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Fresh Blood and Aged Stored Blood Are Equally
Efficacious in Immediately Reversing Anemia-induced
Brain Oxygenation Deficits in Humans
Richard B. Weiskopf, M.D.,* John Feiner, M.D.,† Harriet Hopf, M.D.,‡ Jeremy Lieberman, M.D.,† Heather E. Finlay, B.S.,§
Cheng Quah, M.D.,� Joel H. Kramer, Psy.D.,# Alan Bostrom, Ph.D.,** Pearl Toy, M.D.††

Background: Erythrocytes are transfused to treat or prevent
imminent inadequate tissue oxygenation. 2,3-diphosphoglycer-
ate concentration decreases and oxygen affinity of hemoglobin
increases (P50 decreases) with blood storage, leading some to
propose that erythrocytes stored for 14 or more days do not
release sufficient oxygen to make their transfusion efficacious.
The authors tested the hypothesis that erythrocytes stored for 3
weeks are as effective in supplying oxygen to human tissues as
are erythrocytes stored for less than 5 h.

Methods: Nine healthy volunteers donated 2 units of blood
more than 3 weeks before they were tested with a standard, com-
puterized neuropsychological test (digit–symbol substitution test
[DSST]) on 2 days, 1 week apart, before and after acute isovolemic
reduction of their hemoglobin concentration to 7.4 and 5.5 g/dl.
Volunteers randomly received autologous erythrocytes stored for
either less than 5 h (“fresh”) or 3 weeks (“stored”) to return their
hemoglobin concentration to 7.5 g/dl (double blinded). Erythro-
cytes of the alternate storage duration were transfused on the second
experimental day. The DSST was repeated after transfusion.

Results: Acute anemia slowed DSST performance equivalently
in both groups. Transfusion of stored erythrocytes with decreased
P50 reversed the altered DSST (P < 0.001) to a time that did not
differ from that at 7.4 g/dl hemoglobin during production of acute
anemia (P � 0.88). The erythrocyte transfusion–induced DSST
improvement did not differ between groups (P � 0.96).

Conclusion: Erythrocytes stored for 3 weeks are as efficacious
as are erythrocytes stored for 3.5 h in reversing the neurocog-
nitive deficit of acute anemia. Requiring fresh rather than
stored erythrocytes for augmentation of oxygen delivery does
not seem warranted.

ERYTHROCYTES are transfused to treat or prevent im-
minent inadequate oxygen delivery and tissue oxygen-
ation, or to improve symptoms of acute anemia. How-
ever, there have been no prospective randomized
clinical trials in humans to document the efficacy of
transfusion of stored blood. Survival after massive hem-
orrhage and transfusion of volumes equivalent to several
blood volumes would seem to indicate that stored blood
delivers sufficient oxygen to tissues to permit individual
organ and overall survival.

Erythrocyte concentrations of 2,3-diphosphoglycerate
(2,3-DPG) decrease with duration of erythrocyte stor-
age,1–10 reaching depleted concentrations of 1 �mol/g
hemoglobin or less at 21 days of storage.2,3,5,6,8 2,3-DPG
is an important modulator of the affinity of hemoglobin
for oxygen.11–14 The oxygen affinity of hemoglobin var-
ies inversely with 2,3-DPG concentration (decreasing
2,3-DPG concentration decreases P50, the partial pres-
sure of oxygen [PO2] at pH 7.4 and partial pressure of
carbon dioxide [PCO2] 40 mmHg, at which the oxyhe-
moglobin saturation [SO2] is 50%). When erythrocytic
2,3-DPG is depleted, P50 is 16–20 mmHg,8,10 rather than
the normal 26.7 mmHg.15 Some have suggested that the
increased oxygen affinity of hemoglobin of stored eryth-
rocytes does not allow for release of sufficient amounts
of oxygen to tissues,16 thus making erythrocytes stored
for more than 14 days lacking in immediate efficacy,
until 2,3-DPG concentrations and P50 are restored, some
hours after transfusion.2,3,5,16,17

We have previously demonstrated that fresh blood,
stored in citrate-phosphate-dextrose-adenine (CPDA-1)
for less than 4 h, effectively reverses cognitive deficits in
humans made acutely anemic to hemoglobin concentra-
tions of 5 and 6 g/dl.18 Those data demonstrate that
erythrocytes stored for a few hours release quantities of
oxygen that do not differ substantially from erythrocytes
that have not been removed from the circulation. In the
experiment described here, we used our model in which
cerebral function is oxygen-delivery dependent, to test
the null hypothesis that erythrocytes stored for at least 3
weeks are as effective as erythrocytes stored for 4 h in
supplying oxygen to human tissues.

Materials and Methods

With approval of our institutional review board (Uni-
versity of California, San Francisco [UCSF]) and informed
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consent, we studied nine paid volunteers who were
without cardiovascular, pulmonary, or hepatic disease;
did not smoke; were not taking any medications; and
weighed less than 80 kg. The weight requirement was
imposed to avoid excessively long experimental days,
with potentially increased effects of time, owing to the
need to remove large quantities of blood to achieve the
desired hemoglobin concentration. A minimum of 80%
correct responses for the neurocognitive test (see Digit–
Symbol Substitution Test section) was required for par-
ticipation in the study. Volunteers were required to have
a minimum hemoglobin concentration of 12 g/dl before
the first donation and 9.5 g/dl on each study day (see this
section below), and vision that was normal with or
without corrective lenses.

