Preface

CO₂-derived variables for hemodynamic management in critically ill patients

 CO_2 measurement carries significant physiologic and clinical information when analyzing hemodynamic status and ventilation of patients. While much focus is on O_2 based data, CO_2 derived parameters can provide a wealth of additional information. This is becoming more readily available as technological advances are making headways in CO_2 measurements.

The classic targets clinicians follow in patients in shock have shortcomings. The central venous oxygen saturation (ScVO₂) was once hailed as the ideal target to guide resuscitation of patients in shock (1). More recent data challenged its role and reduced its value, although it remains a helpful physiologic parameter to follow (2,3). A normal ScVO₂ does not exclude tissue hypoperfusion and could misguide the clinician. Lactic acid is another closely monitored parameter which reflects tissue perfusion. It is also advocated for in multiple guidelines, but also has its own shortcomings: it can be elevated for reasons other than tissue perfusion such as adrenergic stimulation, increased glycolytic activity or reduced clearance from liver dysfunction (4-6). The venous-to-arterial CO₂ partial pressure difference (ΔPCO_2) and tissue CO₂ could help alleviate some of these limitations.

According to the Fick equation, and similar to O_2 metabolism, CO_2 production (VCO₂) is directly proportional to the cardiac output (CO) and the venous-to-arterial CO₂ content difference. The CO₂ content is linearly related to the partial pressure of CO₂ over the general physiological range of CO₂ content (7). Moreover, the mixed venous values correlate with the central venous values (8). Hence the Fick equation can be rewritten as follows: $\Delta PCO_2 = k \times VCO_2/CO$, where the k is a pseudo-linear coefficient supposed to be linear in physiological states.

Based on this modified Fick equation, and for patients in a steady state, ΔPCO_2 is <u>inversely</u> proportional to <u>CO</u>. ΔPCO_2 and its relation to the CO has been studied in a number of situations, including patients in shock on vasopressors, and found to be an appropriate target to titrate such agents (9,10).

 ΔPCO_2 has similar value in the operating room, where optimizing tissue perfusion and O₂ delivery is essential to reduce post-operative complications. For high risk non cardiac surgical patients, ΔPCO_2 can be used to reflect CO, identify patients that are not adequately resuscitated and along with $\Delta PCO_2/C(a-v)O_2$ ratio predict post-operative complications (11). This might not be true with cardiac surgical patients, who have different macro and micro hemodynamic changes (12).

Tissue hypercarbia is a common observation in patients in circulatory failure. Tissue CO_2 values are a reflection of the adequacy of tissue perfusion, as reduced blood flow leads to blood stagnation and failure of CO_2 washout from the tissues. This stagnant hypercapnia phenomenon reflects tissue hypoperfusion, even earlier than systemic parameters (13). This is especially relevant in sepsis where the impaired microcirculation, arteriovenous shunting and reduction in capillary density culminate in heterogeneous tissue perfusion. Direct optical videoscopy permits to assess these microcirculatory changes, but is yet to reach the bedside for mainstream use. Tissue capnometry, on the other hand, might offer similar data and is becoming more readily available.

Gastric, sublingual, bladder and transcutaneous PCO_2 values have been assessed in critically ill patients. The stomach is easy to access, can be used to detect gastric hypoperfusion and splanchnic ischemia. The gastric PCO_2 correlates with outcomes in the critical care and operating room settings (14). The sublingual vasculature has drawn significant interest as it reflects pathologic changes seen during septic shock. Measuring sublingual CO_2 offers a way to assess the microcirculation in such patients (15). Overall, the tissue CO_2 gap seems to perform better than systemic parameters, paving the way to use it as a resuscitation target for septic shock.

Transcutaneous CO_2 (tcPCO₂) offers another non-invasive method to estimate PaCO₂ with many studies establishing a good correlation between the 2 values (16). Some restrictions persist including the optimal site for tcPCO₂ measurement (earlobe with its high vascularity seems to perform better than other sites), technological delays (time is needed to sensor equilibration) and a gap between PaCO₂ variations and reflection in the tcPCO₂ value. Nonetheless, when the appropriate conditions are met and the skin perfusion is normal, tcPCO₂ reflects PcCO₂. Similar to other tissues, and as was discussed in the prior section, for patients in shock, the transcutaneous CO₂ gap is a good reflection of tissue perfusion and as such can be used for hemodynamic measurements.

S1526

Based on the Fick equation as it applies to O_2 and CO_2 , the $\Delta PCO_2/C(a-v)O_2$ ratio equals VCO_2/VO_2 and hence the respiratory quotient (RQ). While under aerobic conditions, RQ values ranges between 0.6 to less than 1, RQ changes with anaerobic metabolism. This is due to VCO_2 increases to a larger extent than VO_2 under anaerobic conditions. While this is of paramount importance diagnostically, it was also found to be valuable parameter to target during resuscitation (17,18).

The following review articles summarize the available literature on CO_2 physiology and clinical value, as it pertains to the critical care setting as well as the operating room.

Acknowledgments

None.

References

- Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368-77.
- ProCESS Investigators., Yealy DM, Kellum JA, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med 2014;370:1683-93.
- ARISE Investigators, ANZICS Clinical Trials Group, Peake SL, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med 2014;371:1496-506.
- 4. Vary TC, Siegel JH, Nakatani T, et al. Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol 1986;250:E634-40.
- 5. Pastor CM, Billiar TR, Losser MR, et al. Liver injury during sepsis. J Crit Care 1995;10:183-97.
- 6. Levraut J, Ciebiera JP, Chave S, et al. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 1998;157:1021-6.
- Giovannini I, Chiarla C, Boldrini G, et al. Calculation of venoarterial CO2 concentration difference. J Appl Physiol (1985) 1993;74:959-64.
- 8. Walley KR. Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med 2011;184:514-20.
- 9. Mallat J, Benzidi Y, Salleron J, et al. Time course of central venous-to-arterial carbon dioxide tension difference in septic shock patients receiving incremental doses of dobutamine. Intensive Care Med 2014;40:404-11.
- 10. Teboul JL, Mercat A, Lenique F, et al. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med 1998;26:1007-10.
- 11. Robin E, Futier E, Pires O, et al. Central venous-to-arterial carbon dioxide difference as a prognostic tool in high-risk surgical patients. Crit Care 2015;19:227.
- 12. Guinot PG, Badoux L, Bernard E, et al. Central Venous-to-Arterial Carbon Dioxide Partial Pressure Difference in Patients Undergoing Cardiac Surgery is Not Related to Postoperative Outcomes. J Cardiothorac Vasc Anesth 2017;31:1190-6.
- 13. Teboul JL, Scheeren T. Understanding the Haldane effect. Intensive Care Med 2017;43:91-3.
- 14. Mallat J, Vallet B. Mucosal and cutaneous capnometry for the assessment of tissue hypoperfusion. Minerva Anestesiol 2018;84:68-80.
- 15. Ince C, Boerma EC, Cecconi M, et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med 2018;44:281-99.
- 16. Eberhard P. The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions. Anesth Analg 2007;105:S48-52.
- Monnet X, Julien F, Ait-Hamou N, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med 2013;41:1412-20.
- Mallat J, Lemyze M, Meddour M, et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann Intensive Care 2016;6:10.

Boulos Nassar^{1,2}, Jihad Mallat¹

¹Department of Critical Care Medicine, Critical Care Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE; ²University of Iowa Hospitals and Clinics, Pulmonary and Critical Care Division, Iowa City, USA (Email: boulosnassar@gmail.com; mallatjihad@gmail.com) doi: 10.21037/jtd.2019.04.94 Conflicts of Interest: The authors have no conflicts of interest to declare.

View this article at: http://dx.doi.org/10.21037/jtd.2019.04.94

Cite this article as: Nassar B, Mallat J. CO₂-derived variables for hemodynamic management in critically ill patients. J Thorac Dis 2019;11(Suppl 11):S1525-S1527. doi: 10.21037/ jtd.2019.04.94

S1527

How can CO₂-derived indices guide resuscitation in critically ill patients?

Francesco Gavelli^{1,2,3}, Jean-Louis Teboul^{1,2}, Xavier Monnet^{1,2}

¹Service de médecine intensive-réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France; ²Université Paris-Sud, Faculté de médecine Paris-Sud, Inserm UMR S_999, Le Kremlin-Bicêtre, France; ³Emergency Medicine Unit, Department of Translational Medicine, Università degli Studi del Piemonte Orientale, Novara, Italy

Contributions: (I) Conception and design: All authors; (II) Administrative support: All authors; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Dr. Francesco Gavelli, MD. Service de médecine intensive-réanimation, Hôpital de Bicêtre, 78, rue du Général Leclerc, F-94270 Le Kremlin-Bicêtre, France. Email: gavelli.francesco@gmail.com.

Abstract: Assessing the adequacy of oxygen delivery with oxygen requirements is one of the key-goal of haemodynamic resuscitation. Clinical examination, lactate and central or mixed venous oxygen saturation $(S_vO_2 \text{ and } S_{cv}O_2, \text{ respectively})$ all have their limitations. Many of them may be overcome by the use of the carbon dioxide (CO_2) -derived variables. The venoarterial difference in CO₂ tension (" ΔPCO_2 " or "<u>PCO₂</u> gap") is not an indicator of anaerobic metabolism since it is influenced by the oxygen consumption. By contrast, it reliably indicates whether blood flow is sufficient to carry CO₂ from the peripheral tissue to the lungs in view of its clearance: it, thus, reflects the adequacy of cardiac output with the metabolic condition. The ratio of the PCO₂ gap with the arteriovenous difference of oxygen content (PCO₂ gap/C_{a-v}O₂) might be a marker of anaerobiosis. Conversely to S_vO₂ and S_{cv}O₂, it remains interpretable if the oxygen extraction is impaired as it is in case of sepsis. Compared to lactate, it has the main advantage to change without delay and to provide a real-time monitoring of tissue hypoxia.

Keywords: PCO₂ gap; cardiac output; tissue hypoxia; lactate; respiratory quotient

Submitted Jun 26, 2019. Accepted for publication Jul 02, 2019. doi: 10.21037/jtd.2019.07.10 View this article at: http://dx.doi.org/10.21037/jtd.2019.07.10

Introduction

In patients with acute circulatory failure, one of the goals of the treatment is to increase cardiac output. The aim is to improve the oxygen delivery to the tissues and correct the mismatch between oxygen demand and supply, which is the hallmark of shock (1). However, no absolute normal value of cardiac output or oxygen delivery can be defined, as their adequate value basically depends on the tissue oxygen requirements. The correct value of cardiac output is the one that ensures a flow of oxygen that meets the metabolic demand (2,3). Then, any treatment aimed at changing cardiac output, such as fluid or inotropes, must be driven by the assessment of the adequacy between oxygen demand and supply.

To assess this adequacy, clinical examination has still a limited value. Signs of skin hypoperfusion do not reliably detect tissue hypoxia (4). Urine output may reflect the kidney perfusion, but it might be altered by many other factors during shock. Moreover, it depends on the presence or absence of a prior renal failure, and it cannot be used anymore as an indicator of the kidney perfusion in the case of acute tubular necrosis (5). Blood lactate may increase due to many processes not related to tissue oxygenation, leading to false positives (6). Furthermore, the blood lactate production and lactate clearance, thus the delay required by its metabolism precludes one using it as a real-time marker of tissue metabolism (7). Oxygen saturation of the mixed (S_vO_2) or the central $(S_{cv}O_2)$ venous blood is <u>often</u> in the normal range in septic shock despite <u>anaerobic</u> metabolism, because of the <u>alteration</u> of tissue <u>oxygen</u> extraction (8).

In this context, the indices derived from the arterial and central or mixed venous blood partial tension in carbon dioxide (CO_2) were proposed to overcome many of the limitations of the previous variables to indicate the adequacy of oxygen supply and requirements (9).

The meaning of PCO₂ gap

What is the PCO₂ gap?

The difference between the mixed venous content (C_vCO_2) and the arterial content (C_aCO_2) of CO₂ reflects the balance between its production by the tissues and its elimination through the lungs. This venoarterial difference in CO₂ content (CCO_2) can be estimated at the bedside by the venoarterial difference in PCO₂ (P_vCO₂ - P_aCO₂), named PCO₂ gap or Δ PCO₂.

It is not possible to understand its clinical value without understanding how CO_2 is produced, transported and eliminated, in aerobic and anaerobic conditions.

CO₂ production

Under normoxic conditions, CO_2 is produced in the cells during oxidative metabolism. The CO_2 production (VCO₂) is directly related to the global O_2 consumption (VO₂) by the relation:

$VCO_2 = R \times VO_2$ [1]

where R is the respiratory quotient. R may vary from 0.7 to 1 depending on the predominant energetic substrate (0.7 for lipids, 1 for carbohydrates). Therefore, under aerobic conditions, CO_2 production should increase either because the aerobic metabolism increases or, for a given VO₂, because more carbohydrates are used as energetic substrates.

Under hypoxic conditions, \underline{CO}_2 is produced in the cells through buffering of excessively produced protons by local bicarbonate ions (HCO₃⁻). Protons are generated by two mechanisms (10). First, CO₂ increases because of the hydrolysis of adenosine triphosphate and of adenosine diphosphate that occurs in anaerobic conditions. Second, a potential but minor source of CO₂ production under anaerobic conditions is the decarboxylation of some substrates produced by intermediate metabolism (α ketoglutarate or oxaloacetate) (10).

How is CO₂ transported?

 CO_2 is transported in the blood in three forms: dissolved (10%), carried in bicarbonate ions (60%) and associated with proteins as carbamino compounds (30%). Compared to what happens for O_2 , the dissolved form of CO_2 plays a more significant role in its transport because CO_2 is approximately 20 to 30 times more soluble than O_2 . However, the main proportion of CO_2 is carried in bicarbonates, which result from the reaction of CO_2 and water molecules:

 $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow HCO_3^- + H^+$ [2]

From the tissues, CO_2 diffuses into the red blood cells, where erythrocytic carbonic anhydrase catalyses CO_2 hydration, converting most CO_2 and H_2O to HCO_3^- and H^+ (11). In the red blood cells, dissolved CO_2 can also be fixed by haemoglobin. This fixation depends on the oxidation state of haemoglobin, since CO_2 has a greater affinity for reduced than for oxygenated haemoglobin (12). This is called the "Haldane effect" (13,14). In the peripheral capillaries this phenomenon facilitates the loading of CO_2 by the blood, while O_2 is delivered to the tissues. By contrast, in the lungs, the Haldane effect enhances the unloading of CO_2 while O_2 is transferred to haemoglobin.

Finally, the carbamino compounds are formed by combining the CO_2 with the terminal NH_2 groups of proteins, especially with the globin of haemoglobin. This reaction is also favoured by haemoglobin deoxygenation.

How is CO₂ eliminated?

The three forms of CO_2 are carried by the blood flow to pulmonary circulation and eliminated by ventilation. Passive diffusion from the capillaries to the alveoli eliminates CO_2 , depending on the difference in the gas tension between both spaces.

What is the relationship between CCO₂ and PCO₂?

Since CCO_2 results from the combination of the three forms by which CO_2 is transported, the formula to calculate it is complex and not practical for clinical purposes (15). In this regard, the possibility to derive CCO_2 from one single component, notably the PCO_2 , is useful:

$PCO_2 = k \times CCO_2$

[3]

The k value is influenced by the degree of blood pH, haematocrit and the arterial oxygen saturation (16-18) (*Figure 1*). As a matter of fact, the relationship between

[6]

Figure 1 Relationship between content (CCO₂) and partial pressure (PCO₂) of carbon dioxide.

 CCO_2 and PCO_2 is almost linear over the physiological range (*Figure 1*). Then, in clinical practice, the <u>PCO_2</u> gap is an <u>estimate</u> of the <u>difference</u> between venous and arterial CO_2 content ($C_{v-a}CO_2$).

What are the determinants of the PCO₂ gap?

According to the Fick equation applied to CO_2 , the CO_2 excretion (which equals CO_2 production— VCO_2 —in steady state) equals the product of cardiac output by the difference between mixed venous CCO_2 (C_vCO_2) and arterial CCO_2 (C_aCO_2):

$$VCO_2 = \text{cardiac output} \times (C_v CO_2 - C_a CO_2)$$
 [4]

As mentioned above, under physiological conditions, CCO_2 can be substituted by PCO_2 (PCO₂= k × CCO₂) so that:

$$\Delta \frac{PCO_2}{PCO_2} = k \times \left(\frac{C_v CO_2}{C_a CO_2} - \frac{C_a CO_2}{C_a CO_2} \right)$$
[5]
and

 $VCO_2 = cardiac output \times \Delta PCO_2/k$

Thus, ΔPCO_2 can be calculated from a modified Fick equation:

$$\Delta PCO_2 = (k \times VCO_2) / \text{cardiac output}$$
[7]

where k is the factor cited above in the relationship between PCO_2 and CCO_2 .

This relationship between $\triangle PCO_2$ and cardiac output expresses the fact that, <u>if cardiac output</u> is <u>low</u>, the <u>CO_2</u> clearance decreases, <u>CO_2</u> stagnates at the <u>venous</u> side and <u>P_vCO_2</u> increases relatively to <u>P₄CO_2</u> at the venous level: this leads to an increase in the <u>PCO_2</u> gap.

In other words, for a given VCO_2 , a decrease in cardiac output results in an increased PCO_2 gap and *vice versa*. This was found by experimental studies in which, when cardiac output was gradually reduced under conditions of stable VO_2 , the PCO₂ gap was observed to concomitantly increase (9,19). Conversely, in a clinical study performed in normolactatemic patients with cardiac failure, the increase in cardiac index induced by dobutamine was associated with a decrease in the PCO₂ gap, while VO_2 was unchanged (20).

How to use the PCO₂ gap in clinical practice?

Can $\triangle PCO_2$ be used as a marker of tissue bypoxia? No!

During cardiac arrest large increases in ΔPCO_2 were reported suggesting that ΔPCO_2 can increase during tissue hypoxia (21,22). However, because of the physiologic facts explained above, ΔPCO_2 is not a straightforward indicator of anaerobic metabolism.

Indeed, in case of tissue hypoxia, ΔPCO_2 can increase, decrease or remain unchanged, since the determinants of ΔPCO_2 can change in opposite directions.

First, as mentioned above, the k factor (defining the relationship between PCO_2 and CCO_2) increases in case of tissue hypoxia, increasing the PCO_2 gap even if the venoarterial difference in CCO_2 does not change (artefactual increase of ΔPCO_2).

