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Acute right ventricular (RV) failure is a frequent and serious clinical challenge in the intensive care unit. It is usu-
ally seen as a consequence of left ventricular failure, pulmonary embolism, pulmonary hypertension, sepsis,
acute lung injury or after cardiothoracic surgery. The presence of acute RV failure not only carries substantial
morbidity and mortality, but also complicates the use of commonly used treatment strategies in critically ill pa-
tients. In contrast to the left ventricle, the RV remains relatively understudied, and investigations of the treat-
ment of isolated RV failure are rare and usually limited to nonrandomized observations. We searched PubMed
for papers in the English language by using the search words right ventricle, right ventricular failure, pulmonary
hypertension, sepsis, shock, acute lung injury, cardiothoracic surgery, mechanical ventilation, vasopressors, ino-
tropes, and pulmonary vasodilators. These were used in various combinations. We read the abstracts of the rele-
vant titles to confirm their relevance, and the full papers were then extracted. References from extracted papers
were checked for any additional relevant papers. This review summarizes the general measures, ventilation
strategies, vasoactive substances, and surgical as well as mechanical approaches that are currently used or ac-
tively investigated in the treatment of the acutely failing RV. (J Am Coll Cardiol 2010;56:1435–46) © 2010 by
the American College of Cardiology Foundation

Right ventricular failure (RVF) in the intensive care unit
(ICU) remains a formidable clinical challenge. Significant
comorbidities and hemodynamic instability are often
present, and common therapeutic interventions may have
deleterious hemodynamic effects. The importance of the
right ventricle (RV) is reflected in a recent publication from
a National Heart, Lung, and Blood Institute working group,
which suggested that studying the RV should be a priority
in cardiovascular research (1). Pathogenesis, physiology,
symptoms, and diagnosis of RVF have recently been re-
viewed in detail (2–5) and are beyond the scope of this

review. We briefly review the causes, pathophysiology,
and diagnosis of acute RVF in the ICU and focus on the
general measures, vasoactive substances, and surgical and
mechanical approaches used in the treatment of the
acutely failing RV.

Etiology and Pathophysiology of Acute RVF

RVF results from any structural or functional process
decreasing the ability of the RV to pump blood into the
pulmonary circulation. Causes include alterations in pre-
load and diastolic filling, decreases in inotropy, and in-
creases in afterload (3) (Table 1). RV pre-load and diastolic
filling affect myocardial fiber length and contractility via the
Frank-Starling mechanism, and both increases as well as
decreases in pre-load may negatively affect RV function (3).
The most common etiologies of RVF in the ICU are left
ventricular (LV) failure, RV ischemia, acute pulmonary
embolism, pulmonary hypertension (PH), sepsis, acute lung
injury, cardiac tamponade, and post-cardiothoracic surgery
states. Arrhythmias and pericardial, congenital, and/or val-
vular heart disease may also contribute (3). Acute RVF is
also observed during acute chest syndrome in patients with
sickle cell disease (6). In the majority of these conditions,
RV dysfunction prognosticates worse outcomes (5–8). The
pathophysiology of acute RVF in critically ill patients is
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complex and includes ischemia
and/or arrhythmias, endotoxin-
and cytokine-induced decreases in
systolic and diastolic LV and RV
function, as well as afterload in-
creases from endothelial dysfunc-
tion, hypoxic pulmonary vasocon-
striction (HPV), and pulmonary
microthrombi and/or thromboem-
boli (1,5,8–11). LV dysfunction,
either cytokine-induced or due to
ischemia or nonischemic cardio-
myopathies, induces RV dysfunc-
tion via afterload increase, and/or
displacement of the interventricu-
lar septum toward the RV with
subsequent impairment of RV fill-
ing (known as ventricular inter-
dependence). Hypovolemia and
inflammation-induced capillary
leak alter RV function by decreas-
ing pre-load (8,9,11). Important
interactions between inflamma-
tion, sepsis, pulmonary endothelial
dysfunction with associated PH,
and RV and LV dysfunction have
recently been reviewed (8). Pro-
inflammatory cytokines like tu-
mor necrosis factor-! directly sup-
press myocardial contractility (10).
Heightened oxygen demands from
increased heart rate, afterload, and
wall tension, combined with de-

creased coronary perfusion from hypotension, result in suben-
docardial (1,2) and myocardial RV ischemia (8). Mechanical
ventilation, certain drugs, and volume overload may further
alter RV function (3,4,12,13). These pathogenetic entities
(Fig. 1) provide the rationale for the treatment strategies
outlined in this review.