Four hundred fifty milliliters (one “unit”) of blood was
collected from each volunteer into CPDA-1 collection
bags (Baxter Healthcare Corp., Deerfield, IL) 4–5 weeks
before the first study day, and a second unit of blood was
collected 4–8 days later. Each volunteer was studied on
2 separate days, separated by 7 days. We produced acute
severe isovolemic anemia identically on each day, as
previously described.18–20 A radial arterial and two pe-
ripheral venous cannulae were inserted in each subject
using local anesthesia. After insertion of the cannulae,
subjects rested for 30 min before measurement of vari-
ables. The digit–symbol substitution test (DSST) (see
Digit–Symbol Substitution Test section) was performed
with the subject in a semisitting position before removal
of any blood, and after producing isovolemic anemia to
blood hemoglobin concentrations of 7 and 5 g/dl by
removal of 450 ml blood into CPDA-1 collections bags.
Removal of each 450 ml blood required approximately
10–15 min. To maintain isovolemia and compensate for
the extravascular distribution of albumin,19,21 simulta-
neous with blood withdrawal, 5% human serum albumin
(American Red Cross/Baxter, Glendale CA) and the sub-
ject’s own platelet-rich plasma (after separation from the
erythrocytes of the removed blood) were infused intra-
venously in volumes of 19% (11–28%) (mean and 95%
confidence interval) on the day “fresh” erythrocytes
were transfused (see this section below) and 19% (10–
28%) on the day “stored” erythrocytes were transfused,
greater than that of the removed blood. A 5-min equili-
bration period was allowed after blood withdrawal, at
each hemoglobin concentration, before the DSST was
performed. Volunteers were monitored with continuous
electrocardiography, blood pressure monitoring, and
pulse oximetry.

After completion of the tests at hemoglobin concen-
tration of 5 g/dl, a sufficient quantity of each volunteer’s
erythrocytes (not leukoreduced) was transfused, using a
blood warmer, to return blood hemoglobin concentra-
tion to 7 g/dl, and the DSST was repeated. Fresh and
stored erythrocytes were transfused as packed cells, pre-
pared by the UCSF blood bank, using standard methods.

Volunteers were randomly allocated (by a computer-
generated list) to receive either erythrocytes withdrawn
that day (“fresh,” stored for less than 5 h) or autologous
erythrocytes stored for at least 3 weeks (“stored”) on the
first experimental day. The erythrocytes of alternate stor-
age time were transfused on the second experimental
day. On both experimental days, the older of the two
similar types of units of erythrocytes was always trans-
fused first. The volunteers remained in the hospital over-
night while all remaining erythrocytes that had been
withdrawn that day were transfused. The volunteers and
all study personnel, except the study coordinator, blood
bank personnel preparing the erythrocytes for transfu-
sion, and the physician transfusing the erythrocytes,
were blinded to volunteer group assignment.

At each test period, arterial blood gases and pH (Radi-
ometer ABL 505; Radiometer, Copenhagen, Denmark),
oxyhemoglobin saturation (OSM3 Hemoximeter; Radi-
ometer), and heart rate were measured, and the volun-
teer self-assessed his or her energy level, using a 10-cm
visual analog scale. 2,3-DPG concentration was mea-
sured in a sample of each volunteer’s blood at baseline.
Blood was sampled from each unit of fresh and stored
blood, immediately before transfusion, for measurement
of PO2, PCO2, pH, SO2, and 2,3-DPG concentration. 2,3-
DPG concentration was measured in duplicate in neu-
tralized supernatants of deproteinated heparinized
whole blood frozen at �80°C until analyzed using an
enzymatic spectrophotometric method (Roche Diagnos-
tics GmbH, Mannheim, Germany; catalog No. 148 334).
The P50 of each sample of transfused blood and the
volunteer’s arterial blood were calculated according to
Severinghaus’ modification (John W. Severinghaus,
M.D., Professor, Department of Anesthesia, UCSF) of his
method15 and included a correction for base-excess. This
modification uses Ellis’ mathematical solution22 of
Roughton and Severinghaus’ modification23 of the Hill
equation for the relation between PO2 and SO2, allowing
for precise determination of SO2 from a measured PO2. To
accomplish this, we equilibrated each blood sample
with a gas mixture to produce a blood sample for anal-
ysis that had an oxyhemoglobin saturation of 40–60%
and a PCO2 of 30–50 mmHg.

Digit–Symbol Substitution Test
The person administering the cognitive test was

blinded to the group assignment of the volunteer. Speed
of information processing for the DSST was assessed at
each time point using the NES-2 computerized test
(NES2, version 4.75; Neurobehavioral Systems Inc., Win-
chester, MA). These tests were presented with a com-
puter and a 15-in monitor positioned approximately 65
cm from the subject. Subjects responded using a key-
board placed in their laps. Subjects were asked to re-
spond as quickly as they could without making mistakes.
The tests were administered once each on each day of
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testing, before insertion of intravascular cannulae, and
twice before the first test day to familiarize subjects with
the procedures and minimize postbaseline increments in
performance caused by practice effects. This computer-
ized test has been described previously.18,20 Subjects
were shown nine symbol–digit pairs at the top of the
screen. A test set of the nine symbols was presented in
the center of the screen in a scrambled order. Subjects
were required to press the digits on the keyboard cor-
responding to the symbol in the test set. There were one
practice set and three test sets of symbol–digit pairs.

