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Alterations of mitochondrial function in sepsis and critical illness
Anatole Harrois, Olivier Huet and Jacques Duranteau

Introduction
In spite of the progress in the management of patients
with septic shock, mortality remains very high. In the
initial phase of septic shock, mortality is mostly due to the
absence of haemodynamic control. In the late phase of
septic shock, mortality is due to multiple organ failure
(MOF). Septic shock is the consequence of a conflict
between a pathogenic agent and the immune system of
the host. This conflict induces an immune-mediated
cytokine storm, with a whole-body inflammatory
response often leading to MOF. Although extensively
studied, the pathophysiology of sepsis-associated multi-
organ failure remains unknown.

The respective roles of tissue hypoxia and cellular ener-
getic metabolic dysfunction in the contribution to organ
dysfunction in sepsis have been discussed continually for
many years. One of the main characteristics of septic
shock is an impairment of oxygen extraction, despite
evidence of apparent tissue hypoperfusion. Two mech-
anisms have been postulated to explain this inability to

extract oxygen. The first mechanism is a maldistribution
of blood flow at either a macrovascular or a microvascular
level with resulting tissue hypoperfusion. The second
postulated mechanism is a change in mitochondrial
function, leading to an inhibition of the mitochondrial
respiratory chain and a decrease in oxygen utilization.
Thus, it has been proposed that a key defect in sepsis is
an interruption in oxidative phosphorylation within
mitochondria. The result is an inability of the cell
to use molecular oxygen for ATP production, despite
adequate oxygen availability. This has been termed
cytopathic hypoxia [1].

A number of the mediators implicated in septic shock
have been demonstrated to directly impair mitochondrial
function. For example, peroxynitrite (ONOO!) can react
with most of the components of the electron transport
chain, including complexes I and III [2–4], and may
mediate apoptosis by permeabilization of the outer mito-
chondrial membrane. Furthermore, ONOO!may induce
DNA damage through activation of the DNA repair
enzyme poly-ADP-ribosylpolymerase (PARP-1).
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Purpose of review
Septic shock is the consequence of a conflict between a pathogenic agent and the
immune system of the host. This conflict induces an immune-mediated cytokine storm,
with a whole-body inflammatory response often leading to multiple organ failure.
Although extensively studied, the pathophysiology of sepsis-associated multiorgan
failure remains unknown. One postulated mechanism is changes in mitochondrial
function with an inhibition of mitochondrial respiratory chain and a decrease of oxygen
utilization.
Recent findings
Mitochondrion is a key organelle in supplying energy to the cell according to its
metabolic need. Hypoxia and a number of the mediators implicated in sepsis and in the
associated systemic inflammatory response have been demonstrated to directly impair
mitochondrial function. A large body of evidence supports a key role of the peroxynitrite,
which can react with most of the components of the electron transport chain,
in the mitochondrial dysfunction.
Summary
A pivotal role is suggested for mitochondrial dysfunction during the occurrence of
multiorgan failure. Understanding the precise effect of sepsis on the mitochondrial
function and the involvement of mitochondria in the development of multiple organ
failure is fundamental. More human studies are thus necessary to clarify the
mitochondrial dysfunction in the various phases of sepsis (early and late phase) before
testing therapeutic strategies targeting mitochondria.

Keywords
mitochondria, multiorgan failure, oxidative phosphorylation, oxidative stress,
peroxynitrite, sepsis

Curr Opin Anaesthesiol 22:143–149
! 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins
0952-7907

0952-7907 ! 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins DOI:10.1097/ACO.0b013e328328d1cc











































































































mailto:jacques.duranteau@bct.aphp.fr
http://dx.doi.org/10.1097/ACO.0b013e328328d1cc


Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

Understanding the effect of sepsis on mitochondrial func-
tion and the role of mitochondria in the development of
MOF is fundamental before testing therapeutic interven-
tions stimulating or shutting down energetic metabolism.
This article will address the changes in mitochondrial
function occurring during sepsis and the key role of
mitochondria in the pathogenesis of organ failure.

