phosphatidylinositol 4,5-bisphosphate, IP3 
inositol 1,4,5-triphosphate, DAG diacylglycerol, PKC protein kinase C, 
AC adenylate cyclase, AMP adenosine monophosphate, cAMP cyclic 
adenosine monophosphate, PKA protein kinase A
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prevail locally. These beds can self-regulate blood flow 
over a wide range of blood pressures (e.g. cerebral and 
renal circulations), or couple flow to cellular metabolic 
demands (e.g. cerebral and coronary circulations). How-
ever, the hepato-splanchnic, muscular and cutaneous 
circulations depend on mean arterial pressure and local 
vascular resistance for their perfusion. The effect of cat-
echolamines on a regional circulation depends on the 
balance between increased cardiac output and systemic 
arterial pressure on the one hand and regional arteriolar 
tone on the other.

Gastrointestinal tract
Catecholamines can affect virtually every cell within the 
gastrointestinal tract. Neurally released norepinephrine 
influences the enteric nervous system located within 
the submucosa and muscularis of the splanchnic organs. 
This can act independently of autonomic control to finely 
modulate epithelial, smooth muscular and immune cells 
[25].

The gut also produces catecholamines. Being in part 
gut-derived, norepinephrine is highly concentrated 
within the portal circulation [26]. Kupffer cells and 
hepatocytes are thus exposed to high catecholamine 
levels, norepinephrine induces cytokine production by 
Kupffer cells [27] and hepatocellular dysfunction via α2-
receptors [28]. Catecholamines also modulate blood flow 
to the gut and are important mediators in diverting blood 
flow away from the splanchnic district towards other 
more needy organs such as the brain, heart and skeletal 
muscle during, for example, exercise.

Metabolism
Catecholamines induce a catabolic state that is integral to 
the fight-or-flight response. They promote breakdown of 
glycogen and triglyceride stores to generate glucose, fatty 
acids and ketone bodies as ready fuel for heart, brain and 
skeletal muscle. Catecholamines stimulate lactate release 
from muscle to provide fuel source for varied organs 
including brain, liver, heart and kidney [29].

Haemostasis
Sympathetic activation affects haemostasis through 
inducing release of von Willebrand factor and factor VIII 
(mediated by β-receptors), and by promoting platelet 
activation, aggregation and secretion (mediated by both 
α- and β-receptors). This translates into significantly 
accelerated blood clotting. Catecholamines stimulate the 
amplification phase of clot formation and stabilisation so, 
strictly speaking, they are not prothrombotic but rather 
induce faster thrombus generation. Thrombus generation 
has been implicated in the pathogenesis of cardiovascu-
lar disease and is likely to occur during critical illness; 

however, the extent of the phenomenon and its clinical 
relevance have yet to be determined [30].

Immune system
Adrenergic agents influence virtually every aspect of the 
innate and adaptive immune response. Immune cells are 
targeted by the nervous system via exposure to circulat-
ing catecholamines, but also via sympathetic innervation 
of lymphoid organs: bone marrow, lymph nodes, thymus 
and spleen [31]. Almost all immune cells express (mainly 
β2-) adrenergic receptors; moreover, they produce con-
siderable amounts of catecholamines, especially when 
exposed to pathogens [32]. Activation of the sympathetic 
and parasympathetic nervous systems are, in general, 
inhibitory on innate immune responses at both systemic 
and regional levels. On the other hand, peripheral nerv-
ous system activation will often amplify local innate 
immune responses [33]. Catecholamines also modulate 
proliferation, differentiation and apoptosis of the adap-
tive immune system cells, as well as cytokine production 
(see below).

Pathological effects of catecholamines and impact 
on outcomes
The previous section highlights the crucial role that cat-
echolamines play in health. This can however spil over 
into harm affecting multiple organ systems. However, 
among all the pleiotropic actions of catecholamines men-
tioned above and summarised in Fig. 3, only their cardio-
vascular effects are routinely monitored and targeted in 
critically ill patients.