Data Analysis and Statistics
The number of volunteers to be studied was deter-

mined a priori by a power analysis, using data for the
DSST from our previous study,18 and calculation of the
amount of oxygen theoretically released from hemoglo-
bin with a P50 of approximately 15 mmHg for stored
erythrocytes, versus a P50 of 26.7 mmHg for fresh eryth-
rocytes, at PO2 40 mmHg (venous PO2) using a within-
subject design, a two-sided � of 0.05, and a power of
80% to detect a 20% improvement in DSST after transfu-
sion. A second a priori power analysis, with a one-sided
� of 0.05 and a power of 90% to detect a 25-ms decrease
in reaction time after transfusion, provided results simi-
lar to that of the first power analysis.

Data are presented as mean with 95% confidence in-
terval unless otherwise noted. Reaction time for a testing
session was measured as the mean of all reaction times.

Comparisons for the Outcome Measures. Digit–
symbol substitution test time, heart rate, and self-as-
sessed energy level were performed within-day by anal-

ysis of variance with repeated measures, followed by the
Tukey-Kramer test for multiple comparisons. Data for
hemoglobin concentration, 2,3-DPG concentrations, and
P50 were compared by t tests. Statistical significance was
accepted at P � 0.05 for all tests.

We also tested for equivalence of the effect of transfu-
sion of the fresh and stored erythrocytes. The confi-
dence limits of the difference between the two types of
cells for the difference in DSST at hemoglobin 5 and after
transfusion (hemoglobin 7) were determined, and the
probabilities of true effects being outside specified
equivalence margins at 10 and 15 ms were calculated
based on t tests comparing the estimated difference with
the upper and lower equivalence margins, respectively.

Results

The volunteers were aged 23 (21–25) yr (mean and
95% confidence interval), were 1.74 (1.60–1.87) m tall,
and weighed 64.0 (57.3–70.6) kg. There were six
women and three men. Hemoglobin (P � 0.69), 2,3-DPG
concentrations (P � 0.60), P50 (P � 0.18), and DSST
times (P � 0.60) before hemodilution did not differ on
the 2 experimental days (tables 1–3 and figs. 1–3). One
of the volunteers did not follow directions correctly
during the DSS tests. Consequently, his data for this
variable were not usable, and we report the results of the
other eight volunteers for the DSST and P50, but the
results for all nine volunteers for all other variables,
unless otherwise noted.

We reduced hemoglobin concentration to 5.4 (5.3–
5.6) g/dl on the day that fresh erythrocytes were to be
transfused and to 5.5 (5.4–5.6) g/dl on the day that old
stored erythrocytes were to be transfused (not different
between days, P � 0.69). Transfusion of fresh or stored
erythrocytes increased the hemoglobin concentration
equivalently, P � 0.45) to 7.4 (7.1–7.7) g/dl and 7.6
(7.2–8.0) g/dl, respectively (fresh, P � 0.001; stored, P
� 0.001). These concentrations did not differ from those
measured during production of acute isovolemic anemia
(7.4, 7.1–7.6 g/dl and 7.5, 7.3–7.7 g/dl, respectively;
fresh, P � 0.84; stored, P � 0.62). After transfusion of
erythrocytes, the volunteers’ arterial PO2 values did not
differ between the 2 experimental days (fresh: 94.9,
91–99 mmHg; stored: 94.1, 87–101 mmHg; P � 0.85).

Table 1. Values before Hemodilution

Variable Fresh Stored P Value

Hemoglobin, g/dl 11.7 (10.7–12.7) 11.8 (11.1–12.5) 0.55
P50, mmHg 27.7 (27.1–28.3) 27.4 (26.7–28.1) 0.18
DSST, ms 154 (142–167) 157 (142–173) 0.60
Energy 7.6 (5.8–9.3) 6.6 (5.0–8.2) 0.43
Heart rate, beats/min 65 (57–73) 67 (61–74) 0.39

Values are mean (95% confidence interval). For hemoglobin, P50 (hemoglobin
affinity for oxygen; see text for complete definition), and digit–symbol substi-
tution test (DSST), n � 8. For energy (self-assessed energy level) and heart
rate, n � 9. P is probability of difference between fresh and stored. See text
for additional statistical analyses.

Table 2. P50

Condition Fresh Stored P Value

Baseline 27.7 (27.1–28.3) 27.4 (26.7–28.1) 0.18
7 g/dl hemoglobin, dilution 27.3 (26.5–28.0) 27.6 (26.8–28.5) 0.18
5 g/dl hemoglobin 27.2 (26.4–27.9) 27.6 (26.9–28.2) 0.10
Units transfused 25.0 (24.5–25.5) 15.0 (14.6–15.4) � 0.001
7 g/dl hemoglobin after transfusion 27.3 (26.6–28.1) 24.8 (24.0–25.6) � 0.001

Values are mean (95% confidence interval), in mmHg. All values are from blood withdrawn from the volunteers, except for those indicated as “units transfused,”
which are from those units of packed erythrocytes immediately before transfusion. P50 is an expression of the affinity of hemoglobin for oxygen; see text for
complete definition. P is the probability of difference between fresh and stored. See text for additional statistical analyses.
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The time of storage for the fresh erythrocytes was 3.5
(3.1–4.0) h (median, 3.4 h; range, 2.3–4.9 h), and the
time for the stored erythrocytes was 23 (21–25) days
(median, 23 days; range, 18–29 days) (P � 0.001).