Diagnosis of RVF in the ICU

Although no specific biomarker for RVF exists, serum chem-
istries aid in prognostication (Table 2) (14–20). Electrocardi-
ography, although specific, lacks sensitivity (2,3,12). Once
chest X-ray or CT demonstrates signs of RV dysfunction,
RVF is usually advanced and associated with high mortality
(Fig. 2).

Pulmonary artery catheters (PACs) and transthoracic or
transesophageal echocardiography remain the most reliable
methods to diagnose RVF and evaluate the treatment
response in the ICU. Although PACs do not affect out-
comes in acute lung injury (21), they provide crucial
hemodynamic information in acute RVF, particularly when
used in combination with echocardiographic parameters of
RV function and indexes of tissue oxygenation. In addition

to directly measuring pulmonary artery pressure (PAP) and
pulmonary capillary wedge pressure, PACs allow measure-
ment and/or calculation of additional parameters like right
atrial pressure (RAP), cardiac output (CO), mixed venous
oxygen saturation, pulmonary vascular resistance (PVR),
and RV stroke work index (Table 2) (22–27). PACs also
allow evaluation of the response to pharmacologic therapies
and drug titration to specific end points. Importantly, a
decrease in PAP may reflect decreasing right ventricular
ejection fraction (RVEF) and worsening RVF (28). Al-
though a chronically hypertrophied RV usually tolerates a
significantly elevated PAP, a RV without pre-existing hy-
pertrophy will not be able to generate a systolic PAP !50 to
60 mm Hg.

The critical role of bedside echocardiography, especially
when combined with specific markers of RV dysfunction,
such as tricuspid annular plane systolic excursion index (29),
tissue Doppler (30), and Tei index (31), cannot be overem-
phasized (Table 2) (3,32).

Whether newer predictors of fluid responsiveness (e.g.,
variations in pulse pressure, systolic blood pressure, or stroke
volume) (33) can be of merit in isolated RVF needs further
study. In studies of various forms of shock, these are promising
new techniques for patients in sinus rhythm and on mechanical
ventilation (33). Mechanical insufflation increases intrathoracic
pressures, decreases RV pre-load, and increases RV afterload,
resulting in diminished RV and LV stroke volumes. These
changes are more pronounced in patients whose RV operates
on the steep portion of the Starling curve, making dynamic
changes in arterial waveform a sensitive indicator of RV
pre-load dependence (33,34). Passive leg raising may better
predict fluid responsiveness in patients with arrhythmias and
spontaneous respirations (34). Cardiac magnetic resonance
imaging is the most sensitive method to assess RV function
(1–3,12); however, due to logistical issues, it is rarely used for
critically ill patients.

Treatment of Acute RVF

Treatment strategies for acute RVF in the ICU are derived
from the pathogenetic entities outlined previously. Major
components include volume optimization, RV inotropy
enhancement, and RV afterload reduction, the latter being
achieved through multiple interventions (Fig. 3). These
goals are achieved through careful volume management,
vasopressor and/or inotrope therapy, selective pulmonary
vasodilators, surgical and/or mechanical interventions, and,
if possible, specific measures directed against the underlying
etiology (Fig. 4).
General supportive ICU care. Infection prevention mea-
sures, thromboembolism and peptic ulcer prophylaxis, early
nutritional support, glucose control, and (in stable mechan-
ically ventilated patients) daily interruptions of sedation
combined with spontaneous breathing trials should be
applied to all patients with acute RVF. The optimal
hemoglobin level for patients with acute RVF remains to be

