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Abstract 

While the pulmonary artery catheter (PAC) is still interesting in specific situations, there are many alternatives. A group 
of experts from different backgrounds discusses their respective interests and limitations of the various techniques 
and related measured variables. The goal of this review is to highlight the conditions in which the alternative devices 
will suffice and when they will not or when these alternative techniques can provide information not available with 
PAC. The panel concluded that it is useful to combine different techniques instead of relying on a single one and 
to adapt the “package” of interventions to the condition of the patient. As a first step, the clinical and biologic signs 
should be used to identify patients with impaired tissue perfusion. Whenever available, echocardiography should 
be performed as it provides a rapid and comprehensive hemodynamic evaluation. If the patient responds rapidly to 
therapy, either no additional monitoring or pulse wave analysis (allowing continuous monitoring in case potential 
degradation is anticipated) can be applied. If the patient does not rapidly respond to therapy or complex hemody‑
namic alterations are observed, pulse wave analysis coupled with TPTD is suggested.
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Introduction
Human right heart catheterization was first performed 
in 1929 by Werner Forssmann and then developed by 
André Cournand and Dickinson W. Richards, the three 
authors receiving the Nobel Prize for it in 1956 [1]. It was 
in the 1970s, when Drs. Swan and Ganz added balloon 
flotation [2] and thermodilution [3] to the catheteriza-
tion technique, that the pulmonary artery catheter (PAC) 
became popular. The PAC has been considered useful, 
useless, and even harmful [4–6]. A meta-analysis of PAC 
efficacy and safety in 5051 patients (13 RCTs) showed 
no evidence of harm or of a conferred overall benefit [7]. 
These studies mostly demonstrated that PAC is safe when 
properly used. Recent studies have suggested better out-
comes in selected patients with heart failure and trauma 
when a PAC was part of a given strategy of care [8, 9]. 

Still, no monitoring device will improve patient outcomes 
unless coupled to a treatment that itself improves out-
comes [10, 11].

As the PAC is a multifaceted hemodynamic monitor, its 
use is complex. When using all its capabilities, it offers 
measurement of pulmonary artery pressure, pulmonary 
artery occlusion pressure (PAOP), right atrial pressure 
(RAP), cardiac output (CO), and mixed-venous oxygen 
saturation  (SvO2). Pulmonary artery capillary pressure 
can be estimated and up to ten additional variables can 
be calculated [12]. Using all of this at the bedside is a 
challenge to even the most experienced clinician. How-
ever, the unique data available from a PAC make it an 
attractive hemodynamic monitor in the care of patients 
with severe circulatory shock, particularly those with 
right ventricular (RV) dysfunction and/or acute respira-
tory failure, as recommended by the ESICM task force 
[13].

Due to concerns about the invasiveness of the PAC, 
less or even non-invasive techniques have become avail-
able [14]. Alternative techniques, including minimally 

*Correspondence:  ddebacke@ulb.ac.be 
1 Department of Intensive Care, CHIREC Hospitals, Université Libre de 
Bruxelles, Brussels, Belgium
Full author information is available at the end of the article

http://orcid.org/0000-0001-9841-5762
http://crossmark.crossref.org/dialog/?doi=10.1007/s00134-018-5187-8&domain=pdf
iAnnotate User
Highlight

iAnnotate User
Highlight



731

invasive monitoring and echocardiography, can display 
many of the hemodynamic values and variables captured 
by the PAC. Some of these devices can offer information 
in addition to that available with a PAC.

It is important to know the intrinsic value and limita-
tions of variables measured by the alternative devices, 
as well as the missing information, and to determine in 
which conditions these devices will or will not suffice or 
when these alternative techniques can provide informa-
tion not available with the PAC (Table 1). This ambitious 

review/consensus article aims to address many of the 
issues involved in the use of these alternative hemody-
namic monitoring devices.

Clinical indices of tissue perfusion
In the early phase of circulatory shock, clinical exami-
nation offers valuable information. Tachycardia, delir-
ium/confusion, anxious breathing, cold and clammy 
skin, and persistent purpura are among the prominent 

Table 1 Comparisons of variables obtained by the pulmonary artery catheter and alternative methods

PAC pulmonary artery catheter, TPTD transpulmonary thermodilution, PAOP pulmonary artery occluded pressure, RAP right atrial pressure, CVP central venous 
pressure, SvO2 mixed-venous oxygen saturation, ScvO2 central venous oxygen saturation, PvaCO2 veno-arterial difference in  PCO2

Variables measured by PAC Alternatives to PAC Comments

Cardiac output measurements by thermodilution Pulse wave, non‑calibrated (PWNC) PAC measurements intermittent or semi‑contin‑
uous

PWNC continuous measurements (beat by beat); 
less precise and accurate but satisfactory for 
trends

Pulse wave, calibrated (PWC) PWC continuous measurements (beat by beat); 
precise and accurate but require recalibration

Transpulmonary and lithium thermodilution (virtually) As reliable as the PAC thermodilution

Echocardiography Reliable provided measurements performed in the 
left ventricular outflow tract