Second, during tissue hypoxia, CO_2 production should decrease as a result of the decrease in VO_2 : the less O_2 is consumed, the less CO_2 is produced. In an animal study where cardiac output was experimentally decreased by tamponade, Zhang and Vincent observed that, below a critical level of O_2 delivery, the further decrease in both cardiac output and O_2 delivery resulted in a progressive decrease in VCO₂ along with the decrease in VO₂ (9).

Since during tissue hypoxia, k must increase (tending

Figure 2 Illustration of the influence of cardiac output on the amplitude of the venoarterial difference of carbon dioxide partial pressure. P_aCO_2 , arterial partial pressure in carbon dioxide; P_vCO_2 , venous partial pressure in carbon dioxide; Qc, cardiac output; ΔPCO_2 , venoarterial difference of carbon dioxide partial pressure.

to increase $\triangle PCO_2$) and VCO₂ must decrease (tending to decrease $\triangle PCO_2$), the resultant effect on $\triangle PCO_2$ will mainly depend on cardiac output [$\triangle PCO_2 = (k \times VCO_2)/cardiac$ output] (23).

Therefore, two situations should be distinguished: tissue hypoxia with reduced blood flow and tissue hypoxia with preserved or high blood flow (*Figure 2*).

In cases of *tissue bypoxia* with reduced systemic blood flow, P_vCO_2 increases relatively to P_aCO_2 due to the venous stagnation phenomenon, which increases ΔPCO_2 . In this regard, in experimental studies where tissue hypoxia was induced by reducing blood flow, high values of ΔPCO_2 were found (19,24).

On the other hand, in cases of *tissue hypoxia* with preserved or high systemic blood flow ΔPCO_2 should be normal or even reduced. The high efferent venous blood flow should be sufficient to wash out the CO₂ produced by the tissues, preventing stagnation and ΔPCO_2 increase.

Results from several clinical studies have supported this hypothesis. Bakker *et al.* (25) found that most patients with septic shock had a $\Delta PCO_2 \leq 6$ mmHg. Cardiac index obtained in this subgroup of patients was significantly higher than that obtained in the subgroup of patients with a ΔPCO_2 >6 mmHg. Interestingly, the two subgroups did not differ in terms of blood lactate. Although VCO₂ and VO₂ were not directly measured, these data suggest that differences in CO₂ production did not account for differences in ΔPCO_2 . In other words, many patients had a normal ΔPCO_2 despite tissue hypoxia, probably because their high blood flow had easily removed CO₂ produced by the tissues. Similar findings were reported by Mecher *et al.* (26). Clearly, these latter studies (25,26) underline the poor sensitivity of ΔPCO_2 to detect tissue hypoxia.

Normal or low $\triangle PCO_2$ values were also reported in hypotensive patients with fulminant hepatic failure with tissue hypoxia, as strongly suggested by the increase in VO₂ after prostacyclin infusion (27). At baseline $\triangle PCO_2$ was very low, which was probably due to the fact that VCO₂ was low—as suggested by the low VO₂—and that cardiac output was very high. These findings strongly support the fact that high flow states shock should result in a decrease, rather than an increase, of the <u>PCO₂ gap</u>.

The major role of cardiac output in the value of ΔPCO_2 was demonstrated in animal studies that compared ΔPCO_2 changes between models of ischemic hypoxia and models of hypoxic hypoxia (28,29). Ischemic hypoxia was created by reducing blood flow using progressive bleeding in pigs (28) or in sheep (29). Hypoxic hypoxia was created either by a

Figure 3 Interpretation of indices of tissue oxygenation. Hb, haemoglobin; S_vO_2 , venous oxygen saturation; S_aO_2 , arterial oxygen saturation; $C_{a,v}O_2$, arteriovenous difference in oxygen content; ΔPCO_2 , venoarterial difference in carbon dioxide partial pressure.

progressive reduction of inspired oxygen concentration (28) or by progressive intratracheal instillation of hydrochloric acid (29). In both studies, cardiac output remained unchanged in the hypoxic hypoxia group. Significantly, ΔPCO_2 increased in the ischemic hypoxia group whereas it remained unchanged in the hypoxic hypoxia group (28,29). Similar results were reported by Vallet *et al.* in a model of vascular isolated dog hind limb (30). Indeed, ΔPCO_2 significantly increased when limb hypoxia was induced by ischemia while it remained unchanged when hypoxia was induced by hypoxemia with maintained limb blood flow (30).

All these experimental (28-30) and clinical (25-27) studies have confirmed that during tissue hypoxia, ΔPCO_2 can be either high or normal depending on cardiac output. Thus, a normal ΔPCO_2 cannot exclude the absence of tissue hypoxia in high blood flow states. On the other hand, ΔPCO_2 can be elevated in cases of low cardiac output, even in the absence of tissue hypoxia.

In summary, bow to interpret the PCO₂ gap in practice?

An <u>increased</u> PCO₂ gap (>6 mmHg) suggests that cardiac output is not high enough with respect to the global metabolic conditions:

- In cases of shock (e.g., increased blood lactate), a high PCO₂ gap could prompt clinicians to increase cardiac output with the aim of reducing tissue hypoxia (*Figure 3*);
- In the <u>absence</u> of shock, a <u>high PCO₂ gap</u> can be associated with an <u>increased oxygen demand</u>.

In a patient with a high initial value of ΔPCO_2 , following the time-course of ΔPCO_2 can also be helpful to assess the global metabolic effects of a therapy aiming at increasing cardiac output. Under conditions of oxygen supplydependency, when cardiac output increases, the decrease in anaerobic metabolism tends to decrease ΔPCO_2 but the increase in VO₂ tends to increase ΔPCO_2 . As a result, ΔPCO_2 is expected to decrease to a lesser extent than in

Respiratory quotient=	_CO ₂ produced	VCO ₂ ×K	Cardiac output $\times C_{v-a}CO_2$	Cardiac output $\times P_{v-a}CO_2$	PCO ₂ gap
	O ₂ consumed	VO ₂	Cardiac output $\times C_{a-v}O_2$	Cardiac output $\times C_{a-v}O_2$	C _{a-v} O ₂

Figure 4 Estimation of the respiratory quotient from the ratio between venoarterial difference in carbon dioxide partial pressure and arteriovenous difference in oxygen content; CO_2 , carbon dioxide; $C_{v-a}CO_2$, venoarterial difference in carbon dioxide content; $P_{v-a}CO_2$, venoarterial difference in carbon dioxide partial pressure.

the case of oxygen supply independence. Consequently, unchanged ΔPCO_2 with therapy should not mean that the therapy has failed but rather that the treatment should be intensified until obtaining a frank decrease in ΔPCO_2 , indicating that the critical level of O_2 delivery has been actually overcome.

On the other hand, a <u>normal</u> PCO₂ gap (≤ 6 mmHg) suggests that <u>cardiac output is high enough to wash out the</u> amount of the CO₂ produced from the peripheral tissues (*Figure 2*). Thus, increasing cardiac output has little chance to improve global oxygenation and such a strategy should not be a priority.

Combined analysis of Δ **PCO**₂ and oxygen-derived variables

Even though ΔPCO_2 cannot directly identify the presence of anaerobic metabolism, its combination with oxygen-derived variables has been suggested to overcome this issue (31). Indeed, as mentioned above, in case of anaerobic metabolism, VCO₂ tends to increase because of the buffering of excessively produced protons, but also tends to decrease because of the decrease in VO₂. Then, indexing VCO₂ by VO₂ should help detect the excess in CO₂ produced due to the occurrence of anaerobic metabolism. In other words, dividing VCO₂ by VO₂ may help detect the production of CO₂ which is not due to <u>VO₂</u>.

The issue is then to estimate the ratio VCO₂/VO₂ at the bedside. As shown on *Figure 4*, using the Fick equation, and substituting CCO₂ by PCO₂, as suggested above, this ratio can be estimated by the Δ PCO₂/C_{a-v}O₂ ratio, where C_{a-v}O₂ stands for the arteriovenous difference in O₂ content.

In a series of 89 critically ill patients (148 measurements) where the mixed venous blood was sampled through a pulmonary catheter, a close correlation was found between blood lactate concentration and the $\Delta PCO_2/C_{a-v}O_2$ ratio, while no correlation was found between blood lactate concentration and ΔPCO_2 alone and between blood lactate concentration and $C_{a-v}O_2$ alone (31). Similarly, in 51

septic shock patients, Monnet *et al.* showed a significant correlation between blood lactate and the $\Delta PCO_2/C_{a-v}O_2$ ratio when the venous blood gas analysis was performed on the central, not the mixed venous blood (8). Similar results were found by Mesquida *et al.* who also demonstrated an increased mortality among patients with higher $\Delta PCO_2/C_{a-v}O_2$ ratios, whereas no difference was observed for ΔPCO_2 and $S_{cv}O_2$ (32).

In summary, an increase in the $\Delta PCO_2/C_{a-v}O_2$ ratio above 1.4 mmHg/mL (31,32) should be considered as a marker of global anaerobic metabolism. Its normalization during resuscitation has been suggested as a therapeutic target (33). In the latter study, only lactate and $\Delta PCO_2/C_{a-v}O_2$ resulted to be independently associated to mortality at multivariate analysis, among a series of haemodynamic variables in septic shock. Furthermore, mortality was significantly higher among patients with increase in both lactate and $\Delta PCO_2/C_{a-v}O_2$, compared to the one of those with only elevated lactate levels and a normal $\Delta PCO_2/C_{a-v}O_2$.

S_{cv}O₂ vs. PCO₂-derived indices

An advantage of the <u>PCO₂</u> gap over $S_{cv}O_2$ is that it remains a valid marker of the <u>adequacy</u> of cardiac <u>output</u> to the metabolic conditions even if the <u>microcirculation</u> is <u>injured</u> and the <u>oxygen extraction</u> is <u>impaired</u>. This could be due to the fact that <u>CO₂</u> is about 20 times more soluble than O_2 (34). The microcirculatory impairment, with large venoarterial <u>shunts</u>, <u>impedes</u> the <u>diffusion</u> of <u>O₂</u> between cells and red blood cells, while the <u>diffusion</u> of <u>CO₂</u> remains <u>unaltered</u> (34). A confirmation comes from the study performed by Ospina-Tascón *et al.*, where, in the early phases of septic shock, ΔPCO_2 was actually able to detect the adequacy of microvascular blood flow (35).

Aiming at illustrating the superiority of the PCO₂ gap over S_vO_2 , Vallée *et al.* included 50 septic shock patients where a $S_{cv}O_2$ higher than 70% had been achieved (36). The central venous PCO₂-arterial PCO₂ difference (PCO₂ gap) was abnormally high (>6 mmHg) in half of the patients (36). In that subgroup, blood lactate level tended to be higher and cardiac output to be lower compared to patients with a central PCO₂ gap ≤ 6 mmHg. The authors concluded that $S_{cv}O_2$ may not be sufficient to guide therapy and that, when the 70% $S_{cv}O_2$ value is reached, the presence of a central PCO₂ gap >6 mmHg might be useful to identify patients who still remain inadequately resuscitated (36). Another study showed that the combination of $S_{cv}O_2$ and central PCO₂ gap predicted outcome in 172 critically ill patients resuscitated from septic shock better than $S_{cv}O_2$ alone (37). Patients who met both targets appeared to clear lactate more efficiently (37). Similar results were reported in a series of septic shock patients (38).

Regarding the comparison of $S_{cv}O_2$ with the central $\Delta PCO_2/C_{a-v}O_2$ ratio, our team performed a study where 51 critically ill patients received fluid (8). In patients in whom volume expansion increased cardiac output, central PCO₂ gap was able to follow the changes in cardiac output. Among patients in whom cardiac output increased, VO₂ increased in around half of the cases (indicating dependency between VO₂ and O₂ delivery) while VO₂ remained stable in the other ones (indicating independence between VO₂ and O_2 delivery). The increase of VO_2 was detected by changes in the $\Delta PCO_2/C_{a-v}O_2$ ratio but not by the changes in ΔPCO_2 (8). Interestingly, in our cohort, $S_{cv}O_2$ could not detect changes in VO₂, because it included a large proportion of septic shock patients in whom $S_{cv}O_2$ was in the normal range due to oxygen extraction impairment. This confirmed the superiority of the $\Delta PCO_2/C_{a-v}O_2$ ratio over ScvO₂ to detect tissue hypoxia in septic shock patients. Finally, the changes in lactate were also able to detect changes in VO₂. However, lactate was measured three hours after fluid administration while the $\Delta PCO_2/C_{a-v}O_2$ ratio was measured immediately after its end (8). This suggests that one advantage of the $\Delta PCO_2/C_{a-v}O_2$ ratio over lactate is that it changes immediately after changes in VO₂. However, Mallat et al. observed in septic shock patients that the increase in VO₂ after volume expansion was detected much better by both the $\Delta PCO_2/C_{a-v}O_2$ and the $C_{v-a}CO_2/C_{a-v}O_2$ ratio than by blood lactate (39).

In summary, all these arguments suggest that, in case of septic shock with O₂ extraction impairment, in contrast with S_vO_2 or $S_{cv}O_2$, ΔPCO_2 remains a reliable marker of the adequacy of cardiac output with the metabolic condition and that the $\Delta PCO_2/C_{a-v}O_2$ ratio remains a valid indicator of the adequacy between O₂ delivery and VO₂. Moreover, compared to lactate, the CO₂-derived variables have the advantage to change without delay and to follow the metabolic condition in real time.

Errors and pitfalls of the PCO₂ gap

Although many studies confirmed the association between an elevation in both ΔPCO_2 and $\Delta PCO_2/C_{a-v}O_2$ ratio and poor outcome in terms of lactate clearance, changes in VO_2 and mortality (40-42), some other ones showed a limited or even a negative correlation between elevated ΔPCO_2 and increase in blood lactate or mortality (43-45). Part of the discrepancy might be related to the fact that the latter studies were performed in post-cardiac surgery patients.

Haemodilution was recently investigated by Dubin *et al.* in an experimental model (46): the reliability of the $\Delta PCO_2/C_{a-v}O_2$ ratio was compared between sheep with progressive haemorrhage and sheep with progressive haemodilution. Interestingly, the authors observed that in the haemodilution group, the $\Delta PCO_2/C_{a-v}O_2$ ratio increased despite the absence of anaerobic metabolism. These findings, together with the high correlation with haemoglobin changes (R²=0.79; P<0.001), suggest that changes were explained by a rightward shift of the relationship between PCO₂ and CCO₂ (46).

In this regard, conflicting results have been reported also in terms of prognostic value of $\Delta PCO_2/C_{a-v}O_2$ and $\Delta CCO_2/C_{a-v}O_2$: while some authors observed that the $\Delta CCO_2/C_{a-v}O_2$ ratio was an independent predictor of mortality, contrary to the $\Delta PCO_2/C_{a-v}O_2$ ratio (33), others observed that the $\Delta PCO_2/C_{a-v}O_2$ ratio but not the $\Delta CCO_2/C_{a-v}O_2$ was associated with increased mortality (42).

Other authors investigated possible causes of misleading interpretation of both ΔPCO_2 and the $\Delta PCO_2/C_{a-v}O_2$ ratio. Mallat *et al.* showed that hyperventilation creates an increase in ΔPCO_2 in healthy volunteers (47). Saludes *et al.* tested the effects of a hyperoxygenation trial on ΔPCO_2 (48), and observed that, even though oxygen parameters increased both on the arterial and venous side, PCO_2 augmented only in the venous blood, leading to an increase in both ΔPCO_2 and $\Delta PCO_2/C_{a-v}O_2$ ratio which was probably not related to changes in blood flow (48).

In addition, some technical aspects should be kept in mind when these indices are used in clinical practice. First, some errors in the PCO₂ gap measurements may occur when sampling the venous blood: incorrect sample container, contaminated sample by air or venous blood or catheter fluid (49). Second, a too long delay of transport of blood sampling may significantly change the blood gas content at the venous and the arterial site (50).

Journal of Thoracic Disease, Vol 11, Suppl 11 July 2019

Third, it is important to remind that variations in both ΔPCO_2 and the $\Delta PCO_2/C_{a-v}O_2$ ratio are submitted to a certain degree of variability. In this regard, in a series of 192 patients, Mallat *et al.* showed that the smallest detectable difference of ΔPCO_2 was ±1.8 mmHg, corresponding to a least significant change of 32%. For the $\Delta PCO_2/C_{a-v}O_2$ ratio, the smallest detectable difference was ±0.57 mmHg/mL, corresponding to a least significant change of 38% (51).

Conclusions

A proper analysis of the physiology of CO_2 metabolism reveals that the <u>PCO₂ gap</u> indicates the <u>adequacy</u> of cardiac <u>output</u> with the <u>metabolic</u> condition while the <u>adequacy</u> between O_2 <u>delivery</u> and O_2 <u>consumption</u> is better indicated by the <u>APCO₂/C_{av}O₂ ratio</u> in critically ill patients. The CO₂-derived indices seem to be quite reliable when measured in the central venous blood. In contrast to S_vO₂ or S_{cv}O₂, they remain useful in septic shock patients with an impaired O₂ extraction.

Acknowledgments

None.

Footnote

Conflicts of Interest: JL Teboul and X Monnet are members of the Medical Advisory Board of Pulsion Medical Systems, Getinge. F Gavelli has no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

References

- Vincent JL, De Backer D. Oxygen transport-the oxygen delivery controversy. Intensive Care Med 2004;30:1990-6.
- Gattinoni L, Brazzi L, Pelosi P, et al. A trial of goaloriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 1995;333:1025-32.
- Monnet X, Teboul JL. My patient has received fluid. How to assess its efficacy and side effects? Ann Intensive Care 2018;8:54.
- 4. Londoño J, Niño C, Díaz J, et al. Association of Clinical

Hypoperfusion Variables With Lactate Clearance and Hospital Mortality. Shock 2018;50:286-92.

- 5. Legrand M, Payen D. Understanding urine output in critically ill patients. Ann Intensive Care 2011;1:13.
- Hernandez G, Bellomo R, Bakker J. The ten pitfalls of lactate clearance in sepsis. Intensive Care Med 2019;45:82-5.
- Vincent JL, Quintairos E, Silva A, et al. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care 2016;20:257.
- Monnet X, Julien F, Ait-Hamou N, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med 2013;41:1412-20.
- Zhang H, Vincent JL. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis 1993;148:867-71.
- Randall HM, Cohen JJ. Anaerobic CO2 production by dog kidney in vitro. Am J Physiol 1966;211:493-505.
- Jensen FB. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol Scand 2004;182:215-27.
- Geers C, Gros G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev 2000;80:681-715.
- West J. Gas transport to the periphery: how gases are moved to the peripheral tissues. In: Respiratory physiology: the essentials. 4th edition. Baltimore: Williams and Wilkins, 1990:69-85.
- Teboul JL, Scheeren T. Understanding the Haldane effect. Intensive Care Med 2017;43:91-3.
- Douglas AR, Jones NL, Reed JW. Calculation of whole blood CO2 content. J Appl Physiol (1985) 1988;65:473-7.
- Cavaliere F, Giovannini I, Chiarla C, et al. Comparison of two methods to assess blood CO2 equilibration curve in mechanically ventilated patients. Respir Physiol Neurobiol 2005;146:77-83.
- Jensen FB. Comparative analysis of autoxidation of haemoglobin. J Exp Biol 2001;204:2029-33.
- McHardy GJ. The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood. Clin Sci 1967;32:299-309.
- Groeneveld AB, Vermeij CG, Thijs LG. Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg 1991;73:576-82.
- 20. Teboul JL, Mercat A, Lenique F, et al. Value of the venous-

arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med 1998;26:1007-10.