Abbreviations
and Acronyms

BAS ! balloon
atrioseptostomy

CO ! cardiac output

HPV ! hypoxic pulmonary
vasoconstriction

ICU ! intensive care unit

iNO ! inhaled nitric oxide

LV ! left ventricular

LVAD ! left ventricular
assist device

PA ! pulmonary artery

PAC ! pulmonary artery
catheter

PAH ! pulmonary arterial
hypertension

PAP ! pulmonary artery
pressure

PDE ! phosphodiesterase

PH ! pulmonary
hypertension

PVR ! pulmonary vascular
resistance

RAP ! right atrial pressure

RV ! right ventricle

RVEF ! right ventricular
ejection fraction

RVF ! right ventricular
failure

VT ! tidal volume
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determined. Although ICU patients usually benefit from a
conservative transfusion strategy (35), patients with shock or
heart failure may require higher hemoglobin levels (36,37).
This might be the case for patients with acute RVF as well.
Clearly, significant anemia in the setting of decreased tissue
oxygenation should be corrected. Sodium restriction (in
volume overload states) and daily monitoring of body
weight and volume status are indicated.
Treatments that attenuate HPV, optimize volume status,
and target arrhythmias. Adequate oxygenation is of ut-
most importance to avoid afterload increases due to HPV.
We therefore aim for oxygen saturations of "92%. As RV
function is highly volume dependent, a careful balance
between optimized pre-load and decreased afterload is
essential. If pre-load is too low, RVEF will not be adequate.
However, too much pre-load will cause the intraventricular
septum to shift leftward, decrease LV output, and cause
hypotension through ventricular interdependence, especially
in the setting of high intrathoracic pressures or pericardial
disease (2,8). Therefore, careful administration of fluid
boluses, used in conjunction with noninvasive or invasive
assessment of CO, is recommended. Vigorous fluid admin-
istration may be detrimental and should be discouraged (2).
Diuretics are indicated for volume overload. Due to its
potential for greater weight and fluid loss than intravenous
diuretics, venovenous ultrafiltration is increasingly used for
decompensated left heart failure (38). Whether this repre-

sents a feasible option in diuretic-resistant right heart failure
needs further study. As the RV is extremely susceptible to
alterations in cardiac rhythm and ventricular synchrony
(39), restoration of sinus rhythm and/or atrioventricular
synchrony makes sense, but few studies have focused on this
matter in acute RVF specifically (2,3). Clearly, hemody-
namically significant bradycardias or tachyarrhythmias
should be corrected. Digoxin marginally improves CO in
patients with severe PH in the short term (40). However,
due to potential side effects and a narrow therapeutic
window, routine use is discouraged (2,12). Beta-blocking
agents and angiotensin-converting enzyme inhibitors im-
prove RV hemodynamics in patients with biventricular
failure and have theoretical benefits in isolated RVF (41,42),
but their role in the latter is poorly studied.
Strategies that avoid negative effects of mechanical
ventilation on RV pre-load and afterload. Due to poten-
tial adverse hemodynamic effects, mechanical ventilation
needs to be administered with caution and expertise. Higher
tidal volume (VT) and positive end-expiratory pressure may
increase PAP and RAP, worsen tricuspid regurgitation, and
increase RV afterload (13). In addition, positive end-
expiratory pressure may decrease pre-load by diminishing
venous return. Therefore, the lowest VT, plateau pressure,
and positive end-expiratory pressure needed to provide
adequate ventilation and oxygenation should be used
(43,44). Lower VT may also decrease cytokine-induced

Causes of Acute RV Failure in the Intensive Care UnitTable 1 Causes of Acute RV Failure in the Intensive Care Unit

Left ventricular dysfunction Most common cause of right heart failure
RV co-involvement in structural or ischemic heart disease or indirect RV dysfunction due to

ventricular interdependence, pulmonary venous congestion, and/or arrhythmias

RV ischemia (via negative effects on inotropy and/or
relaxation or via arrhythmias)

RV infarction
Relative RV ischemia secondary to RV pressure or volume overload

Afterload increase (endothelial dysfunction,
vasoconstriction, and/or mechanical obstruction)

Pulmonary arterial hypertension and secondary forms of PH
Hypoxic pulmonary vasoconstriction
Post-cardiothoracic surgery (CABG, corrective surgery for CHD, heart/lung transplantation, pneumonectomy)
Pulmonary embolus
Pulmonary microthrombi (sepsis and acute lung injury)
Pulmonary stenosis/RV outflow tract obstruction
Acute chest syndrome in sickle cell disease
Mechanical ventilation

Pre-load decrease (via effects on RV fiber length
and contractility)

Hypovolemia/capillary leak
Superior vena cava syndrome
Tricuspid stenosis
Cardiac tamponade (inhibition of diastolic filling)
Mechanical ventilation

Intrinsic myocardial disease Cardiomyopathies
Arrhythmogenic RV dysplasia
Sepsis (cytokine-induced myocardial depression)

Congenital and valvular heart disease Ebstein’s anomaly
Tetralogy of Fallot
Transposition of the great arteries
Atrial septum defect
Anomalous pulmonary venous return
Tricuspid regurgitation
Pulmonary regurgitation
Mitral valve disease

Pericardial disease (via negative effects on diastolic filling) Constrictive pericarditis

Arrhythmias

CABG " coronary artery bypass grafting; CHD " congenital heart disease; PH " pulmonary hypertension; RV " right ventricular.
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endothelial dysfunction (43). However, because permissive
hypercapnia can increase PAP and worsen RVF through
vasoconstriction, excessive hypercapnia should be avoided
(12,45). Hyperventilation, on the other hand, attenuates
acidosis-induced vasoconstriction and decreases PAP (46).
Hyperventilation can be used to lower PAP acutely, but
should not be performed at the expense of a high VT.
Because increases in respiratory rate can cause dynamic
hyperinflation and increased intrathoracic pressures, airway
pressures and flow-time loops should be watched closely.
Prone ventilation, although not affecting mortality in acute
lung injury, may unload the RV through effects on airway
pressure and improved alveolar ventilation (47). The effects
of high-frequency oscillatory ventilation on RV function are
poorly defined, although decreases in CO are described
(48,49). Although transient improvements in oxygenation
may also be achieved with recruitment maneuvers, these
may cause decreased venous return and hypotension (50)
and should therefore only be used with extreme caution
when significant hypoxemia is present.