The effects of neural activation on the immune system 
illustrate the potential negativity of excess catecholamines 
in critical illness. Severe infection represents an obvi-
ous stressful state and the innate immune response relies 
mainly upon non-specific inflammation and phagocyte 
recruitment to eliminate pathogens. However, catechola-
mines inhibit the phagocytic capacity of both neutrophils 
and macrophages in vitro, and impair the ability of neu-
trophils to generate a respiratory burst [34]. Overall, the 
in vitro effect of catecholamines can be summarised as an 
inhibition of adaptive immunity, characterised by gener-
alised lymphopenia—due to inhibition of proliferation of 
T helper, T cytotoxic and B cells—and a shift in Th1/Th2 
balance towards Th2 polarisation, as demonstrated by 
low Th1/Th2 cell, TNF-α/IL-4 and IFN-γ/IL-4 ratios [35, 
36]. If these effects are translated to the in vivo situation, 
these would appear to be counter-intuitive in combatting 
infection. On similar lines, catecholamines can promote 
growth of virtually every bacterial species [37–39], per-
haps through increasing iron availability [40]. In addition, 
they augment bacterial virulence by promoting biofilm 
formation and virulence-related gene transcription [41], 
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Fig. 3 Pleiotropic effects of neurally released (via the sympathetic nervous system) and circulating (produced by the adrenal medulla) catecholamines
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and bacterial recovery following an antibiotic challenge 
[42]. Catecholamines can mimic bacterial signalling mol-
ecules termed “autoinducers” [43]; these operate within 
the context of bacterial collective decision-making (quo-
rum sensing). Depending upon environmental condi-
tions, bacterial behaviour can change from beneficial 
or neutral (commensal/saprophytic) to organised host 
attack (pathogenic) [44]. The interplay between the adr-
energic and immune systems and bacteria is indeed 
highly complex. Indeed, a picture of lymphopenia, a low 
Th1/Th2 ratio and bacterial overproliferation identical to 
that induced by catecholamines in vitro are found in vivo 
in both animal models and patients with stroke-associ-
ated infections [45, 46]. High catecholamine levels are 
associated with more severe lymphopenia, and a greater 
risk of infection and death [46, 47]. In murine models, 
β-adrenergic blockade could reverse these immunologi-
cal and microbiological alterations and improve survival 
[45]. In critically ill patients, lymphopenia and a low Th1/
Th2 ratio are poor prognostic biomarkers [48].

With respect to metabolism, excess catecholamines 
induce insulin resistance, increase hepatic glycogenolysis 
and gluconeogenesis, and inhibit glycogen synthesis in 
skeletal muscle, all of which induce hyperglycaemia [49]. 
This provides a ready source of glucose substrate in acute 
stress, but is detrimental if prolonged. The β3-receptors 
on adipose cells mediate the lipolytic effects of catecho-
lamines by stimulating hormone-sensitive lipase, which 
breaks down triglycerides to glycerol and fatty acids that 
are subsequently released into the circulation. Free fatty 
acids represent an important energy source for the heart; 
however, their accumulation has both pro-inflammatory 
[50] and cardiotoxic [51] effects.

The splanchnic circulation is an important vascular 
bed jeopardised during shock states [52]. Catechola-
mines, most notably epinephrine, are potent mesenteric 
vasoconstrictors. While helping to preserve ‘vital’ organ 
perfusion, they can induce or aggravate gut ischaemia 
[53] and perhaps contribute to decreased barrier func-
tion, with translocation of bacteria and/or toxins [54]. 
Circulating catecholamines promote leukocyte influx to 
the intestinal mucosa [55], bacterial–epithelium adhe-
sion [56], bacterial internalisation [57] and virulence (see 
above).

A hyperadrenergic state is responsible for the revers-
ible myocardial depression that characterises both 
phaeochromocytoma crisis [58] and the stress-related 
(Takotsubo) cardiomyopathy [59]. This latter “broken 
heart” syndrome can be triggered by a physical or emo-
tional upset and is characterised by very high plasma 
levels of catecholamines and cardiac injury/dysfunc-
tion biomarkers such as troponin and B-type natriuretic 
peptide, echocardiographic abnormalities such as apical 

ballooning, and variable electrocardiographic changes 
yet normal coronary arteries. Stress cardiomyopathy can 
mimic acute coronary syndromes and may lead to heart 
failure; it is also recognised after isolated brain injury, 
perhaps representing the ultimate effort of the damaged 
brain to ensure its own perfusion at any cost [60].

In many other clinical conditions not primarily caused 
by an adrenergic surge, a persistent stress response can 
be identified. In fact, numerous examples can be found 
where adrenergic excess, both endogenous and exog-
enous, is associated with poor outcome. Catecholaminer-
gic overload is associated with a poor prognosis in acute 
coronary syndromes, heart failure, liver cirrhosis and 
acute cerebrovascular disease [61–64]. High catechola-
mine levels prognosticate worse outcomes in patients 
with trauma and infection [65, 66] regardless of disease 
severity, and even in otherwise healthy, high-functioning 
elderly subjects [67].