- Grundler W, Weil MH, Rackow EC. Arteriovenous carbon dioxide and pH gradients during cardiac arrest. Circulation 1986;74:1071-4.
- 22. Weil MH, Rackow EC, Trevino R, et al. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med 1986;315:153-6.
- Dres M, Monnet X, Teboul JL. Hemodynamic management of cardiovascular failure by using PCO(2) venous-arterial difference. J Clin Monit Comput 2012;26:367-74.
- 24. Van der Linden P, Rausin I, Deltell A, et al. Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg 1995;80:269-75.
- Bakker J, Vincent JL, Gris P, et al. Veno-arterial carbon dioxide gradient in human septic shock. Chest 1992;101:509-15.
- 26. Mecher CE, Rackow EC, Astiz ME, et al. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med 1990;18:585-9.
- 27. Wendon JA, Harrison PM, Keays R, et al. Arterialvenous pH differences and tissue hypoxia in patients with fulminant hepatic failure. Crit Care Med 1991;19:1362-4.
- Nevière R, Chagnon JL, Teboul JL, et al. Small intestine intramucosal PCO(2) and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med 2002;30:379-84.
- 29. Dubin A, Murias G, Estenssoro E, et al. Intramucosalarterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit Care 2002;6:514-20.
- Vallet B, Teboul JL, Cain S, et al. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol (1985) 2000;89:1317-21.
- 31. Mekontso-Dessap A, Castelain V, Anguel N, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med 2002;28:272-7.
- 32. Mesquida J, Saludes P, Gruartmoner G, et al. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Crit Care 2015;19:126.
- 33. Ospina-Tascón GA, Umaña M, Bermúdez W, et al.

Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O 2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med 2015;41:796-805.

- Vallet B, Pinsky MR, Cecconi M. Resuscitation of patients with septic shock: please "mind the gap"! Intensive Care Med 2013;39:1653-5.
- 35. Ospina-Tascón GA, Umaña M, Bermúdez WF, et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med 2016;42:211-21.
- 36. Vallée F, Vallet B, Mathe O, et al. Central venous-toarterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med 2008;34:2218-25.
- Du W, Liu DW, Wang XT, et al. Combining central venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock. J Crit Care 2013;28:1110.e1-5.
- Mallat J, Pepy F, Lemyze M, et al. Central venous-toarterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. Eur J Anaesthesiol 2014;31:371-80.
- 39. Mallat J, Lemyze M, Meddour M, et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann Intensive Care 2016;6:10.
- 40. Ospina-Tascón GA, Bautista-Rincón DF, Umaña M, et al. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit Care 2013;17:R294.
- 41. He HW, Liu DW, Long Y, et al. High central venousto-arterial CO2 difference/arterial-central venous O2 difference ratio is associated with poor lactate clearance in septic patients after resuscitation. J Crit Care 2016;31:76-81.
- 42. Mesquida J, Saludes P, Pérez-Madrigal A, et al. Respiratory quotient estimations as additional prognostic tools in early septic shock. J Clin Monit Comput 2018;32:1065-72.
- 43. Morel J, Grand N, Axiotis G, et al. High veno-arterial carbon dioxide gradient is not predictive of worst outcome after an elective cardiac surgery: a retrospective cohort study. J Clin Monit Comput 2016;30:783-9.
- 44. Guinot PG, Badoux L, Bernard E, et al. Central Venousto-Arterial Carbon Dioxide Partial Pressure Difference in Patients Undergoing Cardiac Surgery is Not Related to Postoperative Outcomes. J Cardiothorac Vasc Anesth

2017;31:1190-6.

- 45. Abou-Arab O, Braik R, Huette P, et al. The ratios of central venous to arterial carbon dioxide content and tension to arteriovenous oxygen content are not associated with overall anaerobic metabolism in postoperative cardiac surgery patients. PloS One 2018;13:e0205950.
- 46. Dubin A, Ferrara G, Kanoore Edul VS, et al. Venoarterial PCO2-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study. Ann Intensive Care 2017;7:65.
- Mallat J, Mohammad U, Lemyze M, et al. Acute hyperventilation increases the central venous-to-arterial PCO2 difference in stable septic shock patients. Ann Intensive Care 2017;7:31.
- 48. Saludes P, Proença L, Gruartmoner G, et al. Central venous-to-arterial carbon dioxide difference and the effect

Cite this article as: Gavelli F, Teboul JL, Monnet X. How can CO₂-derived indices guide resuscitation in critically ill patients? J Thorac Dis 2019;11(Suppl 11):S1528-S1537. doi: 10.21037/ jtd.2019.07.10

of venous hyperoxia: A limiting factor, or an additional marker of severity in shock? J Clin Monit Comput 2017;31:1203-11.

- d'Ortho MP, Delclaux C, Zerah F, et al. Use of glass capillaries avoids the time changes in high blood PO(2) observed with plastic syringes. Chest 2001;120:1651-4.
- 50. Wan XY, Wei LL, Jiang Y, et al. Effects of time delay and body temperature on measurements of central venous oxygen saturation, venous-arterial blood carbon dioxide partial pressures difference, venous-arterial blood carbon dioxide partial pressures difference/arterial-venous oxygen difference ratio and lactate. BMC Anesthesiol 2018;18:187.
- 51. Mallat J, Lazkani A, Lemyze M, et al. Repeatability of blood gas parameters, PCO2 gap, and PCO2 gap to arterial-to-venous oxygen content difference in critically ill adult patients. Medicine (Baltimore) 2015;94:e415.

Interpretation of venous-to-arterial carbon dioxide difference in the resuscitation of septic shock patients

Siyi Yuan, Huaiwu He, Yun Long

Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China

Contributions: (I) Conception and design: H He; (II) Administrative support: Y Long; (III) Provision of study materials or patients: Y Long, H He; (IV) Collection and assembly of data: S Yuan; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

> **Abstract:** The venous-to-arterial carbon dioxide difference $[P(v-a)CO_2]$ was calculated from the difference of venous CO₂ and arterial CO₂, which has been used to reflect the global flow in the circulatory shock. Moreover, recent clinical studies found the $P(v-a)CO_2$ was related to the sublingual microcirculation perfusion in the sepsis. However, it is still controversial that whether $P(v-a)CO_2$ could be used to assess the microcirculatory flow in septic patients. Moreover, the related influent factors should be taken into account when interpreting $P(v-a)CO_2$ in clinical practice. This paper reviews the relevant experimental and clinical scenarios of $P(v-a)CO_2$ with the aim to help intensivists to use this parameter in the resuscitation of septic shock patients. Furthermore, we propose a conceptual framework to manage a high $P(v-a)CO_2$ value in the resuscitation of septic shock. The triggers of correcting an elevated $P(v-a)CO_2$ should take into consideration the other tissue perfusion parameters. Additionally, more evidence is required to validate that a decreasing in $P(v-a)CO_2$ by increasing cardiac output would result in improvement of microcirculation. Further investigations are necessary to clarify the relationship between $P(v-a)CO_2$ and microcirculation.

> Keywords: Septic shock; venous-to-arterial carbon dioxide difference [P(v-a)CO₂]; microcirculation; resuscitation

Submitted Dec 16, 2018. Accepted for publication Feb 25, 2019. doi: 10.21037/jtd.2019.02.79 View this article at: http://dx.doi.org/10.21037/jtd.2019.02.79

Introduction

The evaluation and correction of macrocriculatory and microcirculatory flow play an important role in the resuscitation of circulatory shock (1). The venous-to-arterial carbon dioxide difference $[P(v-a)CO_2]$ has gained great attentions in the resuscitation of sepsis. The $P(v-a)CO_2$ is determined by cardiac output and metabolic status, and it has been taken as an indicator of the adequacy of the venous blood flow to remove the CO₂ produced by the peripheral tissues (2,3).

The P(v-a)CO₂ was calculated as the difference between

venous PCO₂ and arterial PCO₂. The venous PCO₂ could be obtained from the mixed venous blood through a pulmonary artery catheter or from the central venous blood through a central venous catheter. Researches (4,5) had shown that central venous-arterial PCO₂ difference [P(cv-a) CO_2] was consistent with mixed venous-arterial PCO₂ difference [P(mv-a)CO₂] and both of them were inversely related to cardiac index (CI). Nowadays, the central venous PCO₂ is commonly used to calculate P(v-a)CO₂ in clinical practice. Recent study found that P(mv-a)CO₂ might be a potential indicator to reflect microcirculatory flow in septic shock patients (6). In this paper, we review the literatures of $P(v-a)CO_2$ and try to answer the question how to interpret and manage the $P(v-a)CO_2$ in the resuscitation of sepsis.

P(v-a)CO₂ and prognosis in sepsis

Based on the physiological background of P(v-a)CO₂, it is easy to understand that a high $P(v-a)CO_2$ indicate an impaired cardiac output and tissue hypoperfusion. Hence, a persistent P(v-a)CO₂ after resuscitation is related to a poor prognosis in septic shock patients (6). A cutoff 6 mmHg of P(v-a)CO₂ has been suggested as an indicator to reflect the adequacy of cardiac output to tissue perfusion in critically ill patients (3). Several studies had reported that a high $P(v-a)CO_2$ (>6 mmHg) was related to poor outcome in septic shock condition (4,7-12). van Beest et al. (4) found that a high $P(cv-a)CO_2$ (≥ 6 mmHg) in the first 24 h after ICU admission was related to a higher hospital mortality rate (OR 5.3, P=0.08) in 53 septic shock patients. Vallee et al. (7) further reported that the septic shock patients with a higher P(cv-a)CO₂ had a poor lactate clearance, higher SOFA score, and a lower mortality rate, in the normalized central venous oxygen saturation ($ScvO_2$) (>70%) condition, than patients with a normal P(cv-a)CO₂ value (<6 mmHg). Moreover, Mallat et al. (8) reported that P(cv-a)CO₂ was not related to 28-day mortality in septic shock patients. But the authors found that normalization of both P(cv-a)CO₂ gap and ScvO₂, during the first 6 hours of resuscitation, was associated with a better lactate clearance than the normalization of ScvO₂ alone (8). Therefore, P(cv-a)CO₂ was suggested as an additional goal of resuscitation when $ScvO_2$ target had been achieved (>70%) in septic shock patients (7,8).

Moreover, our study found a lower $P(cv-a)CO_2$ (3.5 mmHg but not 6 mmHg) had a good ability for predicting ICU mortality in septic shock patients with a high ScvO₂ (>80%) (13). The non-survivor group had a low $P(v-a)CO_2$ (mean 4.8 mmHg) <6 mmHg and high lactate level (mean 3.1 mmol/L) in our study. Hence, the normal cutoff value of $P(v-a)CO_2$ requires further investigations to be validated in septic shock patients with a high ScvO₂ (>80%) and signs of tissue hypoxia.

Recently, a <u>systematic review</u> showed that $P(v-a)CO_2$ was <u>correlated</u> with <u>mortality</u> and other clinical outcomes in septic shock patients (14). Furthermore, Muller *et al.* (12) found that $P(cv-a)CO_2$ was only associated with mortality in patients with <u>impaired cardiac</u> function (defined as atrial fibrillation and/or left ventricular ejection fraction less than 50%) but not with patients with normal cardiac function. The authors found that patients with septic shock and impaired cardiac function were more prone to a persistent high $P(cv-a)CO_2$, even when initial resuscitation succeeded in normalizing mean arterial pressure, central venous pressure, and $ScvO_2$ (12). In other words, a high P(cv-a) CO_2 might mainly result from a poor cardiac function in the resuscitation of septic shock patients. Further clinical investigation is required to clarify the predictive meaning of $P(cv-a)CO_2$ in normal cardiac function. The relevant clinical studies of $P(cv-a)CO_2$ and outcome were summarized in the *Table 1*.

Pitfalls of P(v-a)CO₂ in assessing global flow and tissue perfusion

There were some potential pitfalls of using P(v-a)CO₂ to identify global flow and tissue perfusion in clinical situations.

(I) Hyperoxia: Saludes et al. (15) found that an elevated P(v-a)CO₂ could independently result from a hyperoxia (caused by breathing 100% O₂ for 5 min) but not from an inadequate cardiac output in the septic patients. Several potential mechanisms should be taken on how hyperoxia cause an increase in P(v-a)CO₂ are as following: firstly, a high $P(v-a)CO_2$ could be derived from the impaired microcirculatory flow caused by arterial hyperoxia (16). It has been shown that normobaric hyperoxia decreases capillary perfusion and VO₂ and increases the heterogeneity of the perfusion (17). Secondly, Haldane effect, a phenomenon known as the increase in venous oxygen saturation would cause a decrease in the affinity of hemoglobin (Hb) for $CO_2(18)$. The CO₂ would unbind from Hb and, in the venous hyperoxia condition, would further produce an increase in the free form of CO_2 in the venous site. Consequently, the P(v-a)CO₂ would elevate in the high venous saturation condition resulted from hyperoxia (19).

(II) Hyper-ventilation: Mallat *et al.* (20) investigated the effect of acute hyperventilation on $P(cv-a)CO_2$ gap in hemodynamically stable septic shock patients. The authors found that acute hyperventilation could increase $P(cv-a)CO_2$ gap, which may be a result of increases in VO_2 . In other words, the acute changes in respiratory status could contribute to a high $P(v-a)CO_2$, which might be independent of the changes in cardiac output. (III) Hypoxia: the cellular hypoxia could be caused by ischemic or hypoxic hypoxia. Vallet *et al.* found that $P(v-a)CO_2$ increase in ischemic hypoxia induced by a decrease in blood flow, but not in hypoxic hypoxia conditions where

S1540

Table 1 P(v-a)CO₂ and outcome in clinical studies

Author	Year	Population	Types of study	Outcome [low P(v-a)CO ₂ group vs. high P(v-a)CO ₂ group]	Note
Bakker <i>et al.</i> (9)	1992	64 pts with septic shock	Prospective observational study	N/A	Non-survivors had a significantly higher P(v-a)CO ₂ than survivors ($5.9\pm3.4 vs. 4.4\pm2.3$ mmHg, P<0.05)
Vallee <i>et al.</i> (7)	2008	50 pts with septic shock with SvO₂≥70%	Prospective observational study	12 h lactate clearance: -38%±39% vs17%±33% (P=0.04); 24 h SOFA: 11±4 vs. 15±4 (P<0.05)	Pts with low $P(v-a)CO_2$ ($\leq 6 \text{ mmHg}$) n=26; Pts with high $P(v-a)CO_2$ (>6 mmHg) n=24
Troskot <i>et al.</i> (11)	2010	71 pts with septic shock	Retrospective analysis	N/A	High P(v-a)CO ₂ (>6 mmHg) is related to mortality (P=0.015) in non-ventilated patients (P=0.015), not in ventilated patients (P=0.27)
van Beest <i>et al.</i> (4)	2013	53 pts with septic shock	Post hoc analysis	28 d mortality: 21% <i>vs.</i> 29% (P=0.53)	The mixed P(v-a)CO ₂ underestimated the central P(v-a) CO ₂ by a mean bias of 0.03 ± 0.32 kPa (-0.62-0.58 kPa)
Ospina-Tascon <i>et al.</i> (6)	2013	85 pts with septic shock	Prospective observational study	Persistence of high P(v-a)CO ₂ was associated with a higher 3 d SOFA (P<0.001) and 28 d mortality log rank test: 19.21 (P<0.001)	Pts with persistence of high P(v-a) CO_2 (both T0, T6 >6 mmHg) n=24
Du <i>et al</i> . (10)	2013	172 pts with septic shock, including 122 pts with $SvO_2 \ge 70\%$	Retrospective analysis	6 h lactate clearance: 21%±31% vs.1%±61% (P=0.016); 28 d mortality: 16.1% vs. 56.1% (P<0.001)	Pts with low P(v-a)CO ₂ (\leq 6 mmHg) n=81; Pts with high P(v-a)CO ₂ (>6 mmHg) n=41 with ScvO ₂ \geq 70%
Mallat <i>et al.</i> (8)	2014	80 pts with septic shock	Prospective observational study	6 h lactate clearance: 28%±31% vs. –0.2%±34% (P<0.0001); 28 d mortality: 20% vs. 24% (P=0.003)	Pts with low P(v-a)CO₂ (≤6 mmHg) n=48; Pts with high P(v-a)CO₂ (>6 mmHg) n=32
Muller <i>et al.</i> (12)	2017	114 pts in cardiac group; 236 pts in non-cardiac group	Prospective cohort study	28 d mortality: 20% vs. 35% (P=0.024) (cardiac group); 28 d mortality: 26% vs. 28% (P=0.8) (non-cardiac group)	Cardiac group: patients had AF and/or LVEF <50%

Pts, patients; N/A, not applicable; AF, atrial fibrillation; LVEF, left ventricular ejection fraction; P(v-a)CO₂, venous-to-arterial carbon dioxide difference; ScvO₂, central venous oxygen saturation.

the blood flow was maintained constant, even in a state of VO_2/DO_2 dependency, in a canine model of isolated limb (21). Hence, $P(v-a)CO_2$ could serve as a marker of the adequacy of venous blood flow to wash-out the CO_2 produced by the tissues (tissue hypoperfusion marker) rather than a marker of tissue hypoxia.

P(v-a)CO₂ and microcirculation

Both ScvO₂ and lactate have been well accepted as targets

to guide resuscitation in sepsis (22). However, sometimes there might be some limitations in using ScvO_2 and lactate to reflect tissue perfusion (23). For example, when capillary shunting occurred, ScvO_2 could be elevated and mask the presence of tissue hypoperfusion or tissue hypoxia. Recently, $P(v-a)\text{CO}_2$ has gained attention as a complementary tool to reflect global perfusion in the resuscitation of septic shock patients when ScvO_2 is more than 70% (24).