Strategies that improve RVEF, increase RV perfusion
pressure, and minimize tachyarrhythmias and afterload.
Inotropes improve cardiac contractility and CO by in-
creasing cyclic adenosine monophosphate. Vasopressors
increase RV perfusion pressure, thereby attenuating sub-
endocardial ischemia. All inotropes concomitantly target
the left ventricle (a desired effect in LV failure–induced
RVF).

Dobutamine, the inotrope traditionally used in cardiac
pump failure, works through #1-receptor–mediated in-
creases in myocardial contractility. Concomitant #2 stimu-
lation induces vasodilation and decreases afterload. In acute
PH, low-dose dobutamine (2 to 5 $g/kg/min) increases CO
and decreases PVR, whereas higher doses (5 to 10
$g/kg/min) only induce tachycardia and increase myocar-
dial oxygen consumption without further improvements in
PAP (12,51,52). In an animal model of acute RVF, dobut-
amine was superior to norepinephrine in improving RV
function, likely due to superior inotropic properties and the
absence of peripheral vasoconstriction (52). In acute and

Figure 1 Mechanisms of RV Dysfunction in Critically Ill Patients

Right ventricular (RV) dysfunction occurs directly due to cardiodepressant effects of proinflammatory cytokines, cardiac microthrombi, and ischemia and/or arrhythmias or
indirectly due to left ventricular (LV) dysfunction, afterload increases from endothelial dysfunction, hypoxic pulmonary vasoconstriction, pulmonary emboli, and/or pulmo-
nary microthrombi, as well as pre-load decreases (induced or aggravated by capillary leak syndrome). Mechanical ventilation contributes to RV dysfunction by negatively
affecting pre-load and/or afterload. Endotoxin and proinflammatory cytokines negatively affect RV function on several levels. ET " endothelin; IL " interleukin; NO "
nitric oxide; O2 " oxygen; PGI2 " prostacyclin; TNF " tumor necrosis factor.
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chronic PH, the combination of dobutamine and inhaled
nitric oxide (iNO) improved CO, decreased PVR, and
increased the PaO2/FiO2 ratio (51,53). However, dobut-
amine may cause hypotension through peripheral #2 stim-
ulation, sometimes requiring the addition of a peripheral
vasoconstrictor (e.g., norepinephrine) (12).

Milrinone, a selective phosphodiesterase (PDE)-3 inhib-
itor, also exerts inotropic and vasodilatory properties. Al-
though decreasing PVR and increasing RVEF in acute and
chronic PH, use is limited by systemic vasodilation and
hypotension (54). Like dobutamine, milrinone can be com-
bined with iNO to augment pulmonary vasodilation while
minimizing hypotension and tachyarrhythmias (55). In-
haled milrinone minimizes hypotension but maintains ben-
eficial effects on PVR and RVEF (56) and even attenuates
pulmonary endothelial dysfunction (57). However, due to
relatively selective PDE-5 expression in the lung and
hypertrophied RV, PDE-5 inhibitors may be more effective
and more pulmonary artery (PA) and RV specific than
PDE-3 inhibitors (58,59).

Norepinephrine increases inotropy through #1 agonism.
Concomitant stimulation of !1-receptors increases RV per-
fusion pressure and CO, as seen in a model of acute

pulmonary embolism–induced RVF (60). Concerns about
increases in PVR and PAP exist, but were not observed in
that particular study. Norepinephrine may therefore be
beneficial in hypotensive and tachycardic patients not tol-
erating dobutamine, but the latter remains the preferred
inotrope for PH and/or acute RVF without significant
hypotension (12,52).