Primary Outcome Measure (DSST)
The DSST time did not differ on the 2 experimental

days before production of acute isovolemic anemia (ta-
ble 1; P � 0.60). Acute isovolemic anemia to 5 g/dl
hemoglobin significantly increased (slowed) DSST time
on both days (both P � 0.001; fig. 1) equivalently (P �
0.62 between days). Transfusion of erythrocytes stored
for 3 weeks significantly decreased (sped) the DSST time
(P � 0.001). Erythrocyte-induced decrease of DSST time
did not differ between fresh and stored erythrocytes (P
� 0.96; mean difference between the fresh and stored
erythrocytes, 0.6 ms). The test of equivalence for effect
of transfusion of fresh or stored erythrocytes on DSST
(difference between values at hemoglobin 5 g/dl and at
hemoglobin 7 g/dl after transfusion) indicated that the
probabilities that the true numerical difference between
erythrocyte storage types is more than 10 or 15 ms is
0.12 and � 0.05, respectively. The DSST times after
transfusion of fresh or stored erythrocytes (7 g/dl hemo-
globin concentration) did not differ from those at an

equivalent hemoglobin concentration (7 g/dl) during
production of anemia, before transfusion (fresh, P �
0.23; stored, P � 0.88).

Secondary Outcome Measures
Acute isovolemic anemia at a hemoglobin concentra-

tion of 5 g/dl increased the heart rate equivalently on the
2 days (fresh day: 65 [57–73] to 90 [81–99] beats/min,
P � 0.001; stored day: 67 [61–73] to 93 [86–100] beats/
min, P � 0.001; P between days at hemoglobin 5 � 0.34;
fig. 3). Transfusion of fresh or stored erythrocytes equiv-
alently (P � 0.85) reduced heart rate (fresh: by 10.7
[6.0–15.3] beats/min, P � 0.001; stored: by 10.3 [5.4–
15.3] beats/min, P � 0.0014).

Acute isovolemic anemia at a hemoglobin concentra-
tion of 5 g/dl decreased the self-assessed energy level
equivalently on the 2 days (fresh day: 7.6 [5.8–9.3] to 2.6
[1.5–3.8], P � 0.001; stored day: 6.6 [5.0–8.2] to 2.6
[1.2–3.9], P � 0.001; P between days at hemoglobin 5 �
0.96; fig. 4). Energy level did not differ between exper-
imental days after transfusion of fresh or stored erythro-
cytes (P � 0.80).

Concentrations of 2,3-DPG and values of P50 did not
differ on the 2 experimental days at baseline (P � 0.60

Fig. 1. Digit–symbol substitution test (DSST) on each experi-
mental day, at baseline � 12 g/dl hemoglobin (BL; white), 7 g/dl
hemoglobin (7D; downward diagonals), 5 g/dl hemoglobin (5;
stippled), and after transfusion of either “fresh” or stored eryth-
rocytes to return hemoglobin to 7 g/dl (7R; upward diagonals).
DSST values are mean and 95% confidence interval for each
response. * Acute isovolemic anemia to 5 g/dl hemoglobin in-
creased response time on both days equivalently. # Erythro-
cytes stored for 23 (21–25) � 4 days decreased DSST response
time (P � 0.023) to a value not different from that at 7 g/dl
hemoglobin during hemodilution (P � 0.58). n � 8.

Fig. 2. Hemoglobin affinity for oxygen (P50) of the volunteers’
blood, on each experimental day, at baseline � 12 g/dl hemo-
globin, 5 g/dl hemoglobin (Hb5), of the transfused “fresh” (di-
amonds) or stored erythrocytes (circles) immediately before
transfusion, and of the volunteers’ blood after transfusion of
either “fresh” or stored erythrocytes to return hemoglobin to 7
g/dl. Values are mean and 95% confidence interval. The 95%
confidence interval does not appear for stored reinfusion units
because the values fall within the boundaries of the symbol for
the mean value. Acute isovolemic anemia to 5 g/dl hemoglobin
did not alter P50 on either day. * Statistically significant differ-
ence between groups for reinfused erythrocytes (P < 0.001) and
in the volunteers after transfusion (P < 0.001). # Statistically
different from value at 5 g/dl hemoglobin (P < 0.001). n � 9.

Table 3. 2,3-Diphosphoglycerate Concentration

Condition Fresh Stored P Value

Baseline 12.1 (10.1–14.0) [6] 11.9 (10.4–13.4) [6] 0.60
Units transfused 11.0 (10.0–11.9) [7] 1.1 (0.7–1.5) [8] � 0.001

Values are mean (95% confidence interval), in �mol/g hemoglobin. Numbers in brackets are the number of subjects for which samples were tested. P is
probability of difference between fresh and stored. See text for additional statistical analyses.
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and P � 0.18, respectively; table 1). Erythrocytes
stored for 3 weeks had decreased concentrations of
2,3-DPG (P � 0.001; table 3) and decreased P50 (in-
creased oxygen affinity of hemoglobin): at time of
transfusion, 15.0 (14.6 –15.4) mmHg versus at base-
line, 27.4 (26.7–28.1) mmHg (P � 0.001; fig. 2 and
table 2). Storage of erythrocytes for 3.5 h slightly
decreased numerically (but not statistically signifi-
cantly) 2,3-DPG concentrations (at the time of trans-
fusion, 11.0 [10.0 –11.9] �mol/g hemoglobin vs. at
baseline, 12.1 [10.1–14.0] �mol/g; P � 0.10) and the

hemoglobin affinity for oxygen (at time of transfusion,
25.0 [24.5–25.5] mmHg vs. at baseline, 27.7 [27.2–
28.3] mmHg; P � 0.001; table 2), but less so than did
storage for 3 weeks (for 2,3-DPG, P of difference �
0.001; for P50, P of difference � 0.001; table 2).
Therefore, transfusion of stored erythrocytes with de-
pleted 2,3-DPG and decreased P50 (but not fresh
erythrocytes) resulted in slightly decreased values for
P50 in the circulating blood of volunteers after trans-
fusion: P50: before transfusion, 27.6 (26.9 –28.2); after
transfusion, 24.8 (24.0 –25.6); P � 0.001 (fig. 2 and
table 2).

Discussion

Our primary finding reported here is that erythrocytes
stored for 3 weeks are equally as efficacious as are fresh
erythrocytes for reversing the effects of acute isovolemic
anemia. This is the first prospective randomized trial in
humans with a reproducible oxygen-dependent deficit
to have tested the hypothesis that erythrocytes stored
for at least 3 weeks, with a markedly increased hemo-
globin affinity for oxygen (decreased P50), are as effica-
cious as are erythrocytes with hemoglobin with a normal
affinity for oxygen (P50). The results reject the hypoth-
esis that stored erythrocytes do not off-load oxygen in
clinically meaningful quantities. We have confirmed our
previous finding that acute isovolemic anemia slows
human reaction time,18,20 increases heart rate,19,20,24

and decreases self-assessed energy level.25 We showed
previously that transfusion of erythrocytes stored for 4 h
or less in CPDA-1 is efficacious in reversing the effects of
acute anemia on reaction time,18 heart rate,18 and sense
of energy.25 We have now shown that although erythro-
cytes stored for 3 weeks in CPDA-1 are depleted of
2,3-DPG, resulting in a substantial decrease of P50, to 15
mmHg, nevertheless, they apparently release sufficient
quantities of oxygen to reverse the deficits of acute
anemia to an extent equivalent to that of erythrocytes
with a normal P50 after being stored for less than 5 h.

The affinity of hemoglobin for oxygen increases when
liquid blood is stored with preservatives.16 2,3-DPG is an
important modulator of the interaction of hemoglobin
and oxygen.11–14 A decrease of 2,3-DPG concentration
increases the affinity of hemoglobin for oxygen (de-
creases P50). During ex vivo storage of erythrocytes,
2,3-DPG concentrations and P50 decrease.1,3 These ob-
servations have been confirmed repeatedly.2,4–10,17

Blood stored for 14 days or more has a 2,3-DPG concen-
tration of 1 �mol/g hemoglobin or less,2,3,5,6,8–10 with a
resultant hemoglobin P50 of 16–20 mmHg.8,10,16 Hemo-
globin with a normal P50 of 27 mmHg,15 97–98% satu-
rated at normal arterial PO2,15,23 releases approximately
25% of its bound oxygen at the usual venous PO2 of 40
mmHg. Hemoglobin with an increased affinity for oxy-

Fig. 3. Heart rate on each experimental day, at baseline � 12
g/dl hemoglobin (BL; open), hemoglobin 7 g/dl (7D; downward
diagonals), 5 g/dl hemoglobin (5; stippled), and after transfu-
sion of either “fresh” or stored erythrocytes to return hemoglo-
bin to 7 g/dl (7R; upward diagonals). Values are mean and 95%
confidence interval. * Acute isovolemic anemia to 5 g/dl hemo-
globin increased heart rate on both days (fresh, P < 0.001;
stored, P < 0.001) equivalently (P � 0.34). # Erythrocytes stored
for 23 days decreased heart rate (P < 0.001) to a value not
different from that at 7 g/dl hemoglobin during hemodilution
(P � 0.63). n � 9.

Fig. 4. Self-assessed energy level on each experimental day, at
baseline � 12 g/dl hemoglobin (BL; open), 7 g/dl hemoglobin
(7D; downward diagonals), 5 g/dl hemoglobin (5; stippled),
and after transfusion of either “fresh” or stored erythrocytes to
return hemoglobin to 7 g/dl (7R; upward diagonals). Values are
mean and 95% confidence interval. * Acute isovolemic anemia
to 5 g/dl hemoglobin decreased energy level on both days
(fresh, P < 0.001; stored, P < 0.001) Energy levels did not differ
after fresh versus stored erythrocyte transfusion (P � 0.78). n
� 9.
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gen, such as that found in erythrocytes stored for more
than 14 days, as was the case in our experiment, with a
P50 of 15 mmHg, theoretically should release only ap-
proximately 2% of its bound oxygen at similar venous
PO2 and pH.

This has led some to propose that erythrocytes stored
for several days or more are of limited or no efficacy in
releasing oxygen16: the primary purpose for erythrocyte
transfusion. Experiments in species other than man have
produced mixed results. Methodologic issues and spe-
cies differences make interpretation and application to
humans difficult. Although a modest 2.4-mmHg decrease
of P50 in man does not impair work performance,26

studies in humans have suffered from not having pro-
duced or examined a state of inadequate oxygenation
amenable to reversal. Demonstration of erythrocyte effi-
cacy for oxygen delivery requires an ability to reliably
and accurately measure an oxygenation deficit before
and after transfusion. Previous studies in humans have
been confounded by an inability to satisfy this require-
ment.27–29 These studies have had other issues, as well,
precluding an ability to draw conclusions regarding effi-
cacy of stored erythrocytes. Gastric gradient for carbon
dioxide was estimated in an unblinded exploratory study
of patients in an intensive care unit; however, most
patients did not meet the authors’ criteria for gastric
hypoxia,28 and there are no accepted standards for hyp-
oxia for this controversial methodology. Similarly, a re-
cently published study designed to determine the feasi-
bility of a full trial to examine clinical outcome after
transfusion, although double-blinded and randomized,
did not select patients for whom a deficit of oxygenation
was demonstrated, and the difference in erythrocyte
storage times, and the arbitrary sample size were likely
insufficient to test the hypothesis.29 Last, a study in
septic patients, in whom an increase in measured oxy-
gen consumption immediately after transfusion was not
detected, could not provide an adequate test because the
patients seemed to have normal oxygen consumption
before transfusion and there was no measured deficit of
oxygenation.27 Furthermore, sepsis is not a good model
to test improvement of delivery of usable oxygen owing
to a deficit of oxygen uptake at the cellular level.30,31