Ospina-Tascon *et al.* (25) conducted a prospective study involving 75 septic shock patients with the aim to

Figure 1 A recursive and regression tree to interpret and manage a high $P(v-a)CO_2$ (>6 mmHg). $P(v-a)CO_2$, venous-to-arterial carbon dioxide difference; ScvO₂, central venous oxygen saturation; FiO₂, fraction of inspired oxygen; PEEP, positive end-expiratory pressure.

investigate the relationship between P(mv-a)CO₂ and sublingual microcirculation assessed by sidestream darkfield device. They found that high P(mv-a)CO₂ values were associated with low percentages of small perfused vessels (PPV), low functional capillary density, and high heterogeneity of microvascular blood flow. Interestingly, the relationship between P(v-a)CO₂ and microcirculation was independent of the effects of cardiac output in that study. In summary, a high P(v-a)CO₂ might be caused by an inadequate microcirculatory flow to clear the excess CO₂ production, even in the presence of normal (or high) cardiac output in septic shock patients. Moreover, Kanoore et al. (26) found sepsis patients with a high CI (>4 L/min/m²) showed a lower $P(v-a)CO_2$ (5±3 vs. 7±2 mmHg) than those with normal cardiac output. However, there were no differences in sublingual perfused vascular density, proportion of perfused vessels, or microvascular flow index in both groups in that study. Hence, an impaired microcirculation could be persistent even in a low P(v-a)CO₂ and a high cardiac output condition. The loss of coherence between macrocirculation and microcirculation is common in septic shock patients (27). Importantly, it is uncertain if the decrease in $P(v-a)CO_2$ observed after an increase in cardiac output, is related to the improvement of microcirculation. Further studies are needed to investigate this issue.

How to Interpret and manage a high P(v-a)CO₂ (>6 mmHg)

An elevated $P(v-a)CO_2$ could result from different reasons in septic shock patients, such as low cardiac output, poor microcirculatory perfusion or acute hyperventilation (28). Hence, a high $P(v-a)CO_2$ should be taken as an alarm trigger of inadequate blood flow in the resuscitation of septic shock patients. It remains a challenge for intensivists to correctly interpret and manage an elevated $P(v-a)CO_2$ (>6 mmHg) condition. In *Figure 1*, we summarized a recursive and regression approach of resuscitation protocol needs to be validated in clinical trials.

Conclusions

During recent years, $P(v-a)CO_2$ has gained great attention and more frequently used in the resuscitation of septic shock patients. The intensivists should take other tissue perfusion parameters into consideration before correcting an elevated $P(v-a)CO_2$ in the resuscitation of septic shock patients. Moreover, further investigations are necessary to clarify the relationship between $P(v-a)CO_2$ and microcirculation.

Yuan et al. P(v-a)CO₂ difference spetic shock

S1542

Acknowledgments

Funding: This work was supported by the Fundamental Research Funds for the Central Universities (NO. 3332018010).

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

- He H, Long Y, Zhou X, et al. Oxygen-Flow-Pressure Targets for Resuscitation in Critical Hemodynamic Therapy. Shock 2018;49:15-23.
- 2. Groeneveld AB. Interpreting the venous-arterial PCO2 difference. Crit Care Med 1998;26:979-80.
- Dres M, Monnet X, Teboul JL. Hemodynamic management of cardiovascular failure by using PCO(2) venous-arterial difference. J Clin Monit Comput 2012;26:367-74.
- van Beest PA, Lont MC, Holman ND, et al. Central venous-arterial pCO(2) difference as a tool in resuscitation of septic patients. Intensive Care Med 2013;39:1034-9.
- Cuschieri J, Rivers EP, Donnino MW, et al. Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med 2005;31:818-22.
- Ospina-Tascon GA, Bautista-Rincon DF, Umana M, et al. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit Care 2013;17:R294.
- Vallee F, Vallet B, Mathe O, et al. Central venous-toarterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med 2008;34:2218-25.
- Mallat J, Pepy F, Lemyze M, et al. Central venous-toarterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. Eur J Anaesthesiol 2014;31:371-80.
- Bakker J, Vincent JL, Gris P, et al. Veno-arterial carbon dioxide gradient in human septic shock. Chest 1992;101:509-15.
- Du W, Liu DW, Wang XT, et al. Combining central venousto-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock. J Crit Care 2013;28:1110.e1111-5.
- 11. Troskot R, Šimurina T, Žižak M, et al. Prognostic value of

venoarterial carbon dioxide gradient in patients with severe sepsis and septic shock. Croat Med J 2010;51:501-8.

- Muller G, Mercier E, Vignon P, et al. Prognostic significance of central venous-to-arterial carbon dioxide difference during the first 24 hours of septic shock in patients with and without impaired cardiac function. Br J Anaesth 2017;119:239-48.
- He H, Long Y, Liu D, et al. The Prognostic Value of Central Venous-to-Arterial CO2 Difference/Arterial-Central Venous O2 Difference Ratio in Septic Shock Patients with Central Venous O2 Saturation >/=80. Shock (Augusta, Ga) 2017;48:551-7.
- Diaztagle Fernández JJ, Rodríguez Murcia JC, Sprockel Díaz JJ. Venous-to-arterial carbon dioxide difference in the resuscitation of patients with severe sepsis and septic shock: A systematic review. Med Intensiva 2017;41:401-10.
- 15. Saludes P, Proença L, Gruartmoner G, et al. Central venous-to-arterial carbon dioxide difference and the effect of venous hyperoxia: A limiting factor, or an additional marker of severity in shock? J Clin Monit Comput 2017;31:1203-11.
- He HW, Liu DW, Ince C. Understanding elevated Pv-aCO2 gap and Pv-aCO2/Ca-vO2 ratio in venous hyperoxia condition. J Clin Monit Comput 2017;31:1321-3.
- 17. Orbegozo Cortés D, Puflea F, Donadello K, et al. Normobaric hyperoxia alters the microcirculation in healthy volunteers. Microvasc Res 2015;98:23-8.
- Teboul JL, Scheeren T. Understanding the Haldane effect. Intensive Care Med 2017;43:91-3.
- Saludes P, Proença L, Gruartmoner G, et al. In response to: "understanding elevated Pv-aCO2 gap and Pv-aCO2/ Ca-vO2 ratio in venous hyperoxia condition". J Clin Monit Comput 2017;31:1325-7.
- Mallat J, Mohammad U, Lemyze M, et al. Acute hyperventilation increases the central venous-to-arterial PCO2 difference in stable septic shock patients. Ann Intensive Care 2017;7:31.
- Vallet B, Teboul JL, Cain S, et al. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol (1985) 2000;89:1317-21.
- 22. Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013;39:165-228.
- 23. Textoris J, Fouche L, Wiramus S, et al. High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortality. Crit Care

Journal of Thoracic Disease, Vol 11, Suppl 11 July 2019

2011;15:R176.

- 24. Vallet B, Pinsky MR, Cecconi M. Resuscitation of patients with septic shock: please "mind the gap"! Intensive Care Med 2013;39:1653-5.
- 25. Ospina-Tascon GA, Umana M, Bermudez WF, et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med 2016;42:211-21.
- 26. Edul VS, Ince C, Vazquez AR, et al. Similar

Cite this article as: Yuan S, He H, Long Y. Interpretation of venous-to-arterial carbon dioxide difference in the resuscitation of septic shock patients. J Thorac Dis 2019;11(Suppl 11):S1538-S1543. doi: 10.21037/jtd.2019.02.79

microcirculatory alterations in patients with normodynamic and hyperdynamic septic shock. Ann Am Thorac Soc 2016;13:240-7.

- Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care 2015;19 Suppl 3:S8.
- Dubin A, Pozo MO. Shedding light on venoarterial PCO2 gradient. Ann Intensive Care 2017;7:41.

Combination of O₂ and CO₂-derived variables to detect tissue hypoxia in the critically ill patient

Gustavo A. Ospina-Tascón, Humberto J. Madriñán

Department of Intensive Care, Fundación Valle del Lili University Hospital-Universidad Icesi, Cali, Colombia

Contributions: (I) Conception and design: All authors; (II) Administrative support: Centro de Investigaciones clínicas, Fundación Valle del Lili, Universidad Icesi, Cali, Colombia; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: None; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Dr. Gustavo A. Ospina-Tascón. Department of Intensive Care, Fundación Valle del Lili University Hospital-Universidad Icesi, Av. Simón Bolívar Cra. 98, Cali, Colombia. Email: gusospin@gmail.com.

Abstract: Oxygen-derived parameters have been traditionally used to guide resuscitation during shock states. Nevertheless, normalization of venous oxygen saturation does not exclude the persistence of tissue hypoperfusion and tissue hypoxia. Combination of O_2 and CO_2 -derived variables has consistently demonstrated to be related with clinical outcomes and its variations could anticipate changes in lactate and also predict fluid responsiveness in terms of oxygen consumption. Here we discuss the potential mechanisms leading to increase the venous-to-arterial CO_2 (Cv-aCO₂) to arterial-to-venous O_2 content difference (Ca-vO₂), i.e., the Cv-aCO₂/Ca-vO₂ ratio, its potential clinical application, limitations and uncertainties. Finally, although biologically plausible, the potential applications of the Cv-aCO₂/Ca-vO₂ ratio in the clinical practice require to be confirmed.

Keywords: Tissue perfusion; venous-to-arterial carbon dioxide difference; anaerobic metabolism; respiratory quotient; venous-arterial CO_2 to arterial-venous O_2 difference (Cv-a CO_2 /Ca-v O_2 difference)

Submitted Feb 01, 2019. Accepted for publication Mar 15, 2019. doi: 10.21037/jtd.2019.03.52 **View this article at:** http://dx.doi.org/10.21037/jtd.2019.03.52

Introduction

Early detection and prompt reversion of tissue hypoperfusion are key factors to prevent progression to multiorgan dysfunction and death during shock states (1). Techniques commonly used to monitor tissue perfusion have focused mainly on systemic blood flow and the balance between oxygen demand and supply to the tissues (2,3). Indeed, quantitative resuscitation targeting central venous oxygen saturation (ScvO₂) and some macro hemodynamic parameters was related with a significant reduction of mortality in an initial single-center randomized controlled trial including patients with septic shock (4). Subsequent studies on implementation of resuscitation bundles targeting similar hemodynamic goals in septic shock were also apparently beneficial (5,6). Nevertheless, the utility of oxygen-derived parameters was promptly challenged (7), and recent clinical trials failed to demonstrate their clinical benefit (8-10). In fact, $ScvO_2$ is often normal at the ICU admission (11), and attaining macro hemodynamic goals and/or normalization of global oxygen-derived parameters in septic shock do not exclude the occurrence or persistence of tissue hypoxia. In this context, other variables such as carbon dioxide (CO₂)-derived parameters could provide very important information about macro and micro hemodynamics, even when oxygen- derived variables resemble corrected. Importantly, variations in CO₂ occur faster than changes in lactate levels, which make the CO₂derived parameters an attractive tool to monitor tissue perfusion and potentially, cell oxygenation during the early stages of shock.

The theoretical basics of the venous-arterial CO₂ to arterial-venous O₂ ratio (Cv-aCO₂/Ca-vO₂ ratio)

Aerobic carbon dioxide production and the physiological rationale of the Cv-aCO₂/Ca-vO₂ ratio

Under normoxic conditions, carbon dioxide (CO₂) is generated during the tricarboxylic acid or Krebs cycle. The total CO₂ production (VCO₂) is directly related to the global oxygen consumption (VO₂), by the relationship: VCO₂ = $\mathbb{RQ} \times \mathrm{VO}_2$, where RQ symbolizes the respiratory quotient and represents the relationship between the total CO₂ generated and the oxygen (O₂) consumed throughout metabolic processes. Under normal rest conditions, \mathbb{RQ} fluctuates from 0.6 to 1.0 depending on the predominant energetic substrate utilized (i.e., amino acids, lipids or carbohydrates). Thus, under resting aerobic conditions RQ should not be >1.0 since VCO₂ should not exceed the O₂ availability. Indeed, \mathbb{RQ} remains <1.0 even during metabolic rate rises (as long as aerobic metabolism is maintained), because the proportional increase in VCO₂ and VO₂.

According to the Fick equation, VO_2 and VCO_2 are directly proportional to the cardiac output and their respective arterial-to-venous and venous-to-arterial content differences. Following this rationale, the quotient between the venous-to-arterial CO₂ content difference (Cv-aCO₂) and the arterial-to-venous O₂ content difference (Ca-vO₂), i.e., the Cv-aCO₂/Ca-vO₂ ratio, should reflect the VCO₂/ VO₂ fraction and it should be theoretically independent of flow variations, as cardiac output is present at both numerator and denominator components of the formula (*Figure 1*).

Under aerobic steady state conditions, VCO₂ approaches VO₂, whereby the Cv-aCO₂ and the CavO₂ should also do it. Consequently, VCO₂ should not exceed O₂ availability whereby the VCO₂/VO₂ ratio [i.e., the respiratory quotient (RQ)] should not be >1.0. Thus, VCO₂/VO₂ and Cv-aCO₂/Ca-vO₂ ratio >1.0 should be considered as abnormal and these could potentially reflect anaerobic CO₂ generation.

Anaerobic carbon dioxide production

Under hypoxia conditions, aerobic VCO₂ decreases while anaerobic VCO₂ turns on. Such anaerobic VCO₂ reflects the proton (H+) buffering by cytosolic and plasmatic bicarbonate (HCO₃-). The "gross H+ release" results from the sum of all cellular reactions liberating H+ [e.g., the ATPase, hexokinase (HK), phosphofructokinase (PFK), and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) reactions], which are counterbalanced by metabolic reactions consuming H+ [e.g., AMP deaminase (AMPDase), the creatine kinase (CK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) reactions]. Thus, the balance between the "gross H+ release" and chemical reactions consuming H+ (i.e., the "metabolic buffering") results in the "net H+ release", which is ultimately regulated by the intra and extracellular structural buffering (e.g., amino acids) and the bicarbonate buffering system (12).

Interestingly, the hydrolysis of the ATP has been proposed as the most important source of hydrogen ions during intense exercise (13), prolonged ischemia (14) or increased Na+-K+ ATPase activity (15-19). Thus, nonrecycled H+ due either to slowdown, blocking or overshoot of oxidative phosphorylation, progressively accumulate to be finally buffered by the bicarbonate system. This later will be responsible for the anaerobic VCO₂ as the protons are captured by HCO₃– leading to carbonic acid (H₂CO₃) generation with subsequent dissociation into CO₂ and H₂O (*Figure 2*). Nevertheless, although anaerobic VCO₂ is a biologically plausible process, its clinical demonstration is quite complex since the efferent venous blood flow might be sufficient to wash out the total CO₂ produced at the tissues, thus masking the portion of increased anaerobic CO₂.

The hypothetical meaning of the Cv-aCO₂/Ca-vO₂ ratio

Experimental blockade of mitochondrial O₂ utilization and limitation of O₂ availability during severe tissue hypoperfusion have been related with "non-symmetrical" reductions in VCO₂ and VO₂ with the subsequent RQ increase. Such "asymmetric" VCO₂/VO₂ fall might be explained by an increase in anaerobic CO₂ production resulting from the buffering of protons delivered from the ATP hydrolysis that are not recycled during oxidative phosphorylation (*Figure 2*). Similarly, when anaerobic threshold is achieved after an excessive increased metabolic demand, total VCO₂ can exceed the adaptive increment in VO_2 (20), thus leading to RQ values >1.0. Similar data have been described during experimental shock in which VCO₂ decreases slightly less than the VO₂ reduction, leading to increases in the VCO₂/VO₂ ratio (21,22). Interestingly, reversion of shock was related with returning VCO₂/VO₂ ratio to values <1.0. Thus, if considering the Cv-aCO₂/CavO₂ ratio as a surrogate of the VCO₂/VO₂ ratio, a Cv-aCO₂/ $Ca-vO_2$ ratio >1.0 could potentially identify the presence of anaerobic metabolism.

Cv-aCO₂/Ca-vO₂ ratio < 1.0

Figure 1 Normal resting conditions. Normal macro and micro hemodynamics lead to homogeneous distribution of oxygen to the tissues. Under preserved mitochondrial function, CO_2 is generated during the Krebs cycle (aerobic VCO₂). The ATP generated predominantly during the oxidative phosphorylation (and in a lesser extend, during glycolysis) is hydrolyzed thus liberating free hydrogenions (H+), which are normally recycled into the mitochondria to synthetize again ATP. Minor quantities of H+ pass the cell membrane reaching the circulation. Such H+ are buffered by the HCO₃- system and finally transformed into CO_2 and water. However, this last process accounts minimally for the total VCO₂ when oxidative phosphorylation functions normally. The relationship between the total CO_2 production (VCO₂) and oxygen consumption (VO₂) should be <1.0 under aerobic conditions. According to the Fick equation, VCO₂ and VO₂ are directly proportional to the cardiac output and their respective venous-to-arterial and arterial-to-venous content differences, respectively. Thus, the quotient between the venous-to-arterial CO_2 content difference (Cv-aCO₂) and the arterial-to-venous O_2 content difference (Ca-vO₂), i.e., the $Cv-aCO_2/Ca-vO_2$ ratio, should reflect in some extend the VCO₂/VO₂ fraction, independently of flow variations (since cardiac output is present at both numerator and denominator components of the formula).

The potential clinical use of the Cv-aCO₂/Ca-vO₂ ratio

Although hyperlactatemia has been traditionally used as a marker of anaerobic metabolism, lactate levels might frequently increase by causes different to tissue hypoxia (23). Indeed, high lactate levels can result from increased glycolytic activity, abnormal pyruvate metabolism and altered metabolic lactate reuptake (24-26). Thus, interpretation of hyperlactatemia during the resuscitation and post resuscitation periods of septic shock is not straightforward. In this sense, the use of combined CO_2 and O_2 -derived parameters could theoretically help to identify, in some extend, the persistence or reversion of anaerobic metabolism.

Using CO₂ partial pressures (pCO₂) instead of CO₂ contents (CCO₂), Mekontso-Dessap *et al.* (27) demonstrated a good agreement between the Pv-aCO₂/ Ca-vO₂ ratio (as surrogate of the Cv-aCO₂/Ca-vO₂ ratio) and lactate levels \geq 2.0 mmol/L (accepting it as indicator of anaerobic metabolism). Nevertheless, far beyond a simple agreement, the Cv-aCO₂/Ca-vO₂ ratio might provide

Figure 2 <u>Abnormal conditions</u>. When macro hemodynamics and/or microcirculatory blood distribution are inadequate or when mitochondrial machinery is blocked, the H+ generated during the ATP hydrolysis are not recycled during the oxidative phosphorylation. Thus, the excess of H+ will cross the cell membrane to finally be buffered by the HCO₃- system and thus, to be transformed into CO₂ and H₂O. This leads to increase VCO₂/VO₂ fraction and its surrogate, the Cv-aCO₂/Ca-vO₂ ratio. To minimize the influence of Haldane effect, CO₂ contents should be calculated instead of CO₂ partial pressures (for details, see at the text).

additional information to that offered by lactate levels. A recent study (28) suggested that combination of persistent hyperlactatemia and $Cv-aCO_2/Ca-vO_2$ ratios >1.0 is related with more severe multiorgan dysfunction and higher mortality rates in patients with septic shock. Remarkably, patients attaining normalization of lactate levels but with $Cv-aCO_2/Ca-vO_2$ ratios >1.0 depicted similar clinical outcomes than those with persistent hyperlactatemia but with normal $Cv-aCO_2/Ca-vO_2$ ratios. Nevertheless, this study did not elucidate whether $Cv-aCO_2/Ca-vO_2$ ratios >1.0 might anticipate increases in lactate levels.