Mitochondrial function in physiological
conditions
Mitochondria are essential for the conversion of latent
energy, found in substrates provided by the oxidation of
glucose, fats and amino acids to store energy in the form
of ATP. In each eukaryotic cell, mitochondria are abun-
dant, with the mitochondrial content being dependent on
cell type and energy demand. Each mitochondrion has an
outer membrane that is permeable to large molecules and
an inner membrane that is impermeable to most solutes
and contains the protein complexes involved in electron
transport (complexes I, II, III and IV) and ATP synthesis
[5]. The inner membrane also contains transport proteins
involved in the movement of pyruvate, fatty acids, ATP,
ADP and inorganic phosphate across the membrane. The
Krebs cycle takes place within the interior of the mito-
chondrion (matrix), in which the mitochondrial DNA and
ribosomes, that give the organelle the ability to make
some of its own proteins, are located. The Krebs cycle

produces nicotine adenine dinucleotide (NADH, three
per molecule of acetyl-CoA) and flavine adenine dinu-
cleotide (FADH2, one per molecule of acetyl-CoA),
which then donate electrons to the respiratory complexes
I (NADH dehydrogenase) and II (succinate-coenzyme Q
reductase), respectively. Complex I transfers electrons
from NADH to coenzyme Q (CoQ). Complex II transfers
electrons from FADH2 to CoQ. Complex III (CoQ-cyto-
chrome c reductase) accepts electrons from CoQ and
passes them to cytochrome c. Complex IV (cytochrome
oxidase) transfers electrons from cytochrome c to oxygen
(Fig. 1). This flow of electrons between respiratory mito-
chondrial complexes I–IV provides energy to transfer
protons (Hþ) across the inner membrane from the matrix
to the intermembrane space. The resulting electroche-
mical gradient, expressed as the mitochondrial mem-
brane potential (DCm) (!150 to !180 mV) [6], is vital
to both ATP production and Ca2þ accumulation and is,
therefore, essential to the maintenance of mitochondrial
homeostasis. This electrochemical gradient exerts a force
called the proton motive force. This energy available in
the proton motive force is used to drive the enzymatic
synthesis of ATP. The protons are translocated back
across the inner membrane by the F0F1-ATPase complex
(complex V) anchored to the inner membrane. Thus,
electron transport and ATP synthesis are tightly coupled
[7]. As dissipation of the proton gradient occurs, ATP
energy production (uncoupling) stops, whereas electron
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Figure 1 Schematic representation of the different energetic pathways described in mitochondria
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and proton transport continue unabated (and may even
increase due to the positive feedback from ADP). Dis-
sipation of the proton gradient may be either due to
uncoupling proteins (UCPs) or transition pore opening.
A family of UCPs has been described in the inner
mitochondrial membrane. By regulating mitochondrial
biogenesis, calcium flux, free-radical production and local
temperature, subsequent studies clearly showed that
they can directly influence cell function. Electrons from
NADH pass through all three ATP-generating com-
plexes, generating three ATPs per molecule. Electrons
from FADH2 pass through only two ATP-generating
complexes, generating two ATPs per molecule. Thus,
the maximum ATP yield per molecule of glucose under
aerobic conditions is 36 or 38 ATPs (10 molecules of
NADH and two molecules of FADH2 per molecule of
glucose).

Mitochondria are not simply ATP-producing organelles,
but they also play a key role in cell signalling. For
example, reactive oxygen species (ROS) generated by
mitochondria act as second messengers in the cellular
response to hypoxia [8], and they also have several
potentially important effects on vascular tone, angiogen-
esis, endothelial cell growth, migration, proliferation and
survival [9].

Mitochondrial function in sepsis and critical
illness
Most evidence suggesting changes in mitochondrial func-
tion during sepsis is coming from experimental studies.
These studies describe sepsis-induced changes in mito-
chondrial respiratory chain and oxygen utilization and
identify some of the mediators involved in the inhibition
of mitochondrial function [for example tumour necrosis
factor alpha (TNFa) and peroxynitrite].

Mediators implicated in sepsis and mitochondrial
function
Some of the mediators implicated in sepsis and in the
associated systemic inflammatory response have been
demonstrated to directly impair mitochondrial function.
Cellular hypoxia alone may modify mitochondrial respir-
atory chain function. During hypoxia, cells can downre-
gulate energy requirements and ATP demand in response
to the decrease in regional O2 supply to maintain cell
viability. This adaptive response is known as O2 confor-
mance or hibernation. Guzy and Schumacker [10] pro-
posed that the mitochondrial electron transport chain acts
as an O2 sensor by releasing ROS in response to hypoxia.