Levosimendan sensitizes cardiac troponin C to the effects
of intracellular calcium, thereby increasing contractility
without increasing oxygen consumption. Levosimendan
also has global vasodilatory and anti-ischemic properties
that are mediated by activation of adenosine triphosphate-
sensitive potassium channels in mitochondria of vascular
smooth muscle cells (61) and by endothelin-1 inhibition
(62). The drug increases CO, decreases PVR, and improves
regional perfusion, together with a protective effect against
endothelial dysfunction by inhibiting expression of soluble
adhesion molecules (63). Levosimendan attenuates injury-
induced RV and LV dysfunction and increases regional
blood flow and global oxygen transport (64). Although
sharing the vasodilatory effects of dobutamine and milri-
none, it seems to have more specific pulmonary vasodilatory
properties. Animal studies of RVF demonstrated decreased

Overview of Serum Markers, Hemodynamic Parameters, andEchocardiographic Variables Used in the Diagnosis of Acute RV Failure in the Intensive Care UnitTable 2 Overview of Serum Markers, Hemodynamic Parameters, and
Echocardiographic Variables Used in the Diagnosis of Acute RV Failure in the Intensive Care Unit

BNP, NT-proBNP, troponin Increase in LV dysfunction, renal failure, sepsis, but significant RV dysfunction less likely if values normal
BNP predicts survival in acute RVF in PAH; increased levels (1,415 pg/ml vs. 628 pg/ml) associated with

increased mortality (14)
BNP !168 pg/ml identifies RV dysfunction in CTEPH patients with 88% sensitivity, 86% specificity (15)
Risk stratification in patients with subtle RV dysfunction during acute, nonmassive PE (16,17)

Sodium %136 mmol/l predicts RVF and increased risk of death in PAH patients (18)
Predicts survival in PAH patients with acute RVF; decreased levels associated with increased mortality (14)

Creatinine Predicts survival in PAH patients with acute RVF; increased levels (1.5 mg/dl vs. 1.25 mg/dl) suggest
increased mortality (14)

C-reactive protein Predicts survival in PAH patients with acute RVF; increased levels (4 mg/dl vs. 1.2 mg/dl) associated with
increased mortality (14)

Transaminases Increase reflects hepatic congestion and/or hypoperfusion due to compromised LV function and forward failure
Prognostic value not established

Growth differentiation factor-15 Stress responsive, transforming growth factor-beta–related myocardial cytokine
Independent predictor of long-term mortality in acute PE; increased value of established prognostic markers (19)
Risk stratification in PAH patients; increased levels associated with increase in markers of RV dysfunction (20)

Right atrial pressure, cardiac index Strongest hemodynamic prognosticators in PAH (22); more accurate reflection of RV function than PAP
Right atrial pressure "15 mm Hg, cardiac index %2 l/min/m2 indication for transplantation referral in PAH (22)

PVR Differentiates whether increased afterload is due to PAH, secondary PH, or hyperdynamic states (23)
PVR !1,000–1,200 dynes·s·cm#5: contraindication for atrial septal defect closure (24), balloon atrial

septostomy in severe PAH (22), pulmonary endarterectomy in CTEPH (22)

Right ventricular stroke work index Prognosticates RVF after LVAD placement and transplantation-free survival in dilated cardiomyopathy (25,26)
Easily obtained via PAC; may allow for further prognostication in acute RVF, but further studies needed

Pulmonary artery impedance Evaluates and integrates PVR and pulmonary artery elastance, flow, pulsatile pressure, and wave reflection (27)
Superior and more complete method of RV afterload assessment than PVR alone (27)

RVEF, RA and RV volume, tricuspid regurgitation,
ventricular septal shift, pericardial effusion

Established and readily available markers of RV dysfunction (3)
Limited by marked pre-load dependence (3)

Right ventricular systolic pressure Calculated from tricuspid regurgitant jet and RAP; cannot be obtained if no regurgitant jet identified
Off by !10 mm Hg in almost 50% of measurements in PAH patients (32)

TAPSE, tissue Doppler, Tei index More specific and less pre-load–dependent than traditional echocardiographic markers (29–31)
Established prognostic value of TAPSE in PAH patients; significantly decreased survival if TAPSE $1.8 cm (29)

For a more detailed description of assessment of RV function, please see Haddad et al. (3). Several of the listed PAC- and echocardiography-derived parameters, as well as additional advanced
measurements, can be determined by cardiac magnetic resonance imaging.