Subsequent studies corroborated the prognostic value of the Pv-aCO₂/Ca-vO₂ ratio in sepsis and septic shock (29,30). Importantly, an increased Pv-aCO₂/Ca-vO₂ ratio was related with delayed lactate clearance (29,30), which suggests that Cv-aCO₂/Ca-vO₂ ratio could anticipate lactate variations. Other studies showed that combined hyperlactatemia and high Cv-aCO₂/Ca-vO₂ ratio (or its equivalent, the $Pv-aCO_2/Ca-vO_2$ ratio) could identify ongoing supply dependency of O_2 consumption (i.e., $VO_2/$ DO_2 dependency) (31,32). In agreement with this concept, oxygen consumption (VO_2) was increased after a fluid load only in patients with acute circulatory failure and an abnormal $Pv-aCO_2/Ca-vO_2$ ratio at the baseline (31,32).

An experimental model of septic shock secondary to peritonitis demonstrated that regional mesenteric CvaCO₂/Ca-vO₂ ratio tracks the instauration and reversion of anaerobic metabolism following the variations in microcirculatory blood flow distribution at jejunal mucosa and serosa and also tracking the variations in mesenteric lactate levels (33). Hence, anaerobic metabolism reflected by increases in Cv-aCO₂/Ca-vO₂ ratio can be reversed by improvement of O₂ distribution at microcirculatory level, at least during very early stages of septic shock (33).

Combined CO_2 and O_2 -derived variables might add prognostic information to that provided by lactate levels during early stages of shock. In fact, Cv-aCO₂/ Ca-vO₂ ratio reacts faster than lactate levels to shortterm hemodynamic changes, which makes it an attractive variable to be monitored and, although difficult to be calculated, its interpretation is easier, with values >1.0 suggesting ongoing anaerobic metabolism. Thus, an increased lactate accompanied by a Cv-aCO₂/Ca-vO₂ ratio >1.0 might suggest "ongoing" tissue hypoxia, whereby clinicians should be encouraged to optimize macro and micro hemodynamics. Conversely, increased lactate levels accompanied by $Cv-aCO_2/Ca-vO_2$ ratios ≤ 1.0 could suggest that such lactate increase results from slow lactate clearance more than from ongoing tissue hypoxia, whereby additional resuscitation efforts should be discouraged. Nevertheless, such hypothesis must be tested in prospective clinical trials before to translate into the clinical practice.

The Haldane effect, the CO_2 dissociation curves and the criticism about the $Cv-aCO_2/Ca-vO_2$ ratio as a marker of anaerobic metabolism

The phenomenon whereby hemoglobin increases or decreases its affinity for CO_2 according to variations in its oxygenated or deoxygenated state is known as Haldane effect. Thus, when blood enters systemic capillaries and releases O_2 , the CO_2 -carrying capacity rises so that blood picks up extra CO_2 . Conversely, as blood enters pulmonary capillaries and binds O_2 , the CO_2 -carrying capacity falls, thus facilitating pulmonary elimination of CO_2 .

According to the Haldane effect, the total CO_2 content (CCO_2) rises at a given pCO_2 as O_2 hemoglobin saturation falls, thus indicating a non-linear relationship between pCO_2 and CCO_2 . Likewise, changes in tissue oxygen extraction, pH, tissue VCO₂, and hemoglobin concentration can also influence the relationships between pCO_2 and CCO_2 , making difficult the interpretation of the venous-to-arterial pCO_2 difference. In addition, depending on baseline SvO_2 , the Haldane effect may increase or decrease Pv- aCO_2 in response to the same changes in blood flow or metabolism (34).

Admittedly, Pv-aCO₂/Ca-vO₂ could be equivalent to the Cv-aCO₂/Ca-vO₂ ratio when PCO₂, pH, and SvO₂ approximate to normality, which occurs in many cases. Nevertheless, during low pCO₂ and SvO₂ conditions, CvaCO₂ might profoundly differ from Pv-aCO₂. Indeed, clinical observations during very early stages of resuscitation of septic shock suggest that persistence of a high Cv-aCO₂/ Ca-vO₂ ratio is related to unfavorable clinical outcomes but not its equivalent, the Pv-aCO₂/Ca-vO₂ ratio (28). Thus, although the influence of the Haldane effect is negligible at low $Pv-aCO_2$, the disagreement of $Cv-aCO_2$ and $Pv-aCO_2$ increases at higher $Pv-aCO_2$ values (28).

Some authors have proposed that high Pcv-aCO₂/CavO₂ ratio does not reflect anaerobic metabolism and obeys mainly to variations in hemoglobin levels (35), according to observations based on the analysis of expired gases by indirect calorimetry. Nevertheless, under non-steadystate conditions such as during shock states, RQ is easily influenced by a number of physiologic events that can alter the agreement between measurements of RQ by indirect calorimetry (RQic) and the true metabolic activity. Thus, the high solubility of CO₂ in tissues and blood, and the variations in pulmonary ventilation/perfusion (V/Q) relationships might lead to momentary discordant results between RQic and the true RQ, until a new stead- state is attained (36). Consequently, the relationship between venous-arterial CO2 to arterial-venous O2 differences and anaerobic metabolism should not be rejected based just on measurements of VCO₂ by RQic. Similarly, attributing high Pv-aCO₂/Ca-vO₂ ratios just to variations in hemoglobin levels could be physiologically misleading, since at very low hemoglobin values, small errors in hemoglobin measurements will amplify the error of calculation of PvaCO₂/Ca-vO₂ or Cv-aCO₂/Ca-vO₂ values.

Conclusions

Physiological determinants of combined CO_2 and O_2 derived variables are quite complex. Theoretically, the $Cv-aCO_2/Ca-vO_2$ ratio is independent of systemic blood flow variations and it should approach the RQ or at least, it should approximates cell respiration state. Although venous-arterial CO_2 to arterial-venous O_2 differences have demonstrated to predict fluid responsiveness in terms of VO_2 , to anticipate slowly lactate clearance and to be related with clinical outcomes, its potential application in the clinical practice needs to be confirmed.

Acknowledgments

Centro de Investigaciones clínicas, Fundación Valle del Lili. Cali, Colombia.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

- Vincent JL, De Backer D. Circulatory shock. N Engl J Med 2013;369:1726-34.
- Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med 1988;16:1117-20.
- Vallet B. Vascular reactivity and tissue oxygenation. Intensive Care Med 1998;24:3-11.
- Rivers E, Nguyen B, Havstad S, et al. Early goal- directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368-77.
- Sivayoham N, Rhodes A, Jaiganesh T, et al. Outcomes from implementing early goal-directed therapy for severe sepsis and septic shock: a 4-year observational cohort study. Eur J Emerg Med 2012;19:235-40.
- Puskarich MA, Marchick MR, Kline JA, et al. One year mortality of patients treated with an emergency department based early goal directed therapy protocol for severe sepsis and septic shock: a before and after study. Crit Care 2009;13:R167.
- 7. Bellomo R, Reade MC, Warrillow SJ. The pursuit of a high central venous oxygen saturation in sepsis: growing concerns. Crit Care 2008;12:130.
- Peake SL, Delaney A, Bailey M, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med 2014;371:1496-506.
- Mouncey PR, Osborn TM, Power GS, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med 2015;372:1301-11.
- Yealy DM, Kellum JA, Huang DT, et al, A randomized trial of protocol-based care for early septic shock. N Engl J Med 2014;370:1683-93.
- van Beest PA, Hofstra JJ, Schultz MJ, et al. The incidence of low venous oxygen saturation on admission to the intensive care unit: a multi-center observational study in The Netherlands. Crit Care 2008;12:R33.
- Marcinek DJ, Kushmerick MJ, Conley KE. Lactic acidosis in vivo: testing the link between lactate generation and H+ accumulation in ischemic mouse muscle. J Appl Physiol (1985) 2010;108:1479-86.
- Hellsten Y, Richter EA, Kiens B, et al. AMP deamination and purine exchange in human skeletal muscle during and after intense exercise. J Physiol 1999;520 Pt 3:909-20.
- Vezzoli A, Gussoni M, Greco F, et al. Quantitative analysis of anaerobic metabolism in resting anoxic muscle by 31P and 1H MRS. Biochim Biophys Acta 1997;1322:195-207.
- 15. Zilva JF. The origin of the acidosis in hyperlactataemia.

Ann Clin Biochem 1978;15:40-3.

- Hochachka PW, Mommsen TP. Protons and anaerobiosis. Science 1983;219:1391-7.
- McCarter FD, James JH, Luchette FA, et al. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage. J Surg Res 2001;99:235-44.
- James JH, Fang CH, Schrantz SJ, et al. Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis. J Clin Invest 1996;98:2388-97.
- Levy B, Gibot S, Franck P, et al. Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 2005;365:871-5.
- Wasserman K, Beaver WL, Whipp BJ. Gas exchange theory and the lactic acidosis (anaerobic) threshold. Circulation 1990;81:II14-30.
- Groeneveld AB, Vermeij CG, Thijs LG. Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg 1991;73:576-82.
- 22. Cohen IL, Sheikh FM, Perkins RJ, et al. Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Crit Care Med 1995;23:545-52.
- 23. Rimachi R, Bruzzi de Carvahlo F, Orellano-Jimenez C, et al. Lactate/pyruvate ratio as a marker of tissue hypoxia in circulatory and septic shock. Anaesth Intensive Care 2012;40:427-32.
- Gore DC, Jahoor F, Hibbert JM, et al. Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg 1996;224:97-102.
- 25. Levraut J, Ciebiera JP, Chave S, et al. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 1998;157:1021-6.
- Tapia P, Soto D, Bruhn A, et al. Impairment of exogenous lactate clearance in experimental hyperdynamic septic shock is not related to total liver hypoperfusion. Crit Care 2015;19:188.
- Mekontso-Dessap A, Castelain V, Anguel N, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med 2002;28:272-7.
- 28. Ospina-Tascón GA, Umana M, Bermudez W, et al. Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O 2 content difference ratio as markers of resuscitation in patients with septic shock.

Intensive Care Med 2015;41:796-805.

- 29. He HW, Liu DW, Long Y, et al. High central venousto-arterial CO2 difference/arterial-central venous O2 difference ratio is associated with poor lactate clearance in septic patients after resuscitation. J Crit Care 2016;31:76-81.
- Mesquida J, Saludes P, Gruartmoner G, et al. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Crit Care 2015;19:126.
- Monnet X, Julien F, Ait-Hamou N, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med 2013;41:1412-20.

Cite this article as: Ospina-Tascón GA, Madriñán HJ. Combination of O₂ and CO₂-derived variables to detect tissue hypoxia in the critically ill patient. J Thorac Dis 2019;11(Suppl 11):S1544-S1550. doi: 10.21037/jtd.2019.03.52

- 32. Mallat J, Lemyze M, Meddour M, et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann Intensive Care 2016;6:10.
- Ospina-Tascón GA, García Marin AF, Echeverri GJ, et al. Effects of dobutamine on intestinal microvascular blood flow heterogeneity and O. J Appl Physiol (1985) 2017;122:1406-17.
- Hurley R, Mythen MG. The Haldane effect--an explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth 2000;85:167-9.
- Dubin A, Ferrara G, Kanoore Edul VS, Martins E, et al. Venoarterial PCO. Ann Intensive Care 2017;7:65.
- Henneberg S, Söderberg D, Groth T, et al. Carbon dioxide production during mechanical ventilation. Crit Care Med 1987;15:8-13.

S1550

Pierre Huette¹, Omar Ellouze², Osama Abou-Arab¹, Pierre-Grégoire Guinot²

¹Anaesthesiology and Critical Care Department, Cardiothoracic ICU, Amiens University Hospital, Amiens, France; ²Anaesthesiology and Critical Care Department, Cardiovascular ICU, Dijon University Hospital, Dijon, France

Contributions: (I) Conception and design: All authors; (II) Administrative support: PG Guinot, P Huette; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: PG Guinot, O Ellouze, P Huette; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Pierre-Grégoire Guinot. Anesthesiology and Critical Care Department, Dijon University Hospital, 2 Bd Maréchal de Lattre of Tassigny, Dijon, France. Email: pierregregoire.guinot@chu-dijon.fr.

Abstract: Alteration of tissue perfusion is a main contributor to organ dysfunction in high-risk surgical patients. The difference between venous carbon dioxide and arterial carbon dioxide pressure (pCO, gap) has been described as a parameter reflecting tissue hypoperfusion in critically ill patients who are insufficiently resuscitated. The pCO2 gap/CavO2 ratio has also been described as an indicator of the respiratory quotient, thus the relationship between DO₂ and VO₂. Most of the knowledge about the pCO₂ gap and the pCO₂ gap/ CavO₂ ratio has come from studies in the literature on animal models or intensive care unit (ICU) patients. To date, publications pertaining to the operative setting are sparse. In the present review, we will first discuss the physiological background of the pCO₂ gap and CO₂-O₂ derived parameters used in the operating room. Few studies have focused on the clinical relevance of the pCO₂ gap in high-risk non-cardiac surgical patients. Prospective observational studies with a small sample size and retrospective studies have shown that the pCO₂ gap may be a useful complementary tool to identify patients who remain insufficiently optimized hemodynamically. In a few studies, a high pCO₂ gap was associated with postoperative complications following non-cardiac high-risk surgery. Results of observational studies conducted in patients undergoing cardiac surgery are contradictory. We focused on the divergence between non-cardiac surgery, cardiac surgery, and septic critically ill patients. When analyzing the literature, we can find some explanations for the discrepancies in the published results between cardiac and non-cardiac surgery. Finally, we will discuss the clinical utility of the pCO₂ gap in high-risk surgical patients.

Keywords: Venous-to-arterial pCO₂ difference; high-risk surgery; postoperative complications; cardiopulmonary bypass

Submitted Dec 15, 2018. Accepted for publication Jan 27, 2019. doi: 10.21037/jtd.2019.01.109 View this article at: http://dx.doi.org/10.21037/jtd.2019.01.109

Introduction

Individualized hemodynamic optimization during highrisk surgery is an essential key to patient care. Several studies have demonstrated that such strategies improve the postoperative course by reducing morbidity and mortality. Hemodynamic optimization is a preventive strategy aiming to adapt oxygen delivery (DO₂) to oxygen consumption (VO₂) to avoid tissue hypoperfusion during surgery (1). This strategy is based on optimization of blood pressure (fluid and/or vasopressor), cardiac output (CO) (fluid and/or inotrope), and perfusion parameters such as central venous oxygen saturation $(ScVO_2)$ or arterial lactate. Nevertheless, normalizing systemic hemodynamic parameters and $ScVO_2$ does not guarantee adequate tissue perfusion, and a substantial number of patients still progress to multiple organ failure and death. Although blood lactate concentration was initially described as a surrogate marker of tissue hypoperfusion, an elevated lactate value may be associated with adrenergic stimulation and surgical stress (2).

S1552

Recently, the difference between venous carbon dioxide and arterial carbon dioxide pressure (pCO_2 gap) has been described as a parameter reflecting tissue hypoperfusion in critically ill patients who are insufficiently resuscitated (3). Similarly, the pCO_2 gap/CavO_2 ratio has been described as an indicator of the respiratory quotient, thus the relationship between DO_2 and VO_2 (4). Most of the knowledge about the pCO_2 gap and the pCO_2 gap/CavO_2 ratio comes from studies in the literature on animal models or intensive care unit (ICU) patients (5). These parameters have been demonstrated to be associated with several variables of tissue perfusion, and most importantly with outcomes (mortality, morbidity). To date, publications pertaining to the operative setting have been sparse.

The purpose of the present review is to discuss clinical evidence of the usefulness of the pCO_2 gap and CO_2 - O_2 derived parameters in the operating room. We will then discuss the results according to the type of surgery (cardiac *vs.* non-cardiac) and propose clinical use.

Physiological background

According to the Fick equation, CO₂ elimination (VCO₂) equals the product of the difference between venous blood CO₂ content (CvCO₂), arterial blood CO₂ content (CaCO₂), and CO $[VCO_2 = CO \times (CvCO_2 - CaCO_2)]$. Because there is a linear association between CO_2 content and CO_2 pressure, the pCO₂ gap may be expressed as: pCO₂ gap = K * VCO_2/CO_2 . Therefore, the pCO₂ gap could be associated with CO₂ generation and CO. As CO₂ is much more soluble than O_2 , it represents a very sensitive marker of tissue hypoxia (6). Since the pCO_2 gap depends on CO and VCO₂, it represents an indicator of the capacity of venous blood to eliminate CO₂ generated by peripheral tissues, and thus the adequacy of blood flow during shock states. Interestingly, an inverse curvilinear relationship between the pCO₂ gap and CO has been described, highlighting the importance of blood flow on venous CO_2 accumulation (7,8).

Several studies on septic shock have found that an increase in CO with fluid expansion is associated with a decrease in the pCO_2 gap compared to increased CO (9). For a constant production of CO_2 , the increase in CO is coupled with an increased arterial blood volume having a low CO_2 content passing through the tissue, producing a washout effect and lowering the venous CO_2 content. Another factor in the lowering of the pCO_2 gap is the effect of blood pH on the relationship between pCO_2 and total blood CO_2 content. This relationship is shifted to

the right, with a pH decrease resulting in an increased pCO_2 gap for the same value of $CvCO_2$. Consequently, an increase in CO will be associated with lower pCO_2 gap if the tissue acid production is decreased by the improvement in oxygen supply (10). Finally, the mechanisms implicated in the elevation of the pCO_2 gap during shock states are not completely understood, and interpretation of the pCO_2 gap could sometimes be difficult.