Esopageal Doppler Estimates cardiac output from lower body flow; 
relevance of aortic diameter assessment

Bioimpedance/bioreactance Precision and accuracy challenged in severe condi‑
tions but satisfactory for trends

PAOP Volumes and extravascular lung water by TPTD Relationship between volumes and pressure is 
curvilinear

PAOP by PAC affected by pleural‑pericardial‑
abdominal pressure

Volumetric indices do not differentiate right and 
left side

Echocardiography Semi‑quantitative measurement (low‑average‑
elevated) and for trends

Dynamic indices of fluid responsiveness Accurate assessment of the response to fluids but 
do not evaluate increase LAP

RAP CVP Almost identical if central catheter correctly 
positioned

Echocardiography Only as a semi‑quantitative measurement (low‑
average‑elevated)

Pulmonary artery pressure (PAP) Echocardiography Echo provides reliable measurements of PAP 
provided CVP is invasively measured

SvO2 ScvO2 Not identical (as lower body not taken into 
account in ScvO2) but satisfactory agreement for 
bedside use

PvaCO2 PvaCO2 with PvCO2 via a central line Not identical (as lower body not taken into 
account in ScvO2) but satisfactory agreement for 
bedside use

Variables not measured by PAC

Clinical indices of tissue perfusion Do not identify the cause of the hypoperfusion
The area investigated may not reflect other areas

Microcirculation The area investigated may not reflect other areas

Lactate Not always of hypoxic origin
Slow changes in lactate concentrations
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abnormalities and are used to characterize patients with 
shock and assess tissue perfusion [15].

Relatively simple subjective measures of peripheral 
perfusion exist in addition to more objective measures 
[16]. The subjective assessment of the skin temperature, 
temperature of the great toe, temperature difference 
between the great toe and central temperature/ambient 
temperature, and skin temperature difference between 
the distal arm and finger all have clinical relevance [17–
19]. The major issues are to determine whether the ref-
erence should be ambient or central temperature and to 
which extent therapy should be influenced by tempera-
ture differences.

Measurements of skin perfusion using optical tech-
niques also relate to outcome in critically ill patients. The 
perfusion index (PI) derived from the pulse oximetry sig-
nal and tissue hemoglobin saturation  (StO2) measured 
by near infrared spectroscopy are related to the progres-
sion of organ failure, failure to decrease lactate levels, and 
increased morbidity and mortality [19–22]. However, 
both methods are influenced by decreased skin tempera-
ture [20, 22]. Nevertheless, these devices provide contin-
uous monitoring, which is a real advantage.

Assessments of skin mottling and capillary refill time 
are two methods that stand out because of their imme-
diate availability at no cost without requiring specific 
equipment. Mottling has been shown to be a strong 
predictor of early mortality in septic shock patients [23, 
24]. Scoring of mottling allows for better quantification 
of the response to therapy. In addition, the discolored 
skin areas relate to decreased  StO2 [25] and prolonged 
capillary refill time [26]. The latter has also been shown 
to be related to increased morbidity and mortality and 
decreased visceral organ perfusion in critically ill patients 
[26, 27].

There are important limitations to these indices. First, 
while both identify issues with peripheral perfusion, 
the nature of the cause of tissue hypoperfusion (septic 
vs. low-output shock) remains to be identified by other 
hemodynamic monitoring devices. Second, peripheral 
perfusion may fail to reflect more central tissue perfusion 
[28] and may be affected by local arteriopathy.

Finally, are these indices simple disease identifiers (trig-
ger for therapy) or can they be used as a target of therapy 
(should we aim at improving them and, if yes, to what 
goal)? Indicators of abnormal peripheral perfusion can be 
improved by a titrated infusion of nitroglycerin [29]. In 
septic shock patients, targeting fluid resuscitation based 
on peripheral perfusion may be safe and associated with 
less fluid administration compared with therapy based on 
systemic hemodynamic variables [18].

Biologic indices of tissue perfusion
The measurement of central venous oxygen saturation 
 (ScvO2) is often taken as a surrogate of  SvO2, but it is 
not equivalent to it.  ScvO2 is measured in blood drained 
from the upper part of the body but not blood drained 
from the lower part and coronary sinus. As splanchnic 
organs represent one-fourth to one-third of the cardiac 
output and as preferential desaturation occurs in the 
splanchnic area in shock states [30],  O2 saturation in 
hepatic veins can markedly affect the agreement between 
 SvO2 and  ScvO2. In normal conditions, the  SvO2 value 
is slightly higher than that of  ScvO2 because of the con-
tribution of the very high renal venous  O2 saturation. In 
shock states, the  SvO2 value is usually lower than that of 
 ScvO2 because of the more significant decrease in venous 
saturation in the splanchnic and renal circulation. Hence, 
even though globally correlated [31],  ScvO2 is less sensi-
tive to decreased perfusion compared with  SvO2.  ScvO2 
gives no indication of the origin of the hemodynamic 
alteration. In addition, it is frequently elevated in distrib-
utive shock because of microcirculatory alterations and/
or cellular dysfunction. Despite these limitations, it is 
important to measure  ScvO2 to help in the interpretation 
of the data gathered by the other hemodynamic devices. 
In sum, a low  ScvO2 value reflects circulatory stress, 
whereas a normal  ScvO2 value does not ensure circula-
tory sufficiency.