BNP " B-type natriuretic peptide; CTEPH " chronic thromboembolic pulmonary hypertension; LV " left ventricular; LVAD " left ventricular assist device; NT-proBNP " N-terminal pro–B-type natriuretic
peptide; PAC " pulmonary artery catheter; PAH " pulmonary arterial hypertension; PAP " pulmonary artery pressure; PE " pulmonary embolism; PH " pulmonary hypertension; PVR " pulmonary vascular
resistance; RA " right atrial; RV " right ventricular; RVF " right ventricular failure; RVEF " right ventricular ejection fraction; TAPSE " tricuspid annular plane systolic excursion.
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afterload and increased RV contractility with levosimendan
superior to those of dobutamine (65,66). However, use can
be limited by hypotension and arrhythmias (especially with
bolus dosing) (67), and further studies in acute RVF are
needed before its use can be recommended. Levosimendan
is currently approved for use in Europe, but not in the U.S.
Strategies that decrease RV afterload by attenuating
cytokine production, endothelial dysfunction, HPV, and
microthrombi and that may directly improve RVEF. Be-
cause the RV poorly tolerates afterload increases and because
PH is a common cause of RVF, pulmonary vasodilators
represent cornerstones of RVF treatment. All systemically
administered pulmonary vasodilators can cause hypotension
and need to be initiated cautiously.

iNO mediates pulmonary vasodilation by increasing cyclic
guanosine monophosphate. Rapid inactivation by hemoglobin
in the pulmonary capillaries prevents systemic vasodilation.
Effects are limited to ventilated areas of the lung, therefore
attenuating HPV, decreasing PAP and PVR, and improving
oxygenation without increasing intrapulmonary shunt fraction
(unlike systemically administered pulmonary vasodilators,

which may aggravate hypoxemia in patients with lung disease)
(68,69). In addition, iNO decreases inflammatory cytokine
production (12,70,71). In 26 ICU patients with acute RVF, 14
patients experienced significant increases in CO and oxygen-
ation as well as decreases in PVR with iNO (35 ppm) (72).
iNO use for PH and/or RVF in patients undergoing ortho-
topic heart or lung transplantation was associated with lower
mortality compared with its use in cardiac surgery or medical
patients with hypoxemia (73). Improvements in PVR and RV
dysfunction were confirmed in another study of heart trans-
plant recipients (74) and in patients with PH after mitral valve
replacement (75). Use of iNO is limited by potential methe-
moglobinemia, production of reactive nitrogen species, and
rebound PH after rapid discontinuation (12,70,76). iNO may
be of particular benefit when combined with inodilators (do-
butamine or milrinone) (77).

Prostacyclins activate cyclic adenosine monophosphate,
resulting in pulmonary and systemic vasodilation and inhi-
bition of platelet aggregation. Although improving end
points in pulmonary arterial hypertension (PAH) (78),
prospective data on critically ill patients with acute RVF are

Figure 2 Computed Tomography Imaging of RVF

(A to C) A 55-year-old male patient with idiopathic pulmonary arterial hypertension presenting with right ventricular failure (RVF) due to acute respiratory distress syn-
drome from aspiration pneumonia. Computed tomography shows dilated pulmonary arteries (A), massive right atrial and right ventricular dilation (B), and retrograde flow
of contrast into the inferior vena cava (C). (D) A 56-year-old man with fibrocystic sarcoid presenting with RVF due to acute hypercarbic and hypoxic respiratory failure
from community-acquired pneumonia. Retrograde flow of contrast into the inferior vena cava and hepatic veins is demonstrated. These findings suggest advanced RVF
and high mortality.
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sparse. The short half-life (3 to 6 min) and its potent effects
make epoprostenol the preferred prostacyclin in the ICU.
Initiated at 1 to 2 ng/kg/min, the drug is increased by 0.5 to
1 ng/kg/min every 15 to 30 min. A more cautious approach
is often warranted in critically ill patients with significant
comorbidities, hypoxemia, and/or labile hemodynamics.
Epoprostenol decreases PAP and PVR and increases CO,
but its use is limited by dose-dependent side effects (e.g.,
hypotension, gastrointestinal symptoms, headaches) (79). It
should be avoided in respiratory failure, shock, and LV
dysfunction. Similar to iNO, abrupt discontinuation may
lead to rebound PH and even death (79,80). Nebulized or
inhaled prostacyclins forgo systemic side effects, represent-
ing an attractive alternative to iNO. No special equipment is
required for administration or toxicity monitoring. In heart
transplant and lung transplant recipients with PH, refrac-
tory hypoxemia, and RV dysfunction, inhaled prostacyclin
decreased PAP and CVP and improved cardiac index and
mixed venous oxygen saturation similar to iNO (81). In-
haled iloprost for RVF is supported by experimental (82)
and clinical data. Iloprost improves PH and RV function in
patients undergoing mitral valve surgery, cardiopulmonary
bypass, or heart transplantation (83–85) and may be more
potent than iNO (86). Treprostinil decreases PAP and PVR
(87), but its use in the ICU is limited by a longer half-life than
that of epoprostenol. In unstable patients, intravenous or
inhalational administration is preferred over the subcutaneous
route because the latter may be limited by unpredictable
absorption. Inhaled treprostinil (15 or 30 $g) additively de-
creased PVR and PAP and increased CO when added to
sildenafil in a recent open-label trial in PH patients (88).