The ratio between the pCO_2 gap and the arterial-venous oxygen difference (pCO₂ gap/CavO₂ ratio) has also been described (11,12). Under situations of tissue hypoxia, we can observe that a decreased VO_2 is associated with decreased aerobic CO₂ generation, whereas anaerobic CO₂ generation can still arise. Knowing that the VCO₂ is being reduced less than the VO_2 , we can observe a rise in the VCO_2/VO_2 ratio (i.e., the respiratory quotient). Studies have demonstrated that the pCO₂ gap/CavO₂ ratio can be used as an indicator of the presence of overall tissue hypoxia in critically ill patients (13). Mekontso-Dessap and colleagues demonstrated, in a retrospective ICU cohort, that the pCO₂ gap/CavO₂ ratio may be a substitute for the respiratory quotient and blood lactate. The pCO₂ gap/CavO₂ ratio was able to predict the presence of hyperlactatemia (4). Subsequently, Monnet and colleagues demonstrated that this ratio was able to predict an increase in VO₂ following fluid expansion in ICU patients. The pCO₂ gap/CavO₂ ratio was able to better predict the presence of VO_2/DO_2 dependency phenomenon than blood lactate and ScVO₂ (14). In 2013, Vallet and colleagues proposed an interpretation of different shock states based on the analysis of blood lactate and O₂-CO₂ derived parameters (15) (Table 1).

Clinical relevance of the pCO₂ gap in high-risk non-cardiac surgical patients

Several observational studies have been conducted in patients undergoing non-cardiac surgery. A prospective study on 51 elective neurosurgical patients evaluated the correlation between the pCO_2 gap and CO. The authors demonstrated a close inverse correlation between CO and the pCO_2 gap for both central and mixed venous gas samples. They concluded that the pCO_2 gap could represent a useful parameter for CO assessment, and could be utilized in a neurosurgical practice involving postural changers (16). These authors did not evaluate outcomes. Futier and colleagues (17) conduced a retrospective study on 70 patients undergoing major abdominal surgery with an individualized goal-directed fluid replacement therapy. The

Journal of Thoracic Disease, Vol 11, Suppl 11 July 2019

Table 1 block type according to factate and 02 002 derived parameters (15)								
Shock type	Lactate	O ₂ extraction	ScVO ₂	<mark>pCO₂</mark> gap				
Cardiogenic or hypovolemic	High	High	Low	High				
Anemic or hypoxemic	High	High	Low	Low				
Distributive	High	Low	High	High				
Cytopathic	High	Low	High	Low				

Table 1 Shock type according to lactate and O₂-CO₂ derived parameters (15)

pCO₂ gap was measured every hour until the end of the surgery. Of the 70 patients, 34% developed postoperative septic complications. The authors demonstrate that high ScvO₂ was not associated with postoperative complications, and that the pCO_2 gap was the only parameter associated with complications (17). During the course of the surgery, the pCO_2 gap was larger in patients with complications (7.8±2 vs. 5.6±2 mmHg, P<0.05) than in patients without complications. In addition, a pCO₂ gap value >5 mmHg was able to predict postoperative complications with an area under the ROC curve (AUC) of 0.785 (95% CI: 0.74 to 0.83, P<0.05) (17). In patients with normal ScVO₂, the pCO₂ gap may be a useful complementary tool to identify patients who remain insufficiently optimized hemodynamically. Robin and colleagues later performed a prospective observational study in 115 high-risk non-cardiac surgery patients (mostly abdominal surgery) (18). The pCO₂ gap was evaluated at admission to ICU, immediately after surgery. Seventy-eight patients (68%) developed postoperative complications. The pCO₂ gap was significantly higher at ICU admission in patients who suffered from complications (8.7±2.8 vs. 5.1±2.6 mmHg, P<0.001). The pCO₂ gap predicted the occurrence of postoperative complications, with an AUC of 0.86 (95% CI: 0.77 to 0.95) and a cut off value of 5.8 mmHg. Moreover, the pCO₂ gap has a higher ability to predict postoperative complications than arterial lactate. Taking together the results of their studies, the authors concluded that "the PCO₂ gap might be a useful and complementary tool to detect persistent tissue hypoperfusion that could be included as an additional step in the algorithms of early goal-directed therapy protocols" (18).

Apart from a retrospective study on 66 patients undergoing abdominal surgery, Silva and colleagues demonstrated an association between the pCO₂ gap and mortality (19). A pCO₂ gap of over 5 mmHg was predictive of mortality, with an AUC of 0.73 (95% CI: 0.61 to 0.84, P<0.05) (19). Recently, in a multicenter prospective observational study in non-cardiac surgery, our group demonstrated that the pCO₂ gap and the pCO₂ gap/CavO₂ ratio were associated with the postoperative course (20). In summary, there is evidence supporting the association between the pCO₂ gap, the pCO₂ gap/CavO₂ ratio, and postoperative morbidity and mortality. To date, no study has assessed the ability of hemodynamic protocols based on the pCO₂ gap measurement to decrease postoperative complications.

Clinical relevance of the pCO₂ gap in high-risk cardiac surgical patients

A study performed in the 90's by Cavaliere and colleagues evaluated the pCO_2 gap in 30 patients in the early postoperative hours following cardiac surgery (21). Of the 30 patients, 21 (70%) developed postoperative complications. The pCO₂ gap was significantly higher at ICU admission in patients who suffered from complications (9±2 vs. 5±1 mmHg, P<0.001). By using a multiple linear regression analysis, the authors demonstrated that the pCO₂ gap was associated to the body temperature, the paCO₂ and the arterial mixed venous O_2 content difference. The pCO₂ gap was not associated to CO nor blood lactate (21). Based on the assumption that ScvO₂ remains challenging as a tool to identify patients with adequate circulatory status, Habicher and colleagues performed a study in cardiac surgical patients with normal $ScVO_2(22)$. The authors hypothesized that the pCO₂ gap could serve as an additional parameter to evaluate the adequacy of tissue perfusion. A retrospective data analysis on 60 patients was performed. The patients had a $SevO_2 \ge 70\%$ and were divided into 2 groups: the high-pCO₂ gap group (≥ 8 mmHg) and the low-pCO₂ gap group (<8 mmHg) (22). Patients with a high pCO₂ gap had worse postoperative courses, with higher lactate levels and worse splanchnic functions. These findings were associated with need for longer mechanical ventilation and longer ICU stays. In 2016, a retrospective study that included 220 consecutive patients after elective cardiac surgery evaluated

the association between the pCO₂ gap and postoperative complications (23). The pCO₂ gap was considered normal for a value less than 6 mmHg. The SOFA score and the mortality rate were higher in the low pCO₂ gap group than in the high pCO₂ gap group. Moreover, the pCO₂ gap had a low ability to predict outcomes (23). Guinot and colleagues subsequently evaluated the association between the pCO₂ gap during the ICU course following cardiac surgery and postoperative morbidity and mortality (24). Three hundred thirty-nine patients were enrolled in this prospective observational study. The pCO₂ gap was not predictive of the development of major complications. Moreover, the pCO₂ gap was poorly correlated with tissue perfusion parameters, and arterial lactate clearance (24).

Du and colleagues conducted an observational retrospective study to establish whether the pCO₂ gap/CavO₂ ratio could predict the hemodynamic response to resuscitation (25). Seventy-two patients undergoing cardiac surgery were analyzed. VO₂ responders were defined by an increased VO_2 of over 10%. The ratio appeared to be a reliable marker of overall anaerobic metabolism that predicted VO₂ response. Abou-Arab and colleagues later analyzed the ability of the pCO₂ gap/CavO₂ ratio to predict an increase in VO₂ upon fluid challenge in cardiac surgical patients (26). One hundred ten patients, consecutively admitted to a cardiothoracic ICU and in whom fluid expansion was performed, were included. VO2 responders were defined as patients showing more than 15% increase in VO2. Arterial pressure, CO, and arterial and venous blood gas levels were measured before and immediately after the fluid challenge. CO₂-O₂ derived variables were not predictive of VO₂ changes following fluid challenge in this specific population (26). Only ScVO₂ was poorly predictive of VO₂ changes. The pCO₂ gap/CavO₂ ratio was not associate to arterial lactate. Interestingly, the authors observed a decrease in the pCO₂ gap only in non-VO₂ responder patients, suggesting a different pattern of microcirculatory alteration following cardiac surgery than in sepsis.

In summary, association between the pCO_2 gap, pCO_2 gap/CavO₂ ratio, postoperative course and anaerobic metabolism is **unclear** in cardiac surgical area. Small and retrospective studies demonstrated positive results whereas larger cohort demonstrated negative results.

Divergence between non-cardiac surgery, cardiac surgery, and septic critically ill patients

When analyzing the literature, some explanations can be

found regarding discrepancies in the published results. The most important is probably the type of surgery (21,27). Cardiac surgery with cardiopulmonary bypass is a specific physiologic situation that may be associated with factors altering the relationship between CO₂-O₂ derived content and pressure, VCO₂, DO₂, VO₂, and tissue perfusion. On the contrary, non-cardiac major surgery is often abdominal surgery which may be more similar to the macro- and micro-circulatory disturbance observed in ICU patients (19). Ruokonen and colleagues have already studied the ability of the pCO₂ gap to assess tissue perfusion in cardiac surgery patients by using a control group of abdominal surgery patients (27). According to this author, a pCO_2 gap rise is frequent after cardiac surgery and better reflects an alteration of systemic and regional perfusion compared to tissue hypoxia (26). In this way, some studies did not demonstrate any association between the pCO₂ gap, pCO₂ gap/CavO₂ ratio, arterial lactate and VO₂ (21,26).

The relationship between CO₂-O₂ derived content and pressure depends on several parameters that can be altered in the operating theatre, specifically in cardiac surgery. Of these parameters, body temperature, alveolar ventilation, and hemodilution may be of importance. Van der Linden and colleague have demonstrated an increase in the pCO₂ gap during acute hemorrhaging in anesthetized dogs. Hemorrhage was associated with a progressive increase in venous pCO_2 , with a corresponding widening of the pCO_2 gap which was correlated with a blood lactate change (28). Nevertheless, hemodilution was demonstrated to have more complex effects on CO₂-O₂ derived variables than hemorrhage (29,30). During mechanical ventilation, alveolar ventilation may be associated with pCO₂ changes. Mallat and colleagues and Morel and colleagues demonstrated similar results when analyzing the pCO₂ gap during rising alveolar ventilation (31,32). Both studies demonstrated that rising alveolar ventilation is associated with an increased pCO_2 gap. These changes were related to changes in VO₂, systemic vasoconstriction, and variations in the PCO_2/CO_2 content relationship (31,32). By altering the metabolism and the PCO₂/CO₂ content relationship, body temperature can alter the adequacy of the pCO₂ gap. Utoh and colleagues demonstrated, in cardiac surgical patients, that the two main factors associated with high pCO₂ gap values were the duration of cardiopulmonary bypass surgery and the minimum rectal temperature. Cardiac surgery was shown to be associated with changes in metabolic rate, CO, and $VO_2(15,21)$. Such alterations can occur throughout first postoperative hours.

Figure 1 Proposed algorithm to guide hemodynamic treatment in high-risk surgical patients. ScVO₂, central venous oxygen saturation; PEEP, positive end-expiratory pressure.

The extent of microcirculation alterations caused by sepsis, surgery, and cardiopulmonary bypass may differ (33,34). Sepsis is normally associated with impaired microcirculatory regulation, decreased functional capillary index, absent/intermittent capillary flow, increased heterogeneity in the perfusion index, arteriovenous shunting, and cellular hypoxia (35). On the contrary, cardiopulmonary bypass is associated with many reversible alterations in microcirculation, including a decrease in microvascular perfusion, increased heterogeneity in the perfusion index and red blood cell velocity, and arteriovenous shunting (33,36). These changes are associated with alterations in the arteriovenous oxygen difference, VO₂, and CO₂ and O₂ diffusion (37). During major abdominal surgery, the microvascular perfusion is not altered, and it is not associated with postoperative complications (38). Nevertheless, an impaired microvascular flow can appear during the postoperative period when patients suffer from complications (38). These changes are similar to those observed in sepsis (39).

necessarily indicate an alteration in tissue perfusion or a low flow state. Moreover, studies have demonstrated that a normal pCO₂ gap does not preclude the presence of tissue hypoxia, and thus has poor sensitivity to detect tissue hypoxia (8,40). In patients with low CO and a normal arterial lactate value, the pCO₂ gap was demonstrated to be increased (7). Keeping in mind these limitations and the fact that, to date, no randomized study using the pCO₂ gap has been published, the pCO₂ gap may be interpreted according to the type of surgery (cardiac vs. non-cardiac), medical situation (e.g., sepsis, haemorrhage, cardiogenic), and macro- and micro-hemodynamic parameters (e.g., CO, arterial lactate, ScVO₂). The pCO₂ gap may be considered as a parameter reflecting the ability of blood flow to remove the total CO₂ produced by tissue rather than a marker of tissue dysoxia. Based on these interpretations, several authors have proposed algorithms. Among them, an algorithm based on the lactate value may be useful in the choice of therapeutic treatment for acute circulatory failure (Figure 1).

Use of the pCO₂ gap in high-risk surgical patients

One has to keep in mind that a high pCO_2 gap may not

Conclusions

The pCO₂ gap can be considered as a marker of CO

S1556

adequacy for the overall metabolic demand that has been associated with the postoperative course in non-cardiac major surgery. The pCO₂ gap may not always be a marker of tissue hypoxia. During hemodynamic treatment, the interpretation of the pCO₂ gap may help physicians to understand which variables can be optimized. In cardiac surgery, results are inconsistent because of many factors altering the pCO₂ gap interpretation. In surgical patients without any sign/parameter of tissue hypoperfusion,

manipulating the pCO_2 gap may be done with caution.

Acknowledgments

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

- Ariza M, Gothard JW, Macnaughton P, et al. Blood lactate and mixed venous-arterial PCO2 gradient as indices of poor peripheral perfusion following cardiopulmonary bypass surgery. Intensive Care Med 1991;17:320-4.
- Cobianchi L, Peloso A, Filisetti C, et al. Serum lactate level as a useful predictor of clinical outcome after surgery: an unfulfilled potential? J Thorac Dis 2016;8:E295-7.
- Mallat J, Lemyze M, Tronchon L, et al. Use of venousto-arterial carbon dioxide pressure difference to guide resuscitation therapy in septic shock. World J Crit Care Med 2016;5:47-56.
- Mekontso-Dessap A, Castelain V, Anguel N, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med 2002;28:272-7.
- Ospina-Tascón GA, Hernández G, Cecconi M. Understanding the venous-arterial CO2 to arterialvenous O2 content difference ratio. Intensive Care Med 2016;42:1801-4.
- Silbert BI, Litton E, Ho KM. Central venous-to-arterial carbon dioxide gradient as a marker of occult tissue hypoperfusion after major surgery. Anaesth Intensive Care 2015;43:628-34.
- Teboul JL, Mercat A, Lenique F, et al. Value of the venousarterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med

1998;26:1007-10.

- Bakker J, Vincent JL, Gris P, et al. Veno-arterial carbon dioxide gradient in human septic shock. Chest 1992;101:509-15.
- Mallat J, Pepy F, Lemyze M, et al. Central venous-toarterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. Eur J Anaesthesiol 2014;31:371-80.
- Morel J, Gergelé L, Dominé A, et al. The venous-arterial difference in CO2 should be interpreted with caution in case of respiratory alkalosis in healthy volunteers. J Clin Monit Comput 2017;31:701-7.
- Ospina-Tascón GA, Umaña M, Bermúdez W, et al. Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O 2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med 2015;41:796-805.
- 12. Mallat J, Lemyze M, Meddour M, et al. Ratios of central venous-to-arterial carbon dioxide content or pressure to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann Intensive Care 2016;6:10.
- Mesquida J, Saludes P, Gruartmoner G, et al. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Crit Care 2015;19:126.
- Monnet X, Julien F, Ait-Hamou N, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med 2013;41:1412-20.
- Vallet B, Pinsky MR, Cecconi M. Resuscitation of patients with septic shock: please «mind the gap»! Intensive Care Med 2013;39:1653-5.
- 16. Tsaousi GG, Karakoulas KA, Amaniti EN, et al. Correlation of central venous-arterial and mixed venousarterial carbon dioxide pressure gradient with cardiac output during neurosurgical procedures in the sitting position. Eur J Anaesthesiol 2010;27:882-9.
- Futier E, Robin E, Jabaudon M, et al. Central venous O₂ saturation and venous-to-arterial CO₂ difference as complementary tools for goal-directed therapy during high-risk surgery. Crit Care 2010;14:R193.
- Robin E, Futier E, Pires O, et al. Central venous-toarterial carbon dioxide difference as a prognostic tool in high-risk surgical patients. Critical Care 2015;19:227.

Journal of Thoracic Disease, Vol 11, Suppl 11 July 2019

- Silva JM, Oliveira AM, Segura JL, et al. A large Venous-Arterial PCO(2) Is Associated with Poor Outcomes in Surgical Patients. Anesthesiol Res Pract 2011;2011:759792.
- ESICM LIVES 2018. Available online: https://icmexperimental.springeropen.com/articles/10.1186/s40635-018-0201-6
- Cavaliere F, Martinelli L, Guarneri S, et al. Arterial-venous PCO2 gradient in early postoperative hours following myocardial revascularization. J Cardiovasc Surg (Torino) 1996;37:499.
- Habicher M, von Heymann C, Spies CD, et al. Central Venous-Arterial pCO2 Difference Identifies Microcirculatory Hypoperfusion in Cardiac Surgical Patients With Normal Central Venous Oxygen Saturation: A Retrospective Analysis. J Cardiothorac Vasc Anesth 2015;29:646-55.
- 23. Morel J, Grand N, Axiotis G, et al. High veno-arterial carbon dioxide gradient is not predictive of worst outcome after an elective cardiac surgery: a retrospective cohort study. J Clin Monit Comput 2016;30:783-9.
- Guinot PG, Badoux L, Bernard E, et al. Central Venousto-Arterial Carbon Dioxide Partial Pressure Difference in Patients Undergoing Cardiac Surgery is Not Related to Postoperative Outcomes. J Cardiothorac Vasc Anesth 2017;31:1190-6.
- 25. Du W, Long Y, Wang XT, et al. The Use of the Ratio between the Veno-arterial Carbon Dioxide Difference and the Arterial-venous Oxygen Difference to Guide Resuscitation in Cardiac Surgery Patients with Hyperlactatemia and Normal Central Venous Oxygen Saturation. Chin Med J 2015;128:1306-13.
- 26. Abou-Arab O, Braik R, Huette P, et al. The ratios of central venous to arterial carbon dioxide content and pressure to arteriovenous oxygen content are not associated with overall anaerobic metabolism in postoperative cardiac surgery patients. PLoS One 2018;13:e0205950.
- Ruokonen E, Soini HO, Parviainen I, et al. Venoarterial CO2 gradient after cardiac surgery: relation to systemic and regional perfusion and oxygen transport. Shock 1997;8:335-40.
- Van der Linden P, Rausin I, Deltell A, et al. Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg 1995;80:269-75.
- Kocsi S, Demeter G, Érces D, et al. Central venousto-arterial CO2-gap may increase in severe isovolemic anemia. PLoS One 2014;9:e105148.
- 30. Dubin A, Ferrara G, Kanoore Edul VS, et al. Venoarterial

PCO2-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study. Ann Intensive Care 2017;7:65.