The proinflammatory cytokine TNFa has been reported
to increase ROS in the mitochondria [11], and there are
suggestions that cytotoxic activity of TNFa is mediated
by damage to mitochondria. It was indeed recently

demonstrated that TNFa was able to inhibit oxidative
phosphorylation at the level of cytochrome c oxidase
[12##]. Using total hepatocyte homogenates, TNFa treat-
ment led to a 60% reduction in cytochrome c oxidase
activity and decreased the mitochondrial membrane
potential by more than 60% of the cellular ATP content
[12##]. In this study, TNFa decreased ATP concen-
tration in a time-dependent fashion, and cells were
almost energy depleted after 30 min.

ROS and reactive nitrogen species (RNS) have several
potentially important effects on mitochondrial function
[9]. It is well established that nitric oxide is able to inhibit
mitochondrial electron transport by decreasing the
activity of cytochrome c oxidase (nitric oxide binds to
ferrocytochrome a3) [13]. The onset of this inhibition is
very fast (inhibition of isolated cytochrome c oxidase
$10 s), and nitric oxide competes with oxygen for the
ferrocytochrome a3 site. This suggests that under phys-
iological conditions, when the oxygen concentration is
low, nanomolar concentrations of nitric oxide can effec-
tively act as a regulator of the mitochondrial respiratory
chain to induce reversible inhibition of this chain. In this
context, nitric oxide production during hypoxia may
lower mitochondrial respiration as an adaptation to lower
oxygen availability [8,14]. Decreased oxygen consump-
tion was confirmed by inhibiting nitric oxide production
in a model of rat peritonitis, suggesting an inhibition of
respiratory chain activity in sepsis mediated by nitric
oxide [15##]. However, higher nitric oxide concentrations
result in irreversible cessation of the mitochondrial respir-
atory chain. When nitric oxide is in the high nanomolar
range, it may outcompete superoxide dismutase (SOD)
and react with the superoxide anion (O2

#!) to generate
ONOO! (O2

#! reacts with nitric oxide at a signicantly
faster rate than with SOD, k¼ 6.7& 109 mol/l/s). Under
proinflammatory conditions, simultaneous production of
O2
#! and nitric oxide can be strongly activated to

increase production by 1000-fold, which will increase
the formation of peroxynitrite by 1 000 000-fold [2].
Thus, even modest increases in the production of
O2
#! and nitric oxide will greatly stimulate the formation

of peroxynitrite. This reaction is associated with a
decrease in nitric oxide availability. A large body of
evidence supports a key role of ONOO! in cell cytotox-
icity [2,4,16]. The half-life of ONOO! is short (10–
20 ms), but sufficient to cross biological membranes.
Thus, ONOO! diffuses and reacts within one to two
cell diameters. Peroxynitrite can react with most of the
components of the electron transport chain, including
complexes I and III [2,4].

Peroxynitrite may reach mitochondria from extramito-
chondrial compartments or may be directly produced
within the mitochondria. Indeed, mitochondria can pro-
duce nitric oxide via the activity of a Ca2þ-sensitive
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mitochondrial nitric oxide synthase (mtNOS) and super-
oxide due to the natural leak of electrons from the
mitochondrial respiratory chain. Peroxynitrite may med-
iate apoptosis by permeabilization of the outer mem-
brane. Mitochondrial outer membrane permeabilization
allows the efflux of various proapoptotic signalling
molecules, which promote cell death. Mitochondrial
outer membrane permeabilization also facilitates the
mitochondrial permeability transition (MPT). MPT
describes the permeabilization of the inner mitochondrial
membrane. The permeability transition pore results in
the dissipation of mitochondrial membrane potential,
yielding a cessation of electron transfer and ATP pro-
duction [17,18]. In addition, ONOO! can directly oxidize
low-molecular weight thiols, most notably reduced gluta-
thione (GSH), which plays a major role in the cellular
defence against oxidative stress. Moreover, ONOO!may
induce DNA damage with activation of the DNA repair
enzyme PARP-1. Upon severe DNA injury, overactiva-
tion of PARP-1 depletes the cellular stores of NADþ, an
essential cofactor of the glycolytic pathway, the TCA and
the mitochondrial electron transport chain. As a result,
the loss of NADþ leads to a marked decrease in the
cellular pools of ATP, resulting in cellular dysfunction
and cell death (‘suicide hypothesis’ after irreversible
DNA injury) (Fig. 2). This point has been clearly demon-
strated by Szabo et al. [19] in vascular smooth muscle cells
exposed either to lipopolysaccharide (LPS) or interferon-
gamma.