Endothelin receptor antagonists block endothelin-A
and -B receptors in vascular smooth muscle and endo-
thelial cells, attenuating endothelin’s vasoconstrictive,
proliferative, and proinflammatory effects (78). Although
increasing CO and decreasing PAP in PH patients, endo-
thelin receptor antagonist use in the ICU is limited by
relatively long half-lives (5 h for bosentan) and potential
hepatotoxicity (78,89), the latter occurring less frequently
with selective endothelin-A receptor antagonists (90).

PDE-5 inhibitors block degradation of cyclic guanosine
monophosphate. They decrease PAP and increase CO in
both acute and chronic PH and may be particularly bene-
ficial for HPV (58,70,91,92). In isolated PA rings, silde-
nafil, vardenafil, and tadalafil caused dose-dependent PA
relaxation and inhibited phenylephrine-induced PA con-
traction, but only tadalafil inhibited HPV and decreased
hypoxia-induced up-regulation of proinflammatory cyto-
kines (93). Few studies investigated PDE-5 inhibitors in
ICU patients. In 8 patients undergoing mitral valve repair or
LV assist device (LVAD) placement, sildenafil decreased
PAP and PVR and facilitated weaning of inhaled and
intravenous pulmonary vasodilators while only minimally
decreasing systemic blood pressure (94). Sildenafil and
zaprinast may act synergistically with iNO (92,95,96) or
iloprost (97) and decrease rebound PH after iNO with-
drawal (98). In LVAD patients, sildenafil facilitated wean-
ing from iNO and inotropes and provided additional de-
creases in PAP (99). Sildenafil or its analogues decrease
PVR, maintain systemic vascular resistance, and improve
myocardial perfusion after coronary artery bypass grafting
(100,101). Sildenafil also has unique lusitropic and/or ino-

Figure 3 Categorization of Therapeutic Interventions Aimed at Improving RV Function in the Intensive Care Unit

Interventions marked with an asterisk directly or indirectly decrease right ventricular (RV) afterload. LV " left ventricular.
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tropic effects in the hypertrophied RV (102), the latter being
exerted through PDE-3 inhibition (milrinone-like effect)
(59). Furthermore, sildenafil decreases RV mass in PAH
patients (102,103). The drug also improves pulmonary
hemodynamics and exercise capacity in patients with sys-
tolic LV dysfunction (104). Hemodynamic effects of silde-
nafil occur after 15 to 30 min, with peak effects after 30 to
60 min, and a half-life of 4 h. An association between
sildenafil and severe thrombocytopenia was recently re-
ported in a patient with advanced PH (105).
Surgical and interventional therapies. These are indi-
cated for patients with potentially reversible RVF unrespon-
sive to or intolerant of medical therapy or for those with
disease progression despite maximal medical therapy. Sur-
gical or percutaneous correction is also used in RVF due to
valvular or congenital heart disease. Pre-operative optimi-
zation of filling pressures is crucial, and periprocedural
inotropic support may be necessary. All interventions should
be performed before irreversible end-organ injury develops.
Furthermore, surgical or mechanical support is unlikely to

benefit those with advanced RV dysfunction and/or mas-
sively elevated PVR. For example, pulmonary endarterec-
tomy for chronic thromboembolic PH is not recommended
for patients with a pre-operative PVR !1,000 to 1,200
dynes·s·cm#5 (22). Balloon atrial septostomy (BAS) is
contraindicated in severe RVF and should not be offered to
patients with RAP "20 mm Hg, significant hypoxemia
($90% on room air), and/or PVR index "4,400
dynes·s·cm#5/m2 (12,22,106–109). Caution is indicated
when repair of an atrial septal defect is planned in the
setting of RV dysfunction (24). PVR !1,200 dynes·s·cm#5

has traditionally been accepted as a contraindication for
surgical closure. However, pre-operative pulmonary vasodi-
lator therapy may sufficiently improve hemodynamics to
allow for surgical correction (110).