Notwithstanding this association with adverse out-
comes, adrenergic agonists remain the mainstay of car-
diovascular support. Norepinephrine is the current 
recommended first-line agent for low vascular resistance 
states, while dobutamine is recommended for myocar-
dial dysfunction [68]. Epinephrine has both inotropic and 
pressor properties that can be used as an alternative to 
either [69]. It is likely that these exogenous catechola-
mines will add further to the endogenous stress response, 
therefore increasing total adrenergic stress. After adjust-
ments for propensity scoring, dobutamine administration 
was independently associated with increased mortality 
in acute heart failure and after cardiac surgery [70, 71]. 
High levels of endogenous [72] and exogenous [73] cat-
echolamines as well as a persistently high heart rate [74] 
predict poor patient outcomes in sepsis. While high cat-
echolamine levels could simply be a marker of disease 
severity, they may also be a perpetrator of further organ 
dysfunction. Indeed, increasing catecholamine doses 
were associated with increasing mortality, independent 
of effects on blood pressure [75]. Even in the setting of 
cardiac arrest, epinephrine use and dose are independent 
predictors of poor recovery [76, 77].

Alternatives to catecholamines
The potential iatrogenic contribution of catecholamine 
administration to poor outcomes demands further 
study. While useful and even life-saving for short-term 
restoration of tissue perfusion or correction of life-
threatening hypotension, catecholamines—like any 
drug—can be poisonous when given in excess. Attempt-
ing to minimise catecholamine dosing by selecting an 
appropriate blood pressure target for the individual 
patient, optimising sedation and other hypotensive/
myocardial depressant agents, optimising fluid loading 
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and using alternative approaches should all be given due 
consideration.

The first step towards reducing adrenergic (over)load 
is to not necessarily target “normal” or “supranormal” 
haemodynamic values. While too low a blood pres-
sure or cardiac output may compromise tissue perfu-
sion and oxygenation, neither increasing blood pressure 
>65  mmHg [78] nor targeting “supranormal” values 
of cardiac output [79] translated into an overall sur-
vival benefit. Indeed, previously normotensive patients 
trended to worse outcomes when a higher blood pressure 
was targeted [75]. Similarly, many patients with criti-
cal illness have often unrecognized diastolic dysfunction 
and this may be compromised further by the use of cat-
echolamines [9]. In spite of this evidence, catecholamine 
overuse is still commonplace, even when the mean arte-
rial pressure is well above the declared targets. In a recent 
randomised controlled trial, most patients had mean 
arterial pressure values well above the target range, yet 
were still receiving high dose of catecholamines despite 
the study protocol prompting their rapid de-escalation 
[78].

A variety of non-adrenergic inotropes and vasopres-
sors, and adjunct therapies have been investigated for 
myocardial depression and vasoplegia in both preclini-
cal and clinical studies (Table 1). These agents also have 
their own side-effect profiles. Thus, none have yet con-
clusively demonstrated a clear benefit over adrenergic 
equivalents, and some studies were stopped prematurely 
because of harm [80, 81]. However, post hoc analyses do 
suggest benefit in certain subsets of patients. Options for 
vasoplegia include vasopressin and its analogues, nitric 
oxide and eicosanoid modulation [82, 83], angiotensin II 
[84], inhibition of vascular smooth muscle potassium 
channels [85], and fever control by external cooling [86]. 
Despite no overall outcome benefit compared to norepi-
nephrine, low dose AVP reduced catecholamine require-
ments and offered improved survival rates in patients 
receiving lower doses of norepinephrine at baseline [87]. 
Myocardial depression has also been treated with levo-
simendan or glucose–insulin–potassium therapy; pre-
clinical or small patient studies demonstrate short-term 
benefits [88, 89]. A randomised controlled trial of 516 
patients assessing levosimendan in septic shock is shortly 
to complete enrolment [90]. In terms of adjunct therapy, 
corticosteroid therapy has been extensively studied in 
septic shock; corticosteroids increase adrenergic recep-
tor transcription and thus cardiac [91] and vascular [92] 
responsiveness to catecholamines, and many critically ill 
patients have adrenal dysfunction which is prognostically 
relevant [93]. Clinical trials demonstrated that stress-
dose glucocorticoids led to a quicker resolution of shock 
[94]. While there was no overall survival effect, a benefit 

was seen in patients with vasopressor-resistant shock, for 
which corticosteroids are currently recommended [68].