Blood lactate is a key marker of tissue hypoperfusion. 
In experimental conditions, there is a sharp rise in lac-
tate once oxygen consumption becomes limited by oxy-
gen transport, a condition that defines shock [13]. As 
such, it is one of the key measurements to obtain in the 
management of shock [15, 32]. There are nevertheless 
two potential issues in the interpretation of lactate meas-
urements. First, lactate is not only of hypoxic origin, but 
can also result from the activation of glycolytic pathways 
under the influence of inflammation or catecholamines 
[33]. Second, while lactate levels rise sharply in case of 
hypoxia, the decrease in lactate values may take time as 
its clearance may also be affected. Nevertheless, looking 
at lactate levels and their kinetics is recommended in the 
management of shock states [32].

Measurements of the gradient between venous and 
arterial  PCO2  (PvaCO2) can also be informative in the 
evaluation of the adequacy of tissue perfusion. In normal 
conditions, this gradient is ≤ 6  mmHg, so that a gradi-
ent > 6  mmHg suggests an inadequate tissue perfusion. 
Increased  PvaCO2 may be the consequence of inadequate 
cardiac output (then  ScvO2 levels should also be low) or 
microcirculatory dysfunction (then  ScvO2 levels would 
usually be high) [34, 35].
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It is important to realize that  ScvO2, lactate and 
 PvaCO2 values indicate that there is a circulatory prob-
lem, but none of these indicate the origin of the prob-
lem. Combination of these biologic measures with other 
hemodynamic variables is hence recommended [14].

Central venous pressure: uses and misuses
The central venous pressure (CVP) is measured at the 
tip of a central venous catheter. Its normal value ranges 
between 0 and 3  mmHg. It is an accepted surrogate of 
RAP.

CVP can be used for several purposes:

  • To optimize tissue perfusion pressure: As CVP is the 
back pressure for venous return, an elevated CVP 
results in an elevated tissue capillary pressure—caus-
ing “hydrostatic” tissue edema—and may compro-
mise organ perfusion by decreasing organ perfusion 
pressure. In practice, to select the optimal mean arte-
rial pressure (i.e., the upstream pressure for organ 
blood flow), CVP should be taken into account when 
it is high and neglected when it is low.

  • To guide fluid resuscitation: CVP is also considered 
representative of the RV filling pressure and hence 
an estimate of RV preload. However, both assump-
tions may not be correct in all conditions. First, CVP 
represents the RV filling pressure only if the RV sur-
rounding pressure is neither too elevated nor too low. 
The RV surrounding pressure is either pericardial or 
intrathoracic pressure, whichever is higher [36]. To 
minimize increased intrathoracic pressure effects, 
CVP must be measured at end-expiration. However, 
in cases of (extrinsic or intrinsic) positive end-expir-
atory pressure, the measured CVP overestimates 
the transmural CVP. Transmural CVP is difficult 
to determine in practice. Second, the relationship 
of RV filling pressure and RV preload is complex: 
Under normal conditions, the RV distending pres-
sure increases little during filling as the RV dilates. In 
cases of RV overdistension or hypertrophy, the oppo-
site phenomenon occurs so that increases in CVP 
overestimate increases in RV volume. Consequently, 
CVP and its changes are not markers of RV preload. 
Importantly, even if we assume CVP to reflect 
RV preload, it is a rather poor marker of preload 
responsiveness. Indeed, due to inter-individual dif-
ferences in the RV preload-stroke volume relation-
ships (Frank-Starling mechanism), assessing preload 
is not assessing preload responsiveness. Therefore, 
a marker of preload cannot reliably predict fluid 
responsiveness, even though extreme values can be 
useful to predict the response to fluids [37]. Hence, 
recent guidelines suggest the use of dynamic mark-

ers of fluid responsiveness for fluid resuscitation in 
septic patients [13, 32]. Nevertheless, dynamic evalu-
ation of CVP can be used to evaluate the patient’s tol-
erance of fluid administration [37].

  • To evaluate right ventricular dysfunction: As 
reported above, the relationship between the CVP 
and right ventricular volume is curvilinear. Hence, a 
significant right ventricular dysfunction is associated 
with an increased CVP.

In summary, CVP is important: (1) to estimate the 
backpressure for venous return and (2) to identify situa-
tions of high RV filling pressures (transmural CVP should 
be considered) and hence of RV dysfunction (to be con-
firmed by echocardiography). The CVP is a poor predic-
tor of fluid responsiveness, but a dynamic evaluation of 
CVP can be used to assess the patient’s tolerance to fluid.

Cardiac output measurement by pulse wave 
analysis
The estimation of stroke volume (SV) and CO based 
on the mathematical analysis of the arterial blood pres-
sure waveform is called pulse wave analysis, pulse pres-
sure analysis, or pulse contour analysis. Left ventricular 
SV is one of the primary variables defining arterial pulse 
pressure, so extrapolating SV from pulse pressure seems 
reasonable.