In RVF due to chronic thromboembolic PH, pulmonary
thrombendarterectomy improves New York Heart Associ-
ation functional class, exercise tolerance, and survival
(22,111). The best outcomes are achieved in patients with
proximal angiographic PA obstruction and absent or min-

Figure 4 Treatment of Acute Right Ventricular Failure in the Intensive Care Unit

Numbers in parentheses refer to the treatment categories outlined in Figure 3. In addition to the strategies depicted in the figure, general measures such as oxygen
administration, nutritional support, and prophylactic measures should be applied. Modified from Haddad et al. (2). CHD/VHD " congenital/valvular heart disease; CTEPH
" chronic thromboembolic pulmonary hypertension; ECMO " extracorporeal membrane oxygenation; ET-1 " endothelin-1; IABP " intra-aortic balloon pump; LV " left
ventricle; LVAD/RVAD " left/right ventricular assist device; NO " nitric oxide; PCI " percutaneous coronary intervention; PDE5 " phosphodiesterase 5; PE " pulmonary
embolism; PEEP " positive end-expiratory pressure; Pplat " plateau pressure; PBW " predicted body weight; RRT " renal replacement therapy; VT " tidal volume.
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imal small vessel disease and if the post-operative PVR can
be decreased to $500 dynes·s·cm#5 (111). Surgical embo-
lectomy is used for acute massive pulmonary embolism when
thrombolysis fails or is contraindicated (112). Percutaneous
mechanical approaches with or without intrapulmonary
thrombolytics can be used in this setting, but comparisons
of this approach with medical or surgical thrombolysis are
sparse (112).

BAS represents a surgical right-to-left-shunt used to
“unload” the RV. The associated decrease in oxygenation is
outweighed by increased oxygen delivery and mediated by
increased CO (107,113). BAS is used as a bridge to lung
transplantation or as a palliative measure in refractory PH,
but is contraindicated with concomitant LV failure (22).
Spontaneous decreases in orifice size necessitating repeat
BAS are not uncommon (113).

Mechanical circulatory support is usually used as a bridge
to heart, lung, or heart-lung transplantation. LVADs can be
used to treat RVF due to LV failure. LVADs lower
pre-heart transplantation PAP, which may improve long-
term post-transplantation survival (114,115). However, be-
cause LVADs may potentially worsen pre-existing or even
result in new-onset RVF (due to changes in RV geometry
and flow/pressure dynamics after LV unloading), their use
needs to be evaluated on a case-by-case basis (4,116,117).
Recent data indicate improved outcomes with continuous-
flow LVADs used in a subgroup of patients with concom-
itant RVF (118). Biventricular VADs may be used if
concomitant RV dysfunction is present. Right VADs may
be indicated for isolated RVF. As with many surgical
procedures, timing is of crucial importance, and VADs
should be placed in patients with cardiogenic shock or
progressive hemodynamic deterioration despite inotropic
therapy before irreversible end-organ failure develops (119).
However, isolated right VADs may be insufficient or even
deleterious in cases of increased afterload, and extracorpo-
real membrane oxygenation may be more effective in un-
loading the RV (120). Extracorporeal membrane oxygen-
ation may be considered for patients with potentially
reversible RVF due to severe hypoxemic respiratory failure
and/or PH in whom conventional support is failing (121),
but randomized, controlled trials are needed.

Heart, lung, or combined heart-lung transplantation is
the last resort for end-stage RVF. In patients with PAH,
RVF (RAP !15 mm Hg and/or cardiac index $2.0
l/min/m2) indicates poor prognosis and warrants transplan-
tation referral (22). However, due to the resilient nature of
the RV, even patients with severe RVF due to PAH can be
considered for isolated lung transplantation with successful
outcomes (65% to 75% 1-year-survival rate) (2,122).

Conclusions and Future Directions

The RV, although commonly affected in multiple condi-
tions treated in the ICU, remains understudied and much
less well understood than the left ventricle. Investigations of

the treatment of isolated RVF are rare and limited to
nonrandomized observations. In addition to specific thera-
pies directed against the underlying cause of RVF, support-
ive measures and judicious volume management, and the use
of selective pulmonary vasodilators in conjunction with
inotropes seem most promising. The combination of iNO
with dobutamine is best supported by current evidence, with
evolving data supporting the use of inhaled prostacyclins.
PDE-5 inhibitors seem to have selective actions on the RV.
Mechanical or surgical interventions are used as primary
treatment for distinct conditions or as rescue therapy.

Future directions should include therapies specifically
targeting the diseased RV. Examples include metabolic
modulators aimed at reversing mitochondrial dysfunction
(123). Stem cells are being investigated in ischemic and
PAH-related RVF (4,124–126). Tyrosine kinase inhibitors
show promise in severe PAH with RVF (127). Future
research should consider sex-based differences in RV func-
tion. Multiple studies demonstrate female protection in
acute and chronic forms of left ventricular injury (128,129).
Recent data indicate a similar pattern with regard to right
ventricular function (130). This is of interest as healthy,
cardiovascular disease–free women have a higher RVEF
than their male counterparts (131). A better understanding
of the molecular mechanisms protecting the female RV in
health and disease may therefore allow future therapeutic
interventions that ultimately benefit patients from either
sex.
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