Finally, significant attention has been stimulated by 
a recent single-centre study from Rome [95] assessing 
the role of beta-adrenergic blockade in a poor prognosis 
subset of patients with septic shock, i.e. requiring high 
doses of catecholamines after 24  h and with a concur-
rent tachycardia. Those patients randomised to esmolol 
demonstrated significant reductions in mortality, time on 
vasopressors, and renal and myocardial injury compared 
to the control group.

The stress response is highly preserved in different 
species. From an evolutionary point of view, the organ-
ism must be able to cope with physically or psychologi-
cally demanding situations. However, as critical illness 
and management in a critical care unit are characterised 
by a severe and abnormally prolonged stressor response, 
this response may become maladaptive. Given this prem-
ise, attenuation of an excessive adrenergic component 
of the stress reaction is a tempting therapeutic option 
during sepsis and other critically ill states. Pretreatment 
with β-blockers reduced mortality in animal models 
[96], while β-blocker use before hospital admission was 
associated with increased survival rates [97, 98]. Dur-
ing established sepsis in animal models, beta blockade 
controlled heart rate without reducing stroke volume 
or blood pressure [99]; furthermore, improved cardiac 
function, decreased inflammation, preserved intestinal 
barrier function and improved survival have all been 
demonstrated [96, 100–103]. In patient studies, titration 
of β-blocker dosing to a target heart rate appears feasible 
without compromising haemodynamics in most patients; 
stroke volume usually increases while catecholamine 
requirements decrease [95, 104]. Possible mechanisms 
include improved ventricular filling and ventricular-arte-
rial coupling; restoration of adrenergic receptor density, 
which may have been reduced by excessive catecho-
lamine stimulation [101, 105]; and a decrease in the 
systemic inflammatory response [106, 107]. More inves-
tigation is required to confirm benefit from beta blockade 
in sepsis and other critical illness states. Patient selection 
and close monitoring are likely to be crucial in this set-
ting because of the risk of worsening myocardial dysfunc-
tion. Fixed-dose (i.e. not titrated to individual needs) beta 
blockade can be detrimental [108].

Conclusions
Although some degree of sympathetic activation is 
required for survival of a patient or animal under the 
stressful conditions of sepsis, adrenergic overload has sev-
eral underappreciated side effects that may impact nega-
tively on final outcome. Several strategies exist to avoid 
catecholamine overstimulation during critical illness, 
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including acceptance of abnormal haemodynamic values 
that remain compatible with adequate organ perfusion, 
use of non-catecholamine vasopressors and inotropes, 
and β-adrenergic blockade. The last of these is a promis-
ing therapeutic tool that requires further investigation 
in order to identify those subset(s) of patients who may 
either benefit or be harmed from such an intervention.
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Table 1 Alternatives to catecholamines for inflammatory shock

Non-adrenergic options for vasoplegia and myocardial depression, as well as steroid adjunct therapy, are summarised. Only drugs that reached the clinical scenario 
were included

NOS NO synthase, L-NMMA L-NGmono-methylargininine, PHP pyridoxalated haemoglobin polyoxyethylene, NSAIDs non-steroidal anti-inflammatory drugs, COX 
cyclooxygenase, GIK glucose–insulin–potassium

Drug Clinical results

Vasopressors
Vasopressin and analogues

 Vasopressin Vasopressor, possible survival benefit in less severe patients

 Terlipressin Vasopressor; no major trials

 Selepressin Vasopressor, reduces capillary leak; ongoing clinical trial

Renin–angiotensin–aldosterone system

 Antgiotensin II Vasopressor; no major trials

Nitric oxide (NO) system inhibitors

 Methylene blue Vasopressor; no major trials

 iNOS inhibitors (L-NMMA) Vasopressor, but increases mortality

 NO scavengers (PHP) Vasopressor, but increases mortality

Eicosanoid system inhibitors (NSAIDs)

 Nonselective (ibuprofen) Minor haemodynamic improvement; no effect on outcome

 COX-2 inhibitors (lornoxicam) No haemodynamic improvement; no major trials

ATP-sensitive potassium channel blockers

 Sulfonylureas (glibenclamide) No haemodynamic improvement, more hypoglycaemia; no major trials

Inotropes 

Phosphodiesterase III inhibitors

 Milrinone Inodilator; no major trials in sepsis/shock

Na+/K+-ATPase inhibitors
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Metabolic enhancement
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Glucocorticoids

 Low dose Haemodynamic improvement, possible survival benefit in more severe patients

 High dose Haemodynamic improvement, but increases mortality
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