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Parenteral Anticoagulants*
American College of Chest Physicians
Evidence-Based Clinical Practice Guidelines
(8th Edition)

Jack Hirsh, MD, FCCP; Kenneth A. Bauer, MD; Maria B. Donati, MD, PhD;
Michael Gould, MD, FCCP; Meyer M. Samama, MD; and
Jeffrey I. Weitz, MD, FCCP

This chapter describes the pharmacology of approved parenteral anticoagulants, including
the indirect anticoagulants, unfractionated heparin (UFH), low-molecular-weight heparins
(LMWHs), fondaparinux, and danaparoid as well as the direct thrombin inhibitors hirudin,
bivalirudin, and argatroban. UFH is a heterogeneous mixture of glycosaminoglycans that bind
to antithrombin via a unique pentasaccharide sequence and catalyze the inactivation of
thrombin factor Xa and other clotting factors. Heparin also binds to cells and other plasma
proteins, endowing it with unpredictable pharmacokinetic and pharmacodynamic properties, and
can lead to nonhemorrhagic side effects, such as heparin-induced thrombocytopenia (HIT) and
osteoporosis. LMWHs have greater inhibitory activity against factor Xa than thrombin and exhibit less
binding to cells and proteins than heparin. Consequently, LMWH preparations have more predict-
able pharmacokinetic and pharmacodynamic properties, have a longer half-life than heparin, and
have a lower risk of nonhemorrhagic side effects. LMWHs can be administered once or twice daily by
subcutaneous injection, without anticoagulant monitoring. Based on their greater convenience,
LMWHs have replaced UFH for many clinical indications.

Fondaparinux, a synthetic pentasaccharide, catalyzes the inhibition of factor Xa, but not
thrombin, in an antithrombin-dependent fashion. Fondaparinux binds only to antithrombin;
therefore, HIT and osteoporosis are unlikely to occur. Fondaparinux has excellent bioavail-
ability when administered subcutaneously, has a longer half-life than LMWHs, and is given
once daily by subcutaneous injection in fixed doses, without anticoagulant monitoring. Three
parenteral direct thrombin inhibitors and danaparoid are approved as alternatives to heparin
in HIT patients. (CHEST 2008; 133:141S–159S)

Key words: argatroban; bivalirudin; fondaparinux; hirudin; low-molecular-weight heparin; unfractionated heparin

Abbreviations: ACT � activated clotting time; APTT � activated partial thromboplastin time; AT � antithrombin;
CrCl � creatinine clearance; HCII � heparin cofactor II; HIT � heparin-induced thrombocytopenia; INR � international
normalized ratio; LMWH � low-molecular-weight heparin; PF4 � platelet factor 4; UFH � unfractionated heparin

Summary of Recommendations

2.2.3 Monitoring Antithrombotic Effect

2.2.3 In patients treated with LMWH, we rec-
ommend against routine coagulation monitor-
ing (Grade 1C). In pregnant women treated with
therapeutic doses of LMWH, we recommend
monitoring of anti-Xa levels (Grade 1C).

2.2.4 Dosing and Monitoring in Special Situations

2.2.4 In obese patients given LMWH prophy-
laxis or treatment, we suggest weight-based
dosing (Grade 2C). In patients with severe
renal insufficiency (creatinine clearance
[CrCl] < 30 mL/min) who require therapeutic
anticoagulation, we suggest the use of UFH
instead of LMWH (Grade 2C). If LMWH is
used in patients with severe renal insuffi-
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ciency (CrCl < 30 mL/min) who require ther-
apeutic anticoagulation, we suggest using
50% of the recommended dose (Grade 2C).

3.0 Direct Thrombin Inhibitors

3.0 In patients who receive either lepirudin or
desirudin and have renal insufficiency (CrCl
< 60 mL/min but > 30 mL/min), we recom-
mend that the dose be reduced and the drug be
monitored using the activated partial thrombo-
plastin time (Grade 1C). In patients with a CrCl
< 30 mL/min, we recommend against the use of
lepirudin or desirudin (Grade 1C). In patients
who require anticoagulation and have previ-
ously received lepirudin or desirudin, we rec-
ommend against repeated use of these drugs
because of the risk of anaphylaxis (Grade 1C).

3.1 Monitoring of Direct Thrombin Inhibitors

3.1 In patients receiving argatroban who are
being transitioned to a vitamin K antagonist, we
suggest that factor X levels measured using a
chromogenic assay be used to adjust the dose of
the vitamin K antagonist (Grade 2C).

T his chapter focuses on parenteral anticoagulants
in current use. These agents can be classified as

indirect anticoagulants whose activity is mediated by
plasma cofactors, and direct anticoagulants that do
not require plasma cofactors to express their activity.
The indirect parenteral anticoagulants in current
use include heparin, low-molecular-weight heparins
(LMWHs), fondaparinux, and danaparoid. These
drugs have little or no intrinsic anticoagulant activity,
and exert their anticoagulant activity by activating
antithrombin (AT), an endogenous inhibitor of vari-
ous activated clotting factors. The parenteral direct
anticoagulants in current use all target thrombin.
These agents include recombinant hirudins, bivaliru-
din, and argatroban.