- 31. Mallat J, Mohammad U, Lemyze M, et al. Acute hyperventilation increases the central venous-to-arterial PCO2 difference in stable septic shock patients. Ann Intensive Care 2017;7:31.
- Morel J, Gergele L, Vereche D, et al. Do fluctuations of PaCO2 impact on the venous-arterial carbon dioxyde gradient? Critical Care 2011;15:456.
- Kara A, Akin S, Ince C. The response of the microcirculation to cardiac surgery. Curr Opin Anaesthesiol 2016;29:85-93.
- De Backer D, Orbegozo Cortes D, Donadello K, et al. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence 2014;5:73-9.
- 35. Edul VSK, Enrico C, Laviolle B, et al. Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med 2012;40:1443-8.
- 36. Atasever B, Boer C, Goedhart P, et al. Distinct alterations in sublingual microcirculatory blood flow and hemoglobin oxygenation in on-pump and off-pump coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 2011;25:784-90.
- Koning NJ, Simon LE, Asfar P, et al. Systemic microvascular shunting through hyperdynamic capillaries after acute physiological disturbances following cardiopulmonary bypass. Am J Physiol Heart Circ Physiol 2014;307:H967-75.
- Bansch P, Flisberg P, Bentzer P. Changes in the sublingual microcirculation during major abdominal surgery and post-operative morbidity. Acta Anaesthesiol Scand 2014;58:89-97.
- Jhanji S, Lee C, Watson D, et al. Microvascular flow and tissue oxygenation after major abdominal surgery: association with post-operative complications. Intensive Care Med 2009;35:671-7.
- Vallet B, Teboul JL, Cain S, et al. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol 2000;89:1317-21.

Cite this article as: Huette P, Ellouze O, Abou-Arab O, Guinot PG. Venous-to-arterial pCO₂ difference in high-risk surgical patients. J Thorac Dis 2019;11(Suppl 11):S1551-S1557. doi: 10.21037/jtd.2019.01.109

Transcutaneous PCO₂ monitoring in critically ill patients: update and perspectives

Arnaud Mari¹, Hélène Nougue^{2,3,4}, Joaquim Mateo^{2,3,4}, Benoît Vallet⁵, Fabrice Vallée^{2,3,4,6}

¹Intensive Care Unit, Hôpital Yves Le Foll, Saint-Brieuc, France; ²Department of Anesthesiology and Critical Care, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; ³UMR-S942, Hôpital Lariboisière, Paris, France; ⁴University of Paris Diderot, Paris, France; ⁵EA2694 University of Lille, Lille, France; ⁶MEDISIM, Inria Paris-Saclay, Palaiseau, France

Contributions: (I) Conception and design: A Mari, H Nougue, F Vallée; (II) Administrative support: A Mari, F Vallée; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: A Mari, F Vallée; (V) Data analysis and interpretation: A Mari, F Vallée; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Arnaud Mari, MD. Intensive Care Unit, Hôpital Yves Le Foll, Saint-Brieuc, France. Email: arnaud.mari@ch-stbrieuc.fr.

Abstract: The physiology of venous and tissue CO_2 monitoring has a long and well-established physiological background, leading to the technological development of different tissue capnometric devices, such as transcutaneous capnometry monitoring (TCM). To outline briefly, measuring transcutaneous PCO₂ (tcPCO₂) depends on at least three main phenomena: (I) the production of CO₂ by tissues (VCO₂), (II) the removal of CO₂ from the tissues by perfusion (wash-out phenomenon), and (III) the reference value of CO₂ at tissue inlet represented by arterial CO₂ content (approximated by arterial PCO₂, or artPCO₂). For this reason, there are, at present, roughly two clinical uses for tcPCO₂ measurement: a respiratory approach where tcPCO₂ is likely to estimate and non-invasively track artPCO₂; and a hemodynamic under-estimate use where tcPCO₂ can reflect tissue perfusion, summarized by a so-called "te-art PCO₂ gap". Recent research shows that these two uses are not incompatible and could be combined. The spectrum of indications and validation studies in ICUs is summarized in this review to give a survey of the potential applications of TCM in critically ill patients, focusing mainly on its potential (micro)circulatory monitoring contribution. We strongly believe that the greatest benefit of measuring tcPCO₂ is not to only to estimate artPCO₂, but also to quantify the gap between these two values, which can then help clinicians continuously and noninvasively assess both respiratory and hemodynamic failures in critically ill patients.

Keywords: Transcutaneous capnometry; carbon dioxide monitoring; intensive care; microcirculation; shock

Submitted Jan 28, 2019. Accepted for publication Apr 09, 2019. doi: 10.21037/jtd.2019.04.64 **View this article at:** http://dx.doi.org/10.21037/jtd.2019.04.64

Introduction

The measurement of oxygen (O₂) and carbon dioxide (CO₂) gas tension via a transcutaneous route which could noninvasively assess arterial blood gas pressures (artPO₂ and artPCO₂, respectively) was developed in the 1980s (1). For transcutaneous capnometry (measuring transcutaneous carbon dioxide gas pressure, tcPCO₂), sensors are based on chemical electrodes, which Dr. Severinghaus adapted for use in blood gas analysis (2-4). In respiratory failure, the evaluation of adequacy of alveolar ventilation with artPCO₂ remains a routine challenge. With consideration of some technical or device-related cautions, relevant interpretation of tcPCO₂ measurement is plausible, and can lead to reliable artPCO₂ estimation with transcutaneous capnometry monitoring (TCM) while limiting blood gas analysis and arterial puncture (5). Importantly, tcPCO₂ is also by nature and physiology a circulatory variable which is dependent on systemic and local cutaneous perfusion conditions. During circulatory failure, decoupling between artPCO₂ and tcPCO₂ occurs, leading to tissue hypercarbia unrelated to arterial PCO₂ (6-8). Interestingly, this mismatch, with

Journal of Thoracic Disease, Vol 11, Suppl 11 July 2019

Figure 1 A transcutaneous PCO₂ sensor at the ear lobe using Stow-Severinghaus technology, from Eberhard *et al.* (2,9).

a strong physiological and clinical background, offers potential perspectives for peripheral tissue perfusion monitoring in the critically ill patient (9). Although this approach has been investigated since the 1980s, adherence remains low in daily clinical practice. Updated technology and recent clinical reports of innovative modifications including measurement at low temperature (37 °C) and/ or with thermal challenge (electrode heated from 37 °C to 42 °C) have yielded promising results that may provide crucial support for the use of this tool in the field of peripheral tissue perfusion monitoring (1,10,11).

The body of indications and validation studies in ICUs are summarized in this review to give a panorama of potential applications of TCM in critically ill patients.

tcPCO₂ technology

Dr. Severinghaus was the first to describe the measurement of PCO₂ on human skin surfaces (3). Transcutaneous measurement of PCO₂ is based on the phenomenon of CO₂ gas diffusing very easily throughout the body tissue and skin, and can thus be detected by a sensor on the skin surface. CO₂ is measured by determining the pH of an electrolyte solution separated from the skin by a highly permeable membrane. A change in the pH is then proportional to the logarithm of PCO_2 change (*Figure 1*). By heating the skin, vasodilation with local hyperemia is produced which increases the diffusion of CO₂ and increases the delivery of arterial blood to the dermal capillary area beneath the sensor. Most of the time, the sensor is heated between 42 °C and 44 °C to create the "arterialization" of the tissue (by small arteriole and capillary dilatation) leading to an increase of arterial contribution in the signal. Overall, transcutaneous PCO₂ measurements correlate fairly well with the corresponding arterial PCO₂ values, even after applying a correcting algorithm to take into consideration

the physico-chemical modifications after elevating the temperature of the sensor (2).

This electrochemical method has proven to be accurate and reliable but requires an *ex vivo* "calibration period" before placing the sensor on the skin, and a subsequent *in vivo* "equilibration period" to obtain a stable value. It should be noted that the position of the sensor at the earlobe shortens this equilibration time due to its rich vascularization and thus decreases the time response and analytic inertia during acute changes. This technical limitation has hindered the development and use of tcPCO₂ monitoring as a surrogate of artPCO₂ in current practice (1). A technology based on obtaining tcPCO₂ by infrared light is currently being developed to try to increase the ease and reactivity of bedside measurement (2).

tcPCO₂ monitoring: physiological overview

Physiology of tissue and cutaneous carbon dioxide monitoring has a long and well-established physiological background, which has been the foundation for the development of different mucosal and cutaneous capnometric devices, extensively described in recent quality reviews (1,6,9). At its core, the measurement of tcPCO₂ is dependent on three main phenomena:

- (I) The production of CO_2 by the tissues (VCO₂);
- (II) The removal of CO₂ from the tissues by perfusion (so-called "washout-out" phenomenon);
- (III) The reference value of CO₂ at tissue inlet represented by arterial CO₂ content (CaCO₂).

For this reason, there are, at present, roughly two clinical uses for tcPCO₂ measurement: a respiratory use where tcPCO₂ is likely to non-invasively estimate and track artPCO₂, and a hemodynamic use where tcPCO₂ could reflect tissue perfusion by an evaluation of the difference between tcPCO₂ and artPCO₂, so-called "gap CO₂". The simplified physiology of TCM and the main clinical scenario reflecting these two indications are schematically illustrated in *Figure 2* (respiratory use *Figure 2A,B*, hemodynamic use *Figure 2C,D,E,F*). Additionally, we have depicted three frequent and relevant clinical issues and described them according to whether the monitoring of tcPCO₂ is performed with a sensor at 37 °C or a heated sensor at 42 °C to 44 °C (11,12). The three clinical hemodynamic situations are the following:

 (I) A stable circulatory state with almost preserved tissue perfusion conditions, when tcPCO₂ can be interpreted as an artPCO₂ surrogate;

S1560

Figure 2 Pathophysiological patterns describing transcutaneous capnometry during respiratory and hemodynamic issues, resumed in schematic vignettes or panels (n=6). See text for extensive description and commentary. Qc, cardiac output; Qt, regional or tissue flow; Pa CO₂ or artPCO₂, arterial CO₂ tension; PvCO₂ or cvPCO₂, central-venous CO₂ tension; tcPCO₂, transcutaneous CO₂ tension; etCO₂, end-tidal CO₂ tension.

- (II) An overt shock state with low cardiac output or low O₂ delivery called "convective shock", for and corresponding to core pathophysiological patterns of hypovolemic, hemorrhagic or cardiogenic shock;
- (III) A "distributive shock" corresponding to a resuscitated septic shock with restored cardiac output but with an alteration of peripheral microperfusion.

Moreover, as warming the skin impacts $tcPCO_2$ value and local cutaneous blood flow, behavior of tissue hypercarbia depends on locally applied electrode temperature (1,2). For this reason, interpretation of $tcPCO_2$ measurements must take into account the temperature level (i.e., normothermia at 37 °C vs. heated conditions at 42–45 °C) (11). The authors propose this graphic representation in order to illustrate and clarify these six "clinical and measurement situations" based on robust physiological concepts and the results of their recent work. Each illustration will be developed in more detail in the sections to follow.

tcPCO₂ monitoring as a surrogate of artPCO₂

TCM to track artPCO₂ variations: remind the basics

Cutaneous PCO_2 represents a mixture of venous, capillary, and arterial CO_2 tension values. In normal conditions,

tissue metabolism (VCO₂) is coupled with tissue perfusion. When metabolism increases, all the CO₂ produced is washed out so that the PCO₂ gap between tcPCO₂ and artPCO₂ (tc-artΔPCO₂) remains constant at around 5 mmHg (Figure 2A) (8,9). Heating the skin from 37 °C to 45 °C increases the skin blood flow by three to four times and enhances the contribution of arterial blood flow by opening the precapillary sphincter arterioles (1,3). Also, in preserved circulatory conditions, tcPCO₂ with heated electrodes (42-45 °C) will closely approximate artPCO₂, as heat produces the so-called "arterialization" of local blood flow in the cutaneous area where the sensor is applied (Figure 2B) (13-15). Two correcting factors are then applied to bring the tcPCO₂ value close to the value of artPCO₂: (I) a fixed correction is removed from the crude tcPCO₂ value, as an "aerobic factor", and, as a consequence, that tissue PCO₂ is always physiologically higher than the arterial PCO₂ regardless of the quality of tissue arterialization (4.5 mmHg/°C); (II) a Severinghaus constant is applied, due to the increase of tcPCO₂ responds to the CO₂ production induced by the heat of the sensor, also called the "metabolic constant", ranging from 5 to 10 mmHg depending on the type of device (2).

Summary of the clinical evidence for tcPCO₂ as a reliable artPCO₂ surrogate

As the main purpose of this issue concerning CO_2 -related variables is to focus on hemodynamic management, we will briefly relate and summarize the main clinical data available on TCM for respiratory use.

We can reasonably state that TCM may be useful for non-invasively and continuously estimating actual arterial PCO₂, which can be of critical importance during respiratory pump failure leading to alveolar hypoventilation with hypercapnic issues. This tool could prevent the need to perform iterative blood gas analysis and could help to monitor the course of artPCO₂ with populations in whom estimates of artPCO₂ may guide therapeutic interventions. Different pathophysiological disorders are likely to promote an increase of artPCO₂: low alveolar ventilation (with related respiratory acidosis), increased dead space (anatomic or functional), depressed respiratory drive, or bronchial obstructive diseases as acute exacerbation of chronic obstructive pulmonary disease (COPD), especially whose receiving NIV.

While monitoring tcPCO₂ is considered as a valid method in routine respiratory care practice for assessing

the adequacy of ventilation (16), and the cumulative data available in the specific setting of critically ill patients appears to be substantial, the precision of the technique as an artPCO₂ surrogate is still disputed (3,5). Examination of the aggregated literature suggests that accuracy and reliability appear good with limits of agreement in a narrow range for most ICU patients (inside ±5 mmHg and almost all values inside $\pm 10 \text{ mmHg}$ (1,5). However, this opinion is debated, as other authors claim that confidence may be insufficient, as around 20% of the values of arterial-totranscutaneousPCO₂ difference are outside the acceptable range of ±7.5 mmHg (15). There are also numerous reports underscoring the underestimation in the highest artPCO₂ values along with other authors who consider the TCM unsuitable or disputable for the emergency room or ICU patients (3,17,18).

As it concerns end tidal CO₂ (EtCO₂), pragmatically speaking, the relevance of tcPCO₂ could be increased with an initial and punctual concomitant arterial blood gas analysis to estimate initial potential gradient, and repeated sequentially so as to not dismiss the distortion with time. Relating to this, Horvath *et al.* reported good concordance during NIV for ARF and that discordance might have decreased with the initial te-art Δ PCO₂ estimate to rule out discrepancy (19). Additionally, Rodriguez *et al.* reported good correlation in PCO₂ data changes (transcutaneous and arterial) over a 17-hour period, and only 20% of the samples had minor changes in opposing directions (13).

Nonetheless, Conway et al. recently pooled the available literature on the accuracy and precision of TCM to offer the most complete picture about this issue in a review with extensive meta-analysis (whole pooled population: 7,021 paired measurements, 2,817 patients in 73 studies; ICU patients: 16 studies (22% of 73 reviewed studies) with n=2,128 measurements; acute respiratory failure, 14 studies, n=993 paired measurements). In the whole population, they concluded that there are substantial differences between tcPCO₂ and artPCO₂ depending on the technical aspects (17,20,21), such as location site or temperature of electrode, and advocated the ear lobe as the site and a heated electrode of more than 42 °C for the temperature. However, these authors stated that the available literature attests to TCM being an accurate tool to estimate artPCO₂ to a clinically acceptable degree in the adult ICU population (22).

Finally, many factors or limitations should be considered when interpreting tcPCO₂-observed values as a surrogate of artPCO₂. Hasibeder *et al.* reported that artPCO₂ and cardiac output values could only explain 66% of the tcPCO₂

S1562

value variability, suggesting that many other factors were distorting the concordance between transcutaneous and arterial CO₂ in ICUs (23). In our opinion, it would be interesting to further investigate the role of several factors, especially in most hypercapnic critically ill patients with acidosis, to determine the accuracy of tcPCO₂ in outlier ICU patients and help in the interpretation of TCM. The most important factors appear to be the technological concerns relating to device performance and differences between monitors (TCM developed by SenTech[©] or Radiometer[®], fiberoptic sensors etc.), location of sensor for measurement, cutaneous adiposity or edema, and of course, disturbed peripheral perfusion by adrenergic tone, drugs, sepsis, shock, fever, etc. However, the respective contribution of each factor may be difficult to capture in ICUs, as outlined by these authors (13).