Catecholamines should be mentioned as they are the
primary symptomatic treatment currently used for
septic shock patients. Regueira et al. [20#] observed an
amelioration of respiratory rate in liver at complexes I
and II by using norepinephrine in a model of endotoxic
shock in pigs. This amelioration was independent of
hepatic blood flow modifications, and it suggests an
action of catecholamine on mitochondrial respiratory

chain complex activity. The mechanism remains to be
elucidated.

Animal models of sepsis and mitochondrial function
Mitochondrial ultrastructural abnormalities have been
described in numerous septic shock models [21–24].
For example, Welty-Wolf et al. [23] described ultrastruc-
tural mitochondrial injuries in skeletal muscle (distorted
cristae, electron lucent areas within the matrix and frag-
mented inner membrane) in baboons 12 h after Escher-
ichia coli injection (1010 CFU/kg). In a feline model of
acute endotoxaemia, Crouser et al. [24] observed signifi-
cant alterations of mitochondrial ultrastructure in liver
samples (obtained 4 h after LPS injection), with mild to
moderate mitochondrial swelling. Interestingly, despite
the maintenance of tissue oxygen availability, these
authors found a reduction of mitochondrial respiration,
especially at complex IV (40% inhibition), and a partial
uncoupling of mitochondrial oxidative phosphorylation.
Finally, a significant correlation was demonstrated
between the severity of ultrastructural injury and the
magnitude of mitochondrial respiratory dysfunction.
These mitochondrial injuries were prevented by pre-
treatment with cyclosporin A, a potent inhibitor of the
MPT [18]. Other studies in septic animal models have
reported significant decreases in mitochondrial oxidative
phosphorylation, mostly at the level of complexes I, II
and IV [3,25–28,29#,30#,31,32,33#]. However, other stu-
dies have found unaltered or increased mitochondrial
function in septic models [34–38]. These variable find-
ings may result from differences in species, the model,
the severity of the induced sepsis, the degree of resusci-
tation or the timing of the analysis of mitochondrial
function. Regarding this last point, more consistent find-
ings of decreased function were reported in long-term
models ('24 h). In a long-term, fluid-resuscitated, faecal
peritonitis rodent model, Brealey et al. [39] found that the
severity of organ dysfunction and poor outcome were
associated with nitric oxide overproduction and increas-
ing mitochondrial dysfunction. The contribution of this
study is important because this model can be considered
as a representative model of human sepsis with 40%
mortality and the development of organ failures. In this
study, complex II, III and IV activities remained
unchanged over time and with sepsis in both skeletal
muscle and liver. Both skeletal muscle and liver complex
I activity fell at 24 h (liver and muscle) and 48 h (muscle),
with increasing disease severity in the septic rats and
significant reduction of liver and muscle ATP concen-
trations. Remarkably, the authors found only mild or focal
histological abnormalities. Neither apoptosis nor necrosis
was a major feature, suggesting the possibility of an
adaptive programmed shutdown of cellular function
[39]. This result is in agreement with those reported
by Hotchkiss et al. [40]. If cell death is not a major feature
of sepsis, it can be postulated that the organ-system
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Figure 2 Mechanisms of peroxynitrite-mediated cell death
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dysfunction of sepsis and related inflammatory states
represent a multiorgan hibernation-like state. However,
as mentioned by Singer [41], although hibernation is
adaptive and potentially protective during ischaemia
and hypoxia, it may be pathologic during sepsis if persist-
ent. Callahan and Supinski [42] reported a downregulation
of genes encoding electron transport chain components
and phosphofructokinase (PFK) (rate-limiting enzyme for
glycolysis) that correlated with reductions in the expres-
sion levels of electron transport chain subunits, possibly
explaining decreased respiratory chain activity [43].