2.0 Indirect Parenteral Anticoagulants

2.1 Heparin

About 90 years ago, McLean1 discovered that
heparin has antithrombotic properties. Brinkhous
et al2 then demonstrated that heparin is an indirect
anticoagulant and requires a plasma cofactor to express
its anticoagulant activity. Abildgaard3 subsequently
identified this cofactor as ATIII in 1968, but it is now
referred to as AT. The major anticoagulant action of
heparin is mediated by the heparin/AT interaction.
The mechanism of this interaction was elucidated in
1970s.4–6 Heparin binds to lysine residues on AT,
producing a conformational change at the arginine
reactive center that converts AT from a slow, pro-
gressive thrombin inhibitor to a rapid inhibitor. The
arginine reactive center on AT binds covalently to
the active center serine of thrombin and other
coagulation enzymes, thereby irreversibly inhibiting
their procoagulant activity.5 Heparin then dissociates
from AT and is reutilized (Fig 1).

Heparin binds to AT through a glucosamine
unit4–7 contained within a unique pentasaccharide
sequence.8 The development of LMWH in the 1980s
introduced the concept that only heparin chains of
sufficient length to bridge AT to thrombin potentiate
thrombin inhibition. In contrast, heparin chains of
any length that contain the high affinity pentasac-
charide can catalyze factor Xa inhibition by AT.
The AT-binding pentasaccharide has now been
synthesized and developed into a drug called
fondaparinux.9 –12
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Figure 1. Inactivation of clotting enzymes by heparin. Top
panel: ATIII is a slow inhibitor without heparin. Middle panel:
Heparin binds to ATIII through a high-affinity pentasaccharide
and induces a conformational change in ATIII, thereby convert-
ing ATIII from a slow inhibitor to a very rapid inhibitor. Bottom
panel: ATIII binds covalently to the clotting enzyme, and the
heparin dissociates from the complex and can be reutilized.
Reprinted with permission from CHEST.
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2.1.1 Structure and Mechanism of Action: Heparin
is a highly sulfated mucopolysaccharide. It is heter-
ogeneous with respect to molecular size, anticoagu-
lant activity, and pharmacokinetic properties (Table
1). Heparin ranges in molecular weight from 3,000 to
30,000 with a mean of 15,000, which corresponds to
approximately 45 saccharide units13–15 (Fig 2). Only
about one third of the heparin molecules possess the
unique pentasaccharide sequence, and it is this
fraction that is responsible for most of the anticoag-
ulant effect of heparin.13,16 Heparin chains that lack
this pentasaccharide sequence have minimal antico-
agulant activity when heparin is given in therapeutic
concentrations. However, at concentrations higher
than those usually administered clinically, heparin
chains with or without the pentasaccharide sequence
can catalyze thrombin inhibition by heparin cofactor
II (HCII), a second plasma cofactor.17 At even higher
concentrations, low-affinity heparin impairs factor Xa
generation through AT- and HCII-independent mech-
anisms18 (Table 2).

The heparin/AT complex inactivates thrombin
(factor IIa) and factors Xa, IXa, XIa, and XIIa.5
Thrombin and factor Xa are most sensitive to inhi-
bition by heparin/AT, and thrombin is about 10-fold
more sensitive to inhibition than factor Xa. Heparin
catalyzes AT-mediated thrombin inhibition by bind-

ing both to AT, via its pentasaccharide sequence, and
to thrombin, in a nonspecific charge-dependent fash-
ion, to form a ternary heparin/AT/thrombin complex.
In contrast, to catalyze factor Xa inhibition by AT,
heparin needs only to bind to AT via its high-affinity
pentasaccharide.7 Heparin chains consisting of � 18
saccharide units are too short to bridge thrombin and
AT. Consequently, these chains are unable to cata-
lyze thrombin inhibition. However, as long as they
possess a pentasaccharide, short heparin chains can
catalyze inhibition of factor Xa by AT.19–22 By inac-
tivating thrombin or attenuating its generation, hep-
arin not only prevents fibrin formation, but also
inhibits thrombin-induced activation of platelets and
factors V, VIII, and XI.23–25

The interaction of heparin with HCII is charge
dependent, but pentasaccharide-independent catal-
ysis of HCII requires a higher concentration of
heparin than that needed to promote thrombin inhibi-
tion by AT. The capacity of heparin capacity to activate
HCII is also chain-length dependent with maximum
catalysis, requiring heparin chains comprising a min-
imum of 24 saccharide units.17

The third anticoagulant effect of heparin, which re-
flects AT- and HCII-independent modulation of factor
Xa generation, is charge dependent and mediated by
heparin binding to factor IXa. The effect is clinically
unimportant because it requires doses of heparin con-
siderably higher than those used therapeutically.18