Numerous algorithms have been developed to assess 
CO using pulse wave analysis [14, 38]. The shape of the 
waveform depends on various factors including ven-
tricular ejection, aortic impedance, arterial compliance, 
and vasomotor tone that all influence the velocity of the 
pressure wave in large arteries and the degree of pressure 
wave reflection in peripheral arteries [14].

The arterial blood pressure waveform used for pulse 
wave analysis can be recorded invasively with an arte-
rial catheter or noninvasively with probes placed on 
the patient’s finger (vascular unloading technology, also 
called the volume clamp method or simply the finger cuff 
technology) or over the radial artery (automated radial 
artery applanation tonometry). The measurement perfor-
mance of pulse wave analysis depends on the impeccable 
quality of the arterial blood pressure waveform, which is 
often impaired in severely vasoconstricted patients.

Depending on the system used, the pulse wave analysis-
derived values of SV or CO can be “uncalibrated” or “cali-
brated” to external values (e.g., obtained with dilution 
techniques). Calibration of the CO value to an external 
reference CO value increases the accuracy and precision 
of pulse wave analysis-derived CO measurements and is 
recommended in patients with deceased vasomotor tone 
such as septic patients or patients with liver failure [14]. 
However, these require frequent re-calibration, especially 
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when vascular tone changes [39]. Uncalibrated systems 
estimate values of CO solely by analyzing the character-
istics of the arterial pressure waveform and using patient-
specific anthropometric, biometric, and demographic 
data. Uncalibrated systems differ in the way they assess 
the extent to which changes in the shape of the arterial 
pressure waveform are caused by changes in SV and/or 
changes in vascular tone. In most cases, the accuracy and 
precision of uncalibrated devices are moderate to poor 
[40, 41], but changes induced by fluids can reliably be 
tracked. Some systems use dedicated algorithms to also 
take into account vascular tone. While initial versions 
were not reliable in patients with low vascular tone [42], 
recent developments have made these more reliable even 
in these patients [43, 44].

Whatever the system used, marked and/or rapid 
changes in peripheral vascular resistance may affect the 
reliability of CO measurement from pulse wave analy-
sis [39, 45]. In calibrated methods, recalibration helps 
to regain accuracy [39]. Uncalibrated methods assessing 
vascular tone require time to recover accuracy, and reli-
ability is lost until the new equilibrium is reached.

The main advantage of pulse wave analysis is that it 
provides a continuous estimation of real-time CO allow-
ing immediate detection of changes in CO in response to 
time, treatment, or maneuvers. As the value of SV may 
change with each single beat, pulse wave analysis also 
provides dynamic cardiac preload variables [respiratory 
variations in pulse pressure (PPV) and SV or response 
in cardiac output during a passive leg-raising test]. These 
indices outperform filling pressures in the prediction of 
fluid responsiveness and are now recommended for the 
management of shock and sepsis [13, 32].

The main disadvantage of most methods (except 
devices calibrated by transpulmonary thermodilu-
tion—see below) is that minimal information is provided 
beyond cardiac output measurements and dynamic car-
diac preload variables, making their use less relevant in 
complex patients.

Transpulmonary thermodilution
Transpulmonary thermodilution (TPTD) is used to cali-
brate some pulse contour/pulse wave analysis devices. 
Transpulmonary thermodilution is as reliable as right-
sided thermodilution for the measurement of CO.

In addition to CO, TPTD provides the following vari-
ables: the global end-diastolic volume (GEDV), which 
assesses preload volumetrically; the extravascular lung 
water (EVLW), which assesses the degree of pulmonary 
edema [46]; and the pulmonary vascular permeability 
index (PVPI), which may help to differentiate between 
cardiogenic and permeability pulmonary edema [47]. 
The respective advantages and disadvantages of the dif-
ferent variables are presented in Table 2. Of note, EVLW 
and PAOP do not provide identical information. EVLW 
provides information on the amount of fluid accumulated 
in the lung, while PAOP (or, even better, true pulmonary 
artery capillary pressure, which unfortunately is difficult 
to measure in routine practice) represents the instanta-
neous hydrostatic driving force.

As filling pressures with PAC, measurement of cardiac 
volumes is mostly interesting for the evaluation of cardiac 
function. Like any other static measurement, cardiac vol-
umes do not predict the response to fluids. In addition, 
it is impossible to differentiate between right- and left-
side dilation when faced with an increased end-diastolic 

Table 2 Advantages and drawbacks of transpulmonary thermodilution devices

PLR passive leg raising, PPV pulse pressure variation, ROT respiratory occlusion tests, SVV stroke volume variation, TPTD transpulmonary thermodilution, ARDS adult 
respiratory distress syndrome

Advantages Drawbacks

Measurement of cardiac output Continuous, real‑time measurement with cali‑
brated pulse contour analysis, intermittent but 
accurate with TPTD

Pulse contour analysis needs to be regularly 
recalibrated

Estimation of cardiac preload by cardiac volumes Volumetric measurement of cardiac preload 
might be superior to filling pressures in 
selected conditions

Preload may not reflect preload responsiveness
Volumes may not reflect left ventricular end‑

diastolic pressure
No difference between right‑left side volumes

Assessment of fluid responsiveness Measurement of PPV and SVV
Beat‑by beat measurement of stroke volume 

allows the performance of tests such PLR and 
ROT

Prerequisites and limitations of the different tests

Assessment of pulmonary edema Direct estimation through extravascular lung 
water and pulmonary vascular permeability 
index

Not always feasible to dissociate ARDS from 
hydrostatic lung edema

Detection of cardiac dysfunction Detection through the global ejection fraction or 
cardiac function index

No distinction between right and left ventricular 
function
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volume. Hence, echocardiography is required to confirm 
the diagnosis when alterations in cardiac volumes are 
noticed.

Interestingly, a recent trial looking at the interpreta-
tion of simultaneously obtained TPTD and critical care 
echocardiography data in 127 patients with septic shock 
found good agreement with the concordance of thera-
peutic decisions in 78% of the patients [48]. While this 
does not imply that similar findings would be observed in 
other types of shock, this illustrates the clinical interest of 
the measured variables.

The combination of all the measured variables makes 
TPTD a valuable, less-invasive alternative to the PAC, 
especially in complex situations, such as hemodynamic 
instability associated with acute respiratory distress syn-
drome (ARDS), when each of the possible interventions 
may carry significant harm (‘therapeutic conflict’). In par-
ticular, fluid management based on fluid responsiveness 
variables has a better rationale than those based on fill-
ing pressures. The simultaneously measured EVLW and 
PVPI may identify patients at risk of pulmonary edema 
during fluid administration.

The additional information provided by TPTD has 
been shown to significantly alter physicians’ therapeutic 
decisions [49]. Together with the PAC, the use of TPTD 
has been recommended in the management of patients in 
severe shock and complex situations [13, 14]. While volu-
metric indices and intravascular pressures are physiologi-
cally related, the information on cardiovascular function 
provided by TPTD and PAC may sometimes diverge 
because of the curvilinear aspect of pressure/volume 
curves and errors in measurements. In most cases, the 
two techniques result in similar diagnostic classification 
[50], but divergence can be observed in some patients 
[50, 51].

Although considered to be less invasive than the PAC, 
TPTD still necessitates the insertion of a central venous 
catheter and the cannulation of a large artery (usually the 
femoral artery). The most commonly reported complica-
tions were small local hematomas (4.5%) and infections 
(2%) [52].

Direct head-to-head comparisons of outcomes with the 
two techniques are very limited. In a cohort of patients 
monitored with either TPTD or PAC, patients with 
TPTD had  a greater positive fluid balance and fewer 
ventilator-free days compared with those with PAC [53]. 
There was no difference after adjustment for potential 
confounding factors. In a small randomized trial, no dif-
ference in survival was observed; nevertheless, the dura-
tion of mechanical ventilation was shorter with the PAC 
in the subgroup of patients with impaired cardiac func-
tion but not in the patients with ARDS [54].

In summary, compared with the PAC, TPTD provides 
an equally accurate CO, better assessment of fluid status, 
and the unique measurement of the EVLW, which can 
be helpful in cases of ARDS. Its main disadvantage is its 
poor ability to distinguish between right and left ventric-
ular performance.

The role of echocardiography and lung ultrasounds
Echocardiography is being increasingly used in critically 
ill patients [55]. It is nowadays more frequently used than 
the PAC in patients with sepsis or congestive heart failure 
[55]. Echocardiography is usually considered an alterna-
tive to PAC for measuring and monitoring CO, but this is 
questionable. While the PAC may give continuous access 
to CO, echocardiography only provides an intermittent 
measurement. A recent systematic review of the litera-
ture reported that PAC and echocardiography were not 
interchangeable for evaluating CO and that, from an evi-
dence-based point of view, echo studies were methodo-
logically limited [56]. However, the disagreement mostly 
came when old studies were included, and new studies 
with better methodology for determining CO found bet-
ter agreement [57]. Importantly, trends in CO, which are 
much more important in clinical practice than absolute 
CO values, are accurately detected by echocardiography 
[56].

For measuring CO, echocardiography has some advan-
tages over PAC. First, echocardiography is less invasive, 
even with the transesophageal approach [58]. Second, 
echocardiography can be used in some situations in 
which PAC is limited, such as massive tricuspid regurgi-
tation or very low flow states. Third, in contrast to PAC, 
echocardiography provides a beat-to-beat measurement 
of SV, which allows the assessment of fluid responsive-
ness through dynamic indices. Finally, and more impor-
tantly, echocardiography in the ICU provides much more 
information besides CO.

The concept of critical care echocardiography (CCE) 
nicely reflects the ubiquitous utility of echocardiography 
in the management of critically ill patients [59]. By its 
ability to directly visualize the heart function, echocar-
diography is unique in defining the mechanism of shock 
[15]. In contrast to the PAC, it provides a direct evalu-
ation of left and RV function and of valvular structure. 
In patients with circulatory failure, a quick assessment 
of heart function by CCE is recommended, after having 
eliminated obvious hypovolemia [11, 13, 14]. One of the 
most important advantages of CCE is the understand-
ing of heart-lung interactions in mechanically ventilated 
patients [60]. By assessing the right cardiac function, 
CCE provides important hemodynamic information to 
guide hemodynamic and respiratory therapy [61]. Among 
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all its potential applications, CCE also allows evaluat-
ing the need for fluids through several dynamic indices, 
which is not possible with the PAC [62]. Finally, CCE is a 
unique tool that detects left ventricular diastolic dysfunc-
tion, which is strongly associated with weaning failure 
[63] and mortality in septic shock [64].

One of the most important limitations of echocardiog-
raphy is its intermittent nature. Continuous miniaturized 
TEE has been developed [65], but these techniques only 
offer limited information beyond fluid responsiveness 
and visual evaluation of the ventricles as quantitative 
Doppler assessment is not feasible. Accordingly, meas-
urements of filling pressures, pulmonary artery pressure, 
and cardiac output are not feasible with these devices.

Intensivists can also use the ultrasound probe for lung 
ultrasonography. The latter accurately detects pulmonary 
edema, condensation, pneumothorax, or pleural effu-
sion [66]. Combining these approaches of critical care 
ultrasonography may be useful in  situations with both 
respiratory and circulatory failures, such as pulmonary 
embolism, pulmonary edema (cardiogenic or non cardio-
genic), sepsis-related pneumonia, or weaning failure [67].

Evaluating the microcirculation
Microvascular abnormalities are commonly observed in 
critically ill patients [68–70]. These are characterized by 
heterogeneity in perfusion, which results in hypoxic areas 
coexisting with over-perfused areas. Their severity and 
duration are associated with organ dysfunction and mor-
tality [69, 71, 72]. Various mechanisms may be implicated 
[73].

Conventional hemodynamic tools often fail to detect 
it. Different hand-held microscopes are used for direct 
observation of microcirculation, mostly applied to the 
sublingual area [69–71, 74, 75]. The advantage of these 
devices is that they are non-invasive and easy and fast to 
use. Exploration of the microcirculation is intermittent 
but can be frequently repeated without inconvenience to 
the patient. Importantly, evaluation of the microcircu-
lation requires acquisition of good quality images and a 
strict protocol for image analysis [76, 77].

Videomicroscopes cannot be used in all circumstances. 
They require technical skills and patient cooperation; 
they are also difficult to apply in dyspneic patients. 
Hence, alternative ways to routinely evaluate microcircu-
latory alterations are desired. Clinical signs of peripheral 
tissue hypoperfusion may fail to detect central alterations 
in microvascular perfusion [28]. Blood lactate levels are 
often increased in patients with microvascular altera-
tions, but the slow changes in lactate kinetics make it a 
very indirect marker of microvascular dysfunction. Due 
to local shunting,  SvO2 is not a good reflect of microvas-
cular alterations. Interestingly, an increase in  PvaCO2 is 

a good indicator of microvascular perfusion abnormali-
ties [34], especially when the  SvO2 value is normal, and 
changes in  PvaCO2 reflect changes in microvascular per-
fusion more than changes in CO [34].

An important question is whether microcirculation 
targeted therapy is superior to “classical” hemodynamic 
monitoring once satisfactory systemic hemodynamic tar-
gets have been reached. At this stage, it seems premature 
to address this question. While there is no doubt that a 
better understanding of the pathophysiologic processes 
is desired, the major actual limitation is that we lack 
therapies specifically acting at the microcirculatory level. 
Fluids given in the early stages [78, 79] and dobutamine 
[80] may somewhat improve the microcirculation, but 
their effects are quite variable. Vasodilatory agents may 
improve the microvascular perfusion, but they lack selec-
tivity and increase flow in already perfused areas as well. 
Modulation of endothelial nitric oxide synthase with 
various agents (including vitamin C) appears promising. 
Hence, it is important to understand the microcircula-
tory changes that occur with various therapies to plan 
resuscitation targets for the future.

Specificities in limited resource settings
Resource-limited settings include not only parts of the 
developing world where lack of healthcare funds lead 
to limited access to medical resources, but also include 
areas with limited access to monitoring within the hospi-
tal in developed countries, such as the emergency depart-
ment and wards. The different hemodynamic resources 
available in these areas are presented in Table 3.

Acute circulatory failure can be assessed using the 
three clinical windows for tissue perfusion [13, 15]: 
altered mentation, cold and mottled skin and oliguria, 
and with tachycardia and hypotension. The computation 
of the “shock index”, (ratio of heart rate to systolic blood 
pressure; normal range, 0.5–0.7) can also be useful [81].

The evaluation of cardiovascular function is much 
more difficult. When available, echocardiography and 
ultrasound are the techniques of choice. Though requir-
ing provider skills, these give rapid access to the volume 
status, cardiac function, and assessment of lung edema. 
Echographic assessment is relatively cheap, though 
involving some initial expenditure.