Therefore, even had there been an oxygenation deficit, it
would have not been reversed by any erythrocyte trans-
fusion. These thoughts are also supported by the lack of
increase of oxygen consumption 6 h after transfusion in
that study, when 60–80% of the 2,3-diphosphoglycerate
should have been restored2,5 with a theoretical in-
creased release of oxygen from hemoglobin (if the hy-
pothesis were valid). Our model, used in the study re-
ported here, overcomes these difficulties, having shown
both functional18,20 and electroencephalographic32

changes induced by inadequate oxygenation, that are
reversible by increasing oxygenation by either breathing
oxygen20,32 or transfusion of fresh erythrocytes.18

In our study, the blood stored for less than 5 h had very
small decreases in 2,3-DPG and P50. These minimal
changes would seem to be in keeping with that reported
previously.33 However, the cells stored for 3 weeks had
nearly depleted 2,3-DPG concentrations and a substan-
tially reduced P50 (15 mmHg), also in accordance with
values reported previously. The P50 of the stored blood
that we report is slightly less than that reported by
others (16–20 mmHg), possibly owing to our having
applied a correction for base excess (approximately
1.5–2 mmHg) that may not have been applied by others.
Despite these considerable changes and the theoretical
consideration that the hemoglobin of these erythrocytes
should be capable of releasing but a minimal amount of
oxygen at usual physiologic venous values of PO2, PCO2,
and pH, the stored erythrocytes were as efficacious as
were the fresh cells in reversing the neurocognitive
deficit and physiologic changes (heart rate and fatigue)
caused by acute isovolemic anemia at a hemoglobin
concentration of 5.5 g/dl.

The reason for the ability of the transfused stored
erythrocytes to apparently provide quantities of oxygen
at least equivalent to that of fresh erythrocytes is not
immediately apparent. Several explanations are possible,
although we do not have data either to support or to
refute them. P50 is a descriptor of the physical–chemical
function of hemoglobin and is defined as the PO2 at
which hemoglobin is 50% saturated with oxygen, at pH
7.4 and base excess 0. The relation between PO2 and
oxyhemoglobin saturation is affected by several param-
eters, including pH, temperature, base excess, and 2,3-
DPG concentration. In vivo conditions, such as change
of pH, can alter the in vivo relation between PO2 and
oxyhemoglobin saturation without affecting the intrinsic
function of the hemoglobin molecule (the in vitro P50
value). It is possible that the acidosis within the eryth-
rocyte shifted the hemoglobin–oxygen dissociation
curve to the right, creating an in vivo condition of lesser
affinity of hemoglobin for oxygen, thus reversing the
effect of decreased 2,3-DPG concentration, as has been
suggested by others.26,34 We have calculated that at the
mean measured in vitro pH of 6.787 and a base excess
of �39.5 (at PCO2 approximately 40 mmHg) of the blood
stored for 3 weeks, at an oxyhemoglobin saturation of
50%, the PO2 (in a sense, a functional, in vivo “P50”)
would have been approximately 33 mmHg, rather than
the in vitro measured value for P50 of 15 mmHg. He-
moglobin with a P50 of 33 mmHg will release 38% of its
bound oxygen at a venous PO2 of 40 mmHg, rather than
only 2% when the P50 is 15 mmHg. We have no data to
indicate the duration for which the transfused erythro-
cytes remained severely acidotic. However, we mea-
sured a “mixed P50” of 24.8 mmHg, near the mathemat-
ical theoretical value of what was to be expected of the
mixture of erythrocytes if the transfused erythrocytic
intracellular pH were close to that of the recipient
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plasma. Therefore, it seems that the acid that had accu-
mulated within the erythrocytes during storage either
may have been metabolized or may have moved into the
plasma during the brief period between their transfusion
and the time of testing (15–20 min). However, we have
no data regarding this issue. Nor do we have data regard-
ing transmembranal flux of other electrolytes after trans-
fusion of stored erythrocytes that might have affected
the intracellular environment and relation between ox-
ygen and hemoglobin. Furthermore, if the in vivo “P50”
were truly 33 mmHg, we should have measured an
increased P50 after transfusion of the stored erythro-
cytes because, unlike when measured in stored blood,
the in vitro determination of P50 of the recipients’
blood did not require the large correction for pH.

It may also be possible that 2,3-DPG diffused from the
recipients’ erythrocytes into the transfused erythrocytes,
thus increasing the P50 of the transfused hemoglobin.
This would have the effect of converting the two in vivo
populations of erythrocytes (see below: one with normal
P50, and one with a greatly reduced P50) to a single
population of erythrocytes of only slightly reduced P50.
However, we have no data regarding this point.

A third possible explanation of our findings is that the
stored erythrocytes, with reduced P50, altered cerebral
blood flow sufficiently to reverse the oxygen delivery–
dependent deficit induced by anemia. Cerebral blood
flow increases with decreased arterial oxygen con-
tent.35–43 However, if the anemia is sufficiently severe,
that increase in cerebral blood flow is insufficient to
compensate for the anemia,37,44 as must have occurred
in our subjects, with a proven oxygen delivery–induced
cognitive function deficit. Cerebral blood flow also de-
creases in fetal lambs when their erythrocytes with low
P50 fetal hemoglobin are replaced by adult sheep eryth-
rocytes with normal P50,45 and increases in rats after
exchange transfusion with erythrocytes of decreased
P50.38 However, it has not been shown that decreasing
hemoglobin P50 can further increase cerebral blood
flow when the already increased cerebral blood flow
(and likely at or near maximal) has been inadequate to
preserve tissue oxygenation in response to anemia. For
example, although calculated cerebral blood flow in-
creases in anesthetized, hypovolemic, hyperventilated
baboons, after transfusion with stored erythrocytes with
a high affinity for oxygen, there was no alteration of
cerebral oxygen consumption either before or after
transfusion with either these or cells with a low affinity
for oxygen.46 Thus, there was no evidence that a state of
inadequate oxygenation had been produced, and there
existed no deficit to correct. It is not immediately appar-
ent why theoretically further decreasing oxygen avail-
ability, by increasing the affinity of hemoglobin for oxy-
gen, would increase cerebral blood flow not only in
quantities to compensate for the decreased P50, but in
excess, so that the anemia-induced deficit would be

reversed as well. Furthermore, if such an increase were
possible, it would imply that the mechanism governing
the response of cerebral blood flow to reduced tissue
oxygenation induced by altered P50 is different from and
more potent than the mechanism (vasodilation, and per-
haps decreased blood viscosity) regulating cerebral
blood flow in response to decreased arterial oxygen
content. This has not been demonstrated. Although the
mechanisms responsible for increasing cerebral blood
flow in response to anemia or hypoxia are incompletely
understood and seem to overlap, but without complete
concordance,47,48 the few relevant data regarding cere-
bral blood flow during anemia and altered P50 seem to
point to a common pathway.38,45,49 Furthermore, in-
creasing blood viscosity by increasing hematocrit, with a
small decrease in P50 without changing arterial oxygen
content, by transfusion of erythrocytes with nearly 100%
methemoglobin, decreases cerebral blood flow and sag-
ittal sinus PO2 in unanesthetized lambs.50 Therefore, add-
ing erythrocytes containing hemoglobin with a de-
creased P50, while not altering the function or
concentration of hemoglobin present before transfusion,
likely decreased and not increased cerebral blood flow.

It has been suggested that the decreased ability of
erythrocytes to deform, a property that is associated
with decreased adenosine triphosphate concentrations
with erythrocyte storage, decreases mean transfused
erythrocyte in vivo survival secondary to impaired abil-
ity of erythrocytes to pass the microcirculation.51,52

More recent data, using laser technology, have produced
conflicting evidence regarding storage-induced de-
creased erythrocyte deformability and the associated hy-
pothesis regarding impaired microcirculation and oxy-
gen delivery.53,54 Interestingly, rat erythrocytes with
glutaraldehyde-produced decreased deformability are
trapped by some tissues (spleen, lung, liver, and bone)
but not by the brain, myocardium, or kidney.55 There-
fore, even if stored erythrocytes do have decreased abil-
ity to pass through some tissues, this may not be relevant
to critical organs including the brain, as found by Sim-
chon et al.55 and supported by our results reported here.

It is appropriate to examine whether the methodology
of this study was adequate to test the proposed hypoth-
esis. First, our model is capable of testing the hypothesis
because it reliably produces a testable oxygen delivery–
dependent deficit. We have repeatedly demonstrated
that acute isovolemic anemia at 5–6 g/dl hemoglobin
decreases the speed of performance of the DSST18,20 as
it did in this study. In addition, we have shown that two
independent methods of increasing tissue oxygenation,
erythrocyte transfusion18 and breathing oxygen,20 re-
verse this deficit, whereas a placebo (breathing room air)
does not.18,20 Similarly, it might be suggested that trans-
fusion of only 2 units of erythrocytes provided an insuf-
ficient test of the hypothesis. However, we tested the
hypothesis with a reliable end point during a state of
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oxygen-delivery dependency, and the amount of eryth-
rocytes transfused was adequate to deliver sufficient
amounts of oxygen so that both fresh and stored eryth-
rocytes reversed completely the anemia-induced deficit.

Second, we have previously noted that heart rate is a
reliable surrogate for the effects of acute isovolemic
anemia, increasing 4 beats/min for each 1 g/dl decrease
of hemoglobin concentration.24 Heart rate in this study
responded in a manner similar to that previously noted,
and the increase with acute anemia was reversed equally
by fresh and stored erythrocytes. It would seem unlikely
that the undefined “sensor” of acute decrease of hemo-
globin concentration that causes an increase in heart rate
would have responded to a hemoglobin that did not
release oxygen. The decrease in heart rate with trans-
fusion of stored erythrocytes provides further support
for our primary finding of the reversal of the neuro-
cognitive deficit.

Third, after transfusion of stored blood, the mean P50
of the circulating hemoglobin decreased only to 24.8
mmHg. This might seem to suggest to some that at this
P50, there would be no reason to infer a deficit of
dissociation of oxygen from hemoglobin. Woodson et
al.,56 through metabolic alterations, noted that a similar
decrease of P50 did not alter human work performance.
However, the value for P50 that we found after transfu-
sion of stored erythrocytes is misleading. This value
represents a mixture of two different populations of
erythrocytes, and not a single mean with a normal dis-
tribution. The circulating erythrocytes present before
transfusion had a P50 of 27.6 mmHg and accounted for
an estimated 72.4% of the erythrocytes present after
transfusion of erythrocytes with a P50 of 15.0 mmHg.
The P50 of the former cells would not have changed
after transfusion, and that of the latter cells would have
changed exceedingly little, if at all, in the 15–20 min
after transfusion during which the DSST was adminis-
tered. Erythrocytes that are depleted of 2,3-DPG, when
transfused, increase their 2,3-DPG concentration at a
rate less than 0.2 �mol/g hemoglobin/h.5 Several prob-
lems preclude an exact calculation of a value for what
should have been the theoretical “mean” P50 of the
mixture of native and transfused stored erythrocytes.
However, the value of 24.8 mmHg that we determined
seems to be within a reasonable expectation of the
mixture of erythrocytes with differing hemoglobin affin-
ities for oxygen. Therefore, at the time of DSS testing,
the circulating hemoglobin in the subjects consisted of a
hemoglobin concentration of 5.5 g/dl with normal P50
(27.6 mmHg), combined with a hemoglobin concentra-
tion of 2.0 g/dl with a greatly increased affinity for
oxygen (low P50, 15.0 mmHg), proving an adequate test
of the hypothesis.

Fourth, it is possible that even the very small amount
of oxygen theoretically released by hemoglobin with a
P50 of 15 mmHg would be sufficient to reverse the

neurocognitive deficit and heart rate increase found in
this study. This seems unlikely, because both were re-
versed to the same full extent as that noted by transfu-
sion of similar quantities of erythrocytes with a P50 of 25
mmHg, which would release quantities of oxygen similar
to that of hemoglobin with a normal P50 of 27 mmHg.
The amount of oxygen theoretically released by the
stored cells should have added the equivalent of approx-
imately 0.2 g hemoglobin/dl (one tenth of the transfused
2.0 g/dl), resulting in a total functional hemoglobin con-
centration of less than 6 g/dl, a value at which we have
previously noted this same neurocognitive deficit.18

Fifth, one may suggest that the reversal of the noted
effects of anemia was a result of the small augmentation
of blood volume, by transfusion of approximately 250 ml
of erythrocytes, and not a result of augmented tissue
oxygenation. It is very unlikely that the subjects were
hypovolemic when tested during acute anemia. Both
considerations of the pharmacokinetics of infused hu-
man albumin21 and experimental data in humans19 pro-
vide support that our volume replacement paradigm
maintained normovolemia. We did not test whether the
likely very mild hypervolemia produced by erythrocyte
transfusion would similarly reverse the acute anemia-
induced changes. This potential mechanism seems un-
likely for three reasons: (1) The mild augmentation of
blood volume by asanguinous fluid or nonefficacious
hemoglobin would produce further dilution of the recip-
ients’ erythrocytes and a further accentuated functional
anemia; this unlikely possibility could have been tested
by transfusion blood with a hemoglobin concentration
of similar to that measured during acute anemia, 5.5 g/dl,
but we did not do that. (2) Such a thesis implies that
increasing cardiac output or cerebral blood flow despite
further aggravation of the severe anemia would be ben-
eficial. We have previously demonstrated that progres-
sive anemia at this level is insufficiently compensated by
increased cardiac output. It is not known whether fur-
ther anemia at this level would increase cerebral blood
flow in conscious humans, and even if it did, it would be
exceedingly unlikely that cerebral blood flow would
increase out of proportion to the produced anemia,
increasing cerebral oxygen delivery and reversing the
inadequate cerebral oxygen delivery that existed at a
higher hemoglobin concentration, while having no such
deficit at a lower concentration. (3) Our previous exper-
iments with breathing oxygen or air at similar hemoglo-
bin concentrations in similar volunteers clearly indicated
that increasing oxygen concentration (and presumably
delivery) without infusion of any additional fluids (and
thus no alteration of blood volume) similarly reversed
the same neurocognitive deficit.

Sixth, it might be possible that neither type of eryth-
rocytes augmented oxygen delivery to the brain: that our
results were caused by an adaptation during the brief
period between the test at the nadir hemoglobin con-

918 WEISKOPF ET AL.

Anesthesiology, V 104, No 5, May 2006



centration and the test after transfusion to return hemo-
globin concentration to 7 g/dl. In a previous study,
similar volunteers were given to breathe, at a similar
nadir hemoglobin concentration, in random order, ei-
ther air or oxygen, followed by the alternative gas.20 If
time were a factor, there would have been a significant
difference in the effect of order; there was not. This
suggests that time and adaptation did not contribute to
the results in the few minutes between the two tests of
neurocognitive function.

Last, we studied a small number of subjects. However,
the sample size was that determined by an a priori
power analysis and confirmed by a second, independent
a priori power analysis. Furthermore, we are con-
strained, as are others, in the conduct of human exper-
imentation, to study the minimum number of people
required. Our clear results confirm the lack of necessity
of having studied a larger population.

Our results have clinical implications. By using the
only reproducible model in humans that reliably shows a
readily measured reversible deficit of acute isovolemic
anemia, we have demonstrated that erythrocytes stored
in the standard clinical manner are as efficacious as are
fresh erythrocytes in providing oxygen to tissues. There-
fore, it does not seem warranted to require fresh rather
than stored erythrocytes for this purpose, which is the
intent of erythrocyte transfusion.57
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