Notably, mitochondrial regeneration, termed biogenesis,
provides new functional mitochondria. This phenom-
enon could be implicated in the recovery from sepsis
after the critical period. It seems to be triggered by nitric
oxide production and mitochondrial DNA oxidative
damage [44,45]. A recent study by Haden et al. [46##]
demonstrated the tight association of mitochondrial bio-
genesis and the restoration of oxidative metabolism
during the late phase of sepsis in a murine model of
peritonitis.

Septic patients and mitochondrial function
Few human studies have examined mitochondrial func-
tion during sepsis. After in-vitro incubation of human
umbilical endothelial cells with serum from septic shock
patients, Boulos et al. [47] observed a significant depres-
sion of endothelial cell mitochondrial respiration (>60%).
This decrease was prevented by pretreatment with 3-
aminobenzamide, a poly(ADP-ribose) synthase inhibitor,
or NG-methyl-L-arginine, a nonspecific NOS inhibitor.
These data suggest that nitric oxide and poly(ADP-
ribose) synthase activation may play an important role
in the inhibition of mitochondrial respiration during
septic shock. This result supports the hypothesized role
of RNS. Nitric oxide interacts with superoxide to form
peroxynitrite and impairs mitochondrial respiration in
sepsis. Peroxynitrite may also cause DNA strand break-
age, thereby activating PARP and depleting ATP.

Brealey et al. [48] obtained muscular biopsies from 28
patients in septic shock. During the first 24 h of patient
management, the authors observed a decrease in complex
I activity and decreased muscular ATP content in non-
surviving patients as compared to a control group of
patients undergoing elective hip surgery. Complex I
activity had a significant inverse correlation with the
severity of the septic shock (norepinephrine require-
ments) and nitrite/nitrate concentrations. There was a
significant positive correlation of complex I activity
with reduced glutathione concentrations (antioxidant
depletion) and ATP.

Vanhorebeek et al. [49] described the ultrastructural
morphology of mitochondria from liver and skeletal

muscle biopsies obtained from 20 patients who died in
ICUs, mainly from sepsis. Hypertrophic mitochondria,
with increased numbers of abnormal and irregular cristae,
were observed on liver biopsies, as well as a decrease in
complex I and IV activity. No morphological or func-
tional changes were confirmed in skeletal muscle. Liver
alterations were prevented by intensive insulin therapy
[49].

In 10 septic patients with at least two organ failures,
Fredriksson et al. [50] observed a decrease in the activity
of citrate synthase and complexes I and IV in intercostal
and leg muscles. However, the activities of complexes I
and IV did not seem modified when these activities were
compared with the activity of citrate synthase. Thus, the
authors suggested a decrease in the number of mitochon-
dria (a two-fold decrease in mitochondrial content) in
these patients with MOF. Thus, this study demonstrates
a decrease in the number of mitochondria rather than a
functional change in mitochondrial function. A decrease
in ATP concentrations and a rise in lactate levels
(increased anaerobic energy) were observed in leg
muscles, but not in intercostal muscles. Moreover, these
authors recently demonstrated that this reduced mito-
chondrial content is not associated with a global failure in
mitochondrial biogenesis, as both in-vivo protein syn-
thesis and mitochondrial-related mRNA abundance were
sustained [51]. However, the loss of coordination among
key elements of mitochondrial biogenesis was apparent,
resulting in activation of some specific mitochondrial
matrix proteases [51].

Conclusion
Changes in mitochondrial function during sepsis appear
to play a key role in the pathogenesis of organ failure and
in the recovery of septic patients. Hypoxia and a number
of the mediators implicated in sepsis and in the associated
systemic inflammatory response have been demonstrated
to directly impair mitochondrial function. A large body of
evidence supports a key role of ONOO! in mitochondrial
dysfunction; more human studies are necessary to clarify
mitochondrial dysfunction in the various phases of sepsis
(early and late phase – MOF) before testing therapeutic
strategies targeting mitochondria.
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