The decision to give fluids can be triggered by clinical 
signs of organ hypoperfusion and elevated lactate levels 
in the absence of raised jugular venous pressure. When a 
central venous catheter is in place, the CVP,  ScvO2, and 
 PvaCO2 values help to monitor the physiologic process 
and guide therapy. However, as reported above, CVP has 
its limitations, and the other indices indicate inadequate 
perfusion but not fluid responsiveness.
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As both excessive and insufficient fluid administra-
tion can worsen outcome, it is important to identify fluid 
responders before giving fluids. The effect of inadequate 
fluid administration is probably even more detrimental 
in resource-limited areas. In African children with septic 
shock, mortality increased when fluids were given until 
signs of intolerance occurred [82]. Several strategies can 
be used to predict response to fluids. PPV nicely pre-
dicts fluid responsiveness and does not require specific 
equipment if an arterial catheter is used [83]. These can 
be automatically calculated by most bedside monitors. 
However, it is unreliable during low tidal volume ventila-
tion [84], which is now routinely used in all critically ill 
patients. The ‘tidal volume challenge’ is a novel test that 
may help to circumvent this limitation [85]. This involves 
transiently increasing tidal volume from 6  ml/kg PBW 
to 8  ml/kg PBW for 1 min and observing the change 
in PPV (ΔPPV6–8). Plethysmographic indices of fluid 
responsiveness are non-invasive and quickly obtained 
[86]; however, the signal quality is critically dependent on 
the peripheral perfusion [87]. Of note, SV variations and 
derived variables are also present in acute cor pulmo-
nale [88]. A passive leg-raising test can be used and has 
the advantage of avoiding these limitations, but is also 
somewhat cumbersome. It requires evaluating changes 
in cardiac output in relation to changes in arterial pulse 
pressure or, better, to changes in end-tidal  CO2 in intu-
bated patients [89], or echocardiography or carotid/
brachial Doppler, especially in emergency departments/
wards, which usually have access to linear ultrasound 
probes.

Finally, studies are needed to evaluate whether bundles, 
protocols, and potentially telemedicine, would cost-effec-
tively improve outcomes in limited-resource settings.

Putting it all together
As described in this article, there are many alternatives to 
the PAC. Each has its own interesting features and limita-
tions. Instead of relying on a single technique, it is useful 
to combine different techniques and, even more impor-
tantly, to adapt the “package” of interventions to the 
patient’s condition, taking into consideration the actual 
hemodynamic state and the likelihood of deterioration 
and comorbidities. As a first step, the clinical and biologic 
signs should be used to identify patients with impaired 
tissue perfusion. Whenever available, echocardiography 
should be performed as it provides a rapid and compre-
hensive hemodynamic evaluation. If the patient rapidly 
responds to therapy, either no additional monitoring or 
pulse wave analysis (allowing continuous monitoring in 
case potential degradation is anticipated) can be applied. 
If the patient does not rapidly respond to therapy or if 
complex hemodynamic alterations are observed, pulse Ta

bl
e 

3 
co

nt
in

ue
d

Ph
ys

ic
al

 e
xa

m
in

at
io

n 
fin

di
ng

s
Pa

th
op

hy
si

ol
og

y
M

ai
n 

in
te

re
st

/c
om

m
en

ts

A
rt

er
ia

l p
re

ss
ur

e‑
di

as
to

lic
 b

lo
od

 p
re

ss
ur

e 
(D

BP
 <

 4
0 

m
m

H
g)

Su
gg

es
ts

 lo
w

 a
rt

er
ia

l t
on

e 
(e

sp
ec

ia
lly

 in
 th

e 
pr

es
en

ce
 o

f t
ac

hy
ca

r‑
di

a)
—

im
po

rt
an

t f
or

 c
or

on
ar

y 
pe

rf
us

io
n

Ca
n 

be
 u

se
d 

as
 a

 tr
ig

ge
r f

or
 g

iv
in

g 
va

so
pr

es
so

rs

PP
V‑

dy
na

m
ic

 in
di

ce
s 

ba
se

d 
on

 p
ul

se
 p

re
ss

ur
e

PP
V 

>
 1

3%
 s

ug
ge

st
s 

flu
id

 re
sp

on
si

ve
ne

ss
Ca

n 
be

 u
se

d 
as

 a
n 

in
di

ca
to

r o
f fl

ui
d 

re
sp

on
si

ve
ne

ss
, i

n 
th

e 
pr

es
‑

en
ce

 o
f f

ul
ly

 c
on

tr
ol

le
d 

m
ec

ha
ni

ca
l v

en
til

at
io

n

Ti
da

l v
ol

um
e 

ch
al

le
ng

e 
dy

na
m

ic
 in

de
x 

ba
se

d 
on

 p
ul

se
 p

re
ss

ur
e

Δ
PP

V 6–
8 >

 3
.5

%
 s

ug
ge

st
s 

flu
id

 re
sp

on
si

ve
ne

ss
Ca

n 
be

 u
se

d 
as

 a
n 

in
di

ca
to

r o
f fl

ui
d 

re
sp

on
si

ve
ne

ss
, i

n 
th

e 
pr

es
‑

en
ce

 o
f f

ul
ly

 c
on

tr
ol

le
d 

m
ec

ha
ni

ca
l v

en
til

at
io

n

Pl
et

hy
sm

og
ra

ph
ic

 in
di

ce
s 

(∆
PO

P/
PV

I)
Su

gg
es

ts
 fl

ui
d 

re
sp

on
si

ve
ne

ss
Si

gn
al

 s
ig

ni
fic

an
tly

 re
du

ce
d 

by
 fa

ct
or

s 
su

ch
 a

s 
hy

po
th

er
m

ia
, l

ow
 

ca
rd

ia
c 

ou
tp

ut
, a

nd
 v

as
oc

on
st

ric
tio

n

C
he

st
 ra

di
og

ra
ph

y
H

el
ps

 to
 e

va
lu

at
e 

th
e 

se
ve

rit
y 

of
 lu

ng
 e

de
m

a—
m

ay
 h

el
p 

in
 th

e 
ev

al
ua

tio
n 

of
 a

 c
ar

di
ac

 o
rig

in
 o

f s
ho

ck
/fl

ui
d 

ov
er

lo
ad

La
ck

s 
se

ns
iti

vi
ty

 a
nd

 is
 re

la
te

d 
to

 in
te

ro
bs

er
ve

r v
ar

ia
bi

lit
y

Ba
si

c 
be

ds
id

e 
ec

ho
ca

rd
io

gr
ap

hy
Co

m
pr

eh
en

si
ve

 e
va

lu
at

io
n 

of
 C

O
 a

nd
 c

ar
di

ac
 fu

nc
tio

n 
(in

cl
ud

in
g 

re
sp

on
se

 to
 th

er
ap

y)
Tr

ai
ni

ng
 re

qu
ire

d
In

te
rm

itt
en

t a
nd

 s
om

ew
ha

t t
im

e 
co

ns
um

in
g

Lu
ng

 u
ltr

as
ou

nd
B‑

lin
es

 a
re

 th
e 

so
no

gr
ap

hi
c 

si
gn

 o
f p

ul
m

on
ar

y 
co

ng
es

tio
n

Ca
n 

be
 u

se
d 

fo
r d

ia
gn

os
is

 a
nd

 a
s 

sa
fe

ty
 li

m
it 

fo
r fl

ui
d 

ad
m

in
is

tr
a‑

tio
n

SV
 s

tr
ok

e 
vo

lu
m

e,
 C

O
 c

ar
di

ac
 o

ut
pu

t, 
SV

R 
sy

st
em

ic
 v

as
cu

la
r r

es
is

ta
nc

e,
 S

cv
O

2 c
en

tr
al

 v
en

ou
s 

sa
tu

ra
tio

n,
 O

2E
R 

ox
yg

en
 e

xt
ra

ct
io

n 
ra

te
, D

O
2/

VO
2 o

xy
ge

n 
de

liv
er

y/
ox

yg
en

 c
on

su
m

pt
io

n,
 P

va
CO

2 v
en

oa
rt

er
ia

l  P
CO

2 g
ra

di
en

t, 
C 

(a
-v

) O
2 a

rt
er

ia
l-v

en
ou

s 
 O

2 c
on

te
nt

 d
iff

er
en

ce
, P

PV
 p

ul
se

 p
re

ss
ur

e 
va

ria
tio

n,
 Δ

PP
V 6–

8 c
ha

ng
e 

in
 P

PV
 a

ft
er

 in
cr

ea
si

ng
 ti

da
l v

ol
um

e 
fr

om
 6

 to
 8

 m
l/k

g 
pr

ed
ic

te
d 

bo
dy

 w
ei

gh
t f

or
 1

 m
in

, ∆
PO

P/
PV

I r
es

pi
ra

to
ry

 v
ar

ia
tio

n 
in

 p
ul

se
 

ox
im

et
ry

 p
le

th
ys

m
og

ra
ph

ic
 w

av
ef

or
m

 a
m

pl
itu

de
 a

nd
 th

e 
pl

et
h 

va
ria

bi
lit

y 
in

de
x

a  C
lin

ic
al

 w
in

do
w

s 
of

 ti
ss

ue
 p

er
fu

si
on

b  N
ot

 m
an

da
to

ry
 fo

r t
he

 d
ia

gn
os

is
 o

f c
irc

ul
at

or
y 

sh
oc

k

iAnnotate User
Highlight

iAnnotate User
Highlight



739

wave analysis coupled with TPTD is suggested, supple-
mented, of course, with regular assessment of clinical and 
biologic indices of perfusion and coupled, if needed, with 
repeated echocardiographic evaluation. When macrocir-
culation seems within reasonable goals and the metabolic 
indices remain altered, it seems reasonable to suspect 
microvascular alterations. While therapeutic options 
remain limited at this stage, the indication is that further 
attempting to increase CO is probably unnecessary.
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