To conclude this chapter, and in accordance with abundant concordant literature, we advocate the potential use of TCM in ICUs for ventilator management, because of its non-invasiveness, continuous monitoring, and accuracy of the transcutaneous CO₂ sensor technology (2,5,13,15,22,24-26). For the longitudinal use as a trending monitor, we support the application of iterative punctual invasive artPCO₂ measurements with blood gas analysis to recalibrate and rescale the difference between arterial and transcutaneous PCO₂ value, or $_{tc-art}\Delta PCO_2$ gap (13,22). In this way, TCM could perform an interesting sniffing function over time to track artPCO2 elevation during therapeutic procedures such as prolonged NIV. Finally, in the case of suspected altered tissue perfusion or ongoing shock, tcPCO₂ signal may be ambiguous and should be interpreted with caution, as detailed in the next section.

tcPCO₂ monitoring as a marker of tissue perfusion

Proof of concept and clinical rationale for use of capnometric data (CO₂ derived parameters) in altered tissue perfusion during macrocirculatory or microcirculatory failure have been extensively demonstrated and described (6-8,27-29). These numerous studies clearly demonstrate that the elevation of tissue CO₂ is ubiquitous throughout the body in shock states, and is closely related to tissue perfusion alteration. This paradigm has been evidenced by monitoring tissue PCO₂ at different clinically available sites including the gastric, buccal, sub-lingual, and thus, the skin level. Schematically, the difference between tcPCO₂ and artPCO₂ (t_{c-art} Δ PCO₂ gradient) can increase

when circulatory failure or occult microcirculatory shock is ongoing. This may be considered a limitation of the arterial PCO_2 estimation technique, and may give an opportunity for hemodynamic assessment in specific clinical situations.

tcPCO₂ in low oxygen delivery situations or convective shocks

Behavior of tcPCO₂ during macrocirculatory failure leading to low cardiac output and/or low O₂ delivery (DO₂), referred to as "convective shocks" (cardiogenic or hemorrhagic shock), is depicted in (Figure 2C) (12). When circulatory failure occurs, tcPCO2 and artPCO2 mismatch and become decoupled as demonstrated in a famous and seminal clinical study from an L.A. team of Tremper and Shoemaker who monitored the kinetics of tcPCO₂ during overt shock states (hemorrhage, heart failure, or the operating room) (Figure 3) (30). This figure illustrates the hemodynamic nature of tcPCO2 as we can observe that tcPCO₂ values mirror the cardiac output time course, and become dramatically decoupled from artPCO₂ kinetics in the clinical case condition of low flow states. In this setting, note that the difference between tissue and arterial PCO₂ is more relevant than the absolute value of tcPCO₂ to track local tissue PCO₂ balance (and overcome the influence of arterial CO₂ content and thus artPCO₂ on tcPCO₂). In this framework, high PCO₂ gap values may be suggestive of flow stagnation by low local perfusion. Many clinical reports, along with robust experimental data, support the notion that hemorrhagic or cardiogenic shocks, together with cardiac arrest, lead to a huge increase in tissue hypercarbia. Of note, some recent additional pre-clinical data reinforce this currently still valid finding (29,31).

tcPCO₂ in microcirculatory or distributive shock

According to experts, the gold-standard technique for microcirculatory perturbation assessment remains optical direct sublingual microvideoscopy (SDF-OPS or IDF technologies) (32). However, these tools appear cumbersome, require time-consuming offline analysis, and have not yet reached clinical utility despite over a decade of research and technological advance. Also, a system to assess the microcirculation at the point of care seems highly desirable. On the other hand, the clinical signs of peripheral perfusion impairments (skin mottling, refill capillary time, etc.) are meaningful and informative for microcirculatory derangement but may appear late and be Journal of Thoracic Disease, Vol 11, Suppl 11 July 2019

Figure 3 Two-day time course of $PtcCO_2$ and PaO_2 , upper section; $PtcCO_2$ and cardiac output (CO plotted inversely i.e., with zero at the top to 8 L/min at the bottom of the scale), lower section. Note during the first day, the close trend of $PtcCO_2$ with $PaCO_2$, while the patient has adequate blood flow (CO >4 L/min). During day 2, the CO drops to below 2 L/min and $PtcCO_2$ rises, and note how $PtcCO_2$ correlates with1/CO (r=-0.92). Also note how $PtcCO_2$ responds to CPR by a decrease of more than 20 torr (upper section). Adapted from (30).

Figure 4 Relation between changes in delta $Pc-aCO_2$ (as cutaneous-arterial ΔPCO_2) and changes in microcirculatory skin blood flow assessed by laser Doppler flowmetry (delta TPU, variation or tissue perfusion unit, abscissa axis) during 16 fluid challenges. For more details, see (10).

insufficiently sensitive for guiding therapeutics. As outlined by several authors, refined therapeutic tailored management should embrace and target microcirculatory dimensions of shock (33). Tissue capnometry, via gastric or sublingual routes, or more simply with trans-cutaneous monitoring, could aid in this purpose, and offer, as complement, a more sensitive insight than that provided by clinical examination (9-11,27,33).

Gastric tonometry and sublingual capnometry have shown their clinical validity and their relationship to microperfusion, but have not been put into practice at this time due to paradigmatic or technological concerns (6,9). As an alternative, skin monitoring at the earlobe thus seems to be a user-friendly way to monitor tissue CO₂. Indeed, in a previous work, Vallée et al. used this device to examine whether cutaneous earlobe tcPCO₂ could be used to assess tissue perfusion in septic shock patients. In that study, the sensor was heated at 37 °C to limit the impact of arterial PCO₂ on cutaneous PCO₂ due to the arterialization of the blood being minimal compared with when the sensor is warming to 42 °C (10). They found that a threshold value of 16 mmHg for the gradient between the earlobe tcPCO₂ and arterial PCO₂ reliably discriminated between those patients with septic shock and tissue hypoperfusion from those patients in the control group, with a sensitivity of 83% and a specificity of 90%. Furthermore, it was found that the fluid challenge induced a decrease in the earlobe to-arterial PCO₂ gradient in parallel with the improvement of the microcirculatory blood flow in the earlobe (Figure 4). Interestingly, where a significant reduction in earlobe-toarterial PCO₂ gradient was observed in survivors compared to non-survivors, no significant changes were found with the traditional macrocirculatory parameters (cardiac output and central venous oxygen saturation). Interestingly, these authors confirmed the microcirculatory nature of tcPCO₂ signal as demonstrated by the correlation between laser-Doppler flowmetry investigation and tcPCO₂ values (*Figure 5*). tcPCO₂ at 37 °C at the earlobe, therefore, seems to be a plausible tool to continuously and non-invasively estimate tissue perfusion in shock patients in ICUs.

tcPCO₂ monitoring with variations of sensor temperature: insights from a heat challenge

We have seen that the $tcPCO_2$ can be monitored at 37 °C with a heated sensor. The dynamic change in the

Figure 5 Results of the heating challenge at baseline in the different groups (volunteers, ICU control, hemorrhagic shock, cardiogenic shock, septic shock). (A) Baseline tcPCO₂ (or PcCO₂) measured at 37 °C (solid bars), and tc-art Δ PcCO₂ (Δ PcCO₂) (hashed bars). (B) Baseline plethysmographic perfusion index (PI) measured at 37 °C (solid bars) and PI_{max/min} (hashed bars). For more details, see reference (11).

temperature may therefore appear as a dynamic test to evaluate tissue perfusion during shock. Heat challenge may be added to track microcirculatory failure and reversibility. This concept of studying the variations of cutaneous capnometry during a heating challenge was recently described (Figure 6) (11). The same paradigm has been used in a recent study by the De Backer team with a laser-Doppler flowmetry device, adding external validity for heat or thermal challenge with TCM (34). Schematically, a crude estimate with no heated electrode (standardized normothermia) together with a functional provocative test (as a thermal or heating challenge) could be useful or informative on peripheral perfusion to evaluate tissue hypercarbia related to low flow states or altered microcirculation with loss of "hemodynamic coherence", as recently conceptualized as occurring during sepsis and "microcirculatory shock" (35). For example, in the case of convective shock, without functional microcirculatory damage, the heat challenge will induce vasodilation which can lead to a decrease in tcPCO₂ by a recruited flow (or washout phenomenon) (Figure 2D). This is conceptually more hazardous in the case of a longstanding distributive shock where the constitutive alteration of the microcirculation (shunt, micro-thrombi, etc.) is not

even slightly sensitive to vasodilation induced by the local increase in the temperature of the sensor (*Figure 2F*). Thus, a heat challenge (*Figure 2D*), which is likely to recruit a microvascular contingent with preserved vasoreactivity, could help to confirm hemodynamic coherence (intact macro-microcirculatory coupling) and/or to diagnose the reversibility of local peripheral hypoperfusion and anticipate targeted therapies (11). From this perspective, the combined monitoring of the perfusion index (PI) from the photoplethysmography signal also allows a good reflection of the quality of vasodilation and "arterialization" induced by the local heating of the sensor (*Figure 5*).

tcPCO₂ monitoring: personal perspectives and unanswered questions

We promote the graphical conceptual framework depicted in *Figure 2* to describe two possible uses of TCM in ICUs. The first, and most commonly proposed utility, is when TCM is used to estimate $artPCO_2$ for respiratory issues (*Figure 2A,B*); the second is when TCM is used to estimate tissue perfusion in shock states (*Figure 2C,D,E,F*). We believe that these two approaches are not conflicting, but it seems necessary to consider the limitations and specific

Figure 6 Stereotypical examples of the heating challenge performed in a healthy volunteer (light grey), non- septic shock (hemorrhagic in this example, medium grey), and septic shock patient (black). For more details, see reference (11). $PcCO_2$ or $tcCO_2$, transcutaneous CO_2 tension; PI%, plethysmographic perfusion index.

conditions for each indication. In doing so, we can obtain the appropriate bedside interpretation and receive the maximum benefit from this currently underused, but noninvasive and continuous type of benign monitoring. Indeed, we believe that a dual approach could allow the clinicians to better capture both the respiratory and hemodynamic status of the most severe patients. For example, a patient under respiratory TCM monitoring who exhibits an unexpected increase in tcPCO₂ due to *de novo* or early onset shock, may be misinterpreted as a false positive of a presumed related respiratory issue instead of a tissue perfusion abnormality. For this reason, we might advocate the continuous use of the sensor at low temperature (37 °C) to thereby limit the risk of skin burns, but with regular heating challenges and a coupled and dynamic analysis of all parameters. Indeed, a "normal" 37°-tcPCO₂ value would show that there is no patent tissue perfusion disorder (Figure 2A), and then the $tcPCO_2$ value at the end of the heating test would reflect a value close to artPCO₂ (*Figure 2B*). Conversely, a high value of tcPCO₂ would attempt to show abnormalities in tissue perfusion (*Figure 2C,E*), and the heating test would make it possible to monitor the existence of microcirculation dysfunction and its reversibility, which would be strongly related to the prognosis of a patient in shock (Figure 2D,F). We believe that these assumptions would allow for a unique and codified interpretation of TCM. Obviously, additional studies

dealing with different clinical situations and populations are mandatory to further support our hypotheses and refine our suggested algorithm. There are also many unanswered questions which include the temperature of the sensor in relation to the skin temperature (iso vs. normothermia), the thermal variations and kinetics during a heating test, the position at the earlobe as a reflection of the whole peripheral perfusion, and the variability and reproducibility of the tcPCO₂ value mainly in specific clinical situations such as acidosis or hyperoxia (2,13,23). Furthermore, it will be necessary to compare TCM with other devices that estimate the microcirculation, and to ultimately test drugs targeting microcirculatory dysfunction. To conclude, as a next step, we suggest integrating values of the tcPCO₂ and tc-artPCO₂ gap into holistic therapeutic algorithms, and advocate considering systemic and regional CO₂-related parameters for advanced circulatory monitoring, as recently proposed (36,37).

tcPCO₂ monitoring: conclusion

Transcutaneous CO_2 monitoring has been developing for many years, and its utility has been proven in at least two different clinical situations in critically ill patients: arterial PCO₂ estimation and tissue perfusion monitoring. Probably because of this ambivalence, which can be confusing for clinicians, this monitoring has been, in our

S1566

opinion, underused thus far. However, recent research has shown that these two aforementioned applications are not irreconcilable and could be combined. We believe that estimating arterial PCO₂ and measuring the tcPCO₂ gap between arterial-to-tissue CO₂, in normothermia (37 °C), combined with the provocative perfusion test as a heat challenge (electrode warmed to 42-44 °C), would help clinicians to continuously and noninvasively capture both respiratory and hemodynamic failures in critically ill patients. Even preliminary, our data on heat challenge as a way to assess microcirculatory shock has shown potential and may stimulate further investigations in this field. For the future, it would be desirable for tcPCO₂ sensors to offer refined technological innovation (with automated temperature tests and manipulation of algorithmic constants) in order to popularize the daily use of this device in different clinical settings.

Acknowledgments

None.

Footnote

Conflicts of Interest: A patent application (n° PCT IB2009/006903) is pending on variations of $PcCO_2$ and PI during Heating Challenge. The patent belongs to the Assistance Publique-Hôpitaux de Paris (France). F Vallée and H Nougue received consultant fees from Radiometer. The other authors have no conflicts of interest to declare.

References

- Orbegozo-Cortès D, De Backer D. Transcutaneous O2 and CO2 monitoring. In: Monitoring Tissue Perfusion in Shock. Lima P, Augusto A, Eliézer S (eds). Springer International Publishing AG: 173-80.
- Eberhard P. The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions. Anesth Analg 2007;105:S48-52.
- Huttmann SE, Windisch W, Storre JH. Techniques for the measurement and monitoring of carbon dioxide in the blood. Ann Am Thorac Soc 2014;11:645-52.
- Severinghaus JW, Astrup P, Murray JF. Blood gas analysis and critical care medicine. Am J Respir Crit Care Med 1998;157:S114-22.
- 5. Nassar BS, Schmidt GA. Estimating Arterial Partial Pressure of Carbon Dioxide in Ventilated Patients: How

Valid Are Surrogate Measures? Ann Am Thorac Soc 2017;14:1005-14.

- Marik PE. Regional carbon dioxide monitoring to assess the adequacy of tissue perfusion. Curr Opin Crit Care 2005;11:245-51.
- Vallet B, Teboul JL, Cain S, et al. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol (1985) 2000;89:1317-21.
- 8. Almac E, Siegemund M, Demirci C, et al. Microcirculatory recruitment maneuvers correct tissue CO2 abnormalities in sepsis. Minerva Anestesiol 2006;72:507-19.
- Mallat J, Vallet B. Mucosal and cutaneous capnometry for the assessment of tissue hypoperfusion. Minerva Anestesiol 2018;84:68-80.
- Vallée F, Mateo J, Dubreuil G, et al. Cutaneous ear lobe Pco₂ at 37°C to evaluate microperfusion in patients with septic shock. Chest 2010;138:1062-70.
- Vallée F, Nougué H, Mari A, et al. Variations of Cutaneous Capnometry and Perfusion Index During A Heating Challenge is Early Impaired in Septic Shock and Related to Prognostic in Non-Septic Shock. Shock 2019;51:585-92.
- Weil MH, Shubin H. Proposed reclassification of shock states with special reference to distributive defects. Adv Exp Med Biol 1971;23:13-23.
- 13. Rodriguez P, Lellouche F, Aboab J, et al. Transcutaneous arterial carbon dioxide pressure monitoring in critically ill adult patients. Intensive Care Med. févr 2006;32:309-12.
- Janssens JP, Howarth-Frey C, Chevrolet JC, et al. Transcutaneous PCO2 to monitor noninvasive mechanical ventilation in adults: assessment of a new transcutaneous PCO2 device. Chest 1998;113:768-73.
- 15. Bendjelid K, Schütz N, Stotz M, et al. Transcutaneous PCO2 monitoring in critically ill adults: clinical evaluation of a new sensor. Crit Care Med 2005;33:2203-6.
- Restrepo RD, Hirst KR, Wittnebel L, et al. AARC clinical practice guideline: transcutaneous monitoring of carbon dioxide and oxygen: 2012. Respir Care 2012;57:1955-62.
- Peschanski N, Garcia L, Delasalle E, et al. Can transcutaneous carbon dioxide pressure be a surrogate of blood gas samples for spontaneously breathing emergency patients? The ERNESTO experience. Emerg Med J 2016;33:325-8.
- Ruiz Y, Farrero E, Córdoba A, et al. Transcutaneous Carbon Dioxide Monitoring in Subjects With Acute Respiratory Failure and Severe Hypercapnia. Respir Care 2016;61:428-33.
- 19. Horvath CM, Brutsche MH, Baty F, et al. Transcutaneous

versus blood carbon dioxide monitoring during acute noninvasive ventilation in the emergency department - a retrospective analysis. Swiss Med Wkly 2016;146:w14373.

- 20. Bobbia X, Claret PG, Palmier L, et al. Erratum: Concordance and limits between transcutaneous and arterial carbon dioxide pressure in emergency department patients with acute respiratory failure: a single-center, prospective, and observational study. Scand J Trauma Resusc Emerg Med 2015;23:77.
- Delerme S, Montout V, Goulet H, et al. Concordance between transcutaneous and arterial measurements of carbon dioxide in an ED. Am J Emerg Med 2012;30:1872-6.
- Conway A, Tipton E, Liu WH, et al. Accuracy and precision of transcutaneous carbon dioxide monitoring: a systematic review and meta-analysis. Thorax 2019;74:157-63.
- Hasibeder W, Haisjackl M, Sparr H, et al. Factors influencing transcutaneous oxygen and carbon dioxide measurements in adult intensive care patients. Intensive Care Med 1991;17:272-5.
- Johnson DC, Batool S, Dalbec R. Transcutaneous carbon dioxide pressure monitoring in a specialized weaning unit. Respir Care 2008;53:1042-7.
- 25. Henao-Brasseur J, Bedel J, Mutlu G, et al. Transcutaneous CO2 monitoring: a new tool to identify spontaneous breathing trial failure during weaning from mechanical ventilation. A pilot cohort study. Intensive Care Med 2016;42:1078-9.
- 26. van Oppen JD, Daniel PS, Sovani MP. What is the potential role of transcutaneous carbon dioxide in guiding acute noninvasive ventilation? Respir Care 2015;60:484-91.
- 27. Weil MH, Nakagawa Y, Tang W, et al. Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 1999;27:1225-9.
- 28. Tremper KK, Shoemaker WC, Shippy CR, et al. Transcutaneous PCO2 monitoring on adult patients

Cite this article as: Mari A, Nougue H, Mateo J, Vallet B, Vallée F. Transcutaneous PCO₂ monitoring in critically ill patients: update and perspectives. J Thorac Dis 2019;11(Suppl 11):S1558-S1567. doi: 10.21037/jtd.2019.04.64 in the ICU and the operating room. Crit Care Med 1981;9:752-5.

- Waelgaard L, Dahl BM, Kvarstein G, et al. Tissue gas tensions and tissue metabolites for detection of organ hypoperfusion and ischemia. Acta Anaesthesiol Scand 2012;56:200-9.
- Tremper KK, Shoemaker WC. Continuous CPR monitoring with transcutaneous oxygen and carbon dioxide sensors. Crit Care Med 1981;9:417-8.
- Belenkiy SM, Berry JS, Batchinsky AI, et al. The noninvasive carbon dioxide gradient (NICO2G) during hemorrhagic shock. Shock 2014;42:38-43.
- 32. Ince C, Boerma EC, Cecconi M, et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med 2018;44:281-99.
- Legrand M, Ait-Oufella H, Ince C. Could resuscitation be based on microcirculation data? Yes. Intensive Care Med 2018;44:944-6.
- 34. Orbegozo D, Mongkolpun W, Stringari G, et al. Skin microcirculatory reactivity assessed using a thermal challenge is decreased in patients with circulatory shock and associated with outcome. Ann Intensive Care 2018;8:60.
- Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care 2015;19 Suppl 3:S8.
- Perner A, Gordon AC, De Backer D, et al. Sepsis: frontiers in diagnosis, resuscitation and antibiotic therapy. Intensive Care Med 2016;42:1958-69.
- 37. Ospina-Tascón GA, Umaña M, Bermúdez WF, et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med 2016;42:211-21.

(English Language Editor: John Ayric Gray, AME Publishing Company)