In vitro, heparin binds to platelets and, depend-
ing on the experimental conditions, can either
induce or inhibit platelet aggregation.26,27 High-
molecular-weight-heparin fractions with low affin-
ity for AT have a greater effect on platelet function
than LMWH fractions with high AT affinity.28 Hep-
arin can prolong the bleeding time in humans29 and
enhances blood loss from the microvasculature in
rabbits.30–32 The interaction of heparin with platelets31

and endothelial cells30 may contribute to heparin-
induced bleeding by mechanisms independent of its
anticoagulant effect.32

Table 1—Molecular Size, Anticoagulant Activity, and
Pharmacokinetic Properties of Heparin

Attribute Characteristics

Molecular size Mean molecular weight, 15,000
(range, 3,000 to 30,000)

Anticoagulant activity Only one third of heparin molecules
contain the high-affinity
pentasaccharide required for
anticoagulant activity

Clearance High-molecular-weight moieties are
cleared more rapidly than
low-molecular-weight moieties

Table 2—Anticoagulant Effects of Heparin

Effect Comment

Binds to AT and catalyzes
the inactivation of
thrombin and factors
IIa, Xa, IXa, Xia, and XIIa

Major mechanism for anticoagulant
effect, produced by only one
third of heparin molecules (those
containing the unique AT-binding
pentasaccharide)

Binds to HCII and
catalyzes inactivation of
factor Iia

Requires high concentrations of
heparin and is independent of the
pentasaccharide

Binds to factor IXa and
inhibits factor X
activation

Requires very high concentration of
heparin and is AT and HCII
independent

Figure 2. Molecular weight distributions of LMWHs and
heparin. Reprinted with permission from CHEST.
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In addition to its anticoagulant effects, heparin at-
tenuates the proliferation of vascular smooth-muscle
cells,33,34 inhibits osteoblast formation, and activates
osteoclasts; these last two effects promote bone
loss.35,36 Heparin-induced thrombocytopenia (HIT)
is the most important nonhemorrhagic side effect of
heparin, which is discussed by Warkentin et al212 in
a separate chapter.

2.1.2 Pharmacokinetics: Heparin is not absorbed
orally and, therefore, must be administered paren-
terally. The two preferred routes of administration
are by continuous IV infusion or subcutaneous injec-
tion. When the subcutaneous route is selected for
delivery of treatment doses of heparin, the dose of
heparin should be higher than the usual IV dose to
overcome the reduced bioavailability associated with
subcutaneous administration.37,38 If an immediate
anticoagulant effect is required, the initial subcuta-
neous dose of heparin can be accompanied by an IV
bolus injection.

Administration by subcutaneous injection in low
doses39 of 5,000 U q12h, moderate doses of 12,500 U
q12h,40 or larger doses of 15,000 U q12h reduces the
plasma recovery of heparin.37 However, at high
therapeutic doses (� 35,000 U/24 h), plasma recov-
ery is almost complete.38

After entering the blood stream, heparin binds to
a number of plasma proteins, which reduces its
anticoagulant activity. This phenomenon contributes
to the variability of the anticoagulant response to
heparin among patients with thromboembolic disor-
ders41 and to the laboratory phenomenon of heparin
resistance.42 Heparin also binds to endothelial cells43

and macrophages, a property that further compli-
cates its pharmacokinetics. Binding of heparin to von
Willebrand factor also inhibits von Willebrand factor-
dependent platelet function.44

Heparin is cleared through a combination of a
rapid saturable and a much slower first-order mech-
anism45–47 (Fig 3). The saturable phase of heparin
clearance is thought to be due to binding to endo-
thelial cell receptors48 and macrophages.49 Bound
heparin is internalized and depolymerized50,51 (Fig
4). The slower nonsaturable mechanism of clearance
is largely renal. At therapeutic doses, a large propor-
tion of heparin is cleared through the rapid satura-
ble, dose-dependent mechanism. The complex kinet-
ics of clearance renders the anticoagulant response to
heparin nonlinear at therapeutic doses, with both the
intensity and duration of effect rising disproportion-
ately with increasing dose. Thus, the apparent bio-
logical half-life of heparin increases from approxi-
mately 30 min after an IV bolus of 25 U/kg,45 to 60
min with an IV bolus of 100 U/kg,46 to 150 min with
a bolus of 400 U/kg.47

2.1.3 Initial Dosing: The efficacy of heparin in the
initial treatment of venous thromboembolism criti-
cally depends on dosage. Based on the results of
randomized studies,37,52 patients assigned to lower
starting doses of heparin had higher recurrence rates
than those treated with higher doses. In the random-
ized study by Hull et al,37 patients with venous
thrombosis were assigned to receive identical doses
of heparin (an IV bolus of 5,000 U and 30,000 U/d),
but one group received 15,000 U of heparin q12h by
subcutaneous injection and the other 30,000 U of
heparin per day by continuous IV infusion. Because
of the reduced bioavailability of heparin after subcu-
taneous injection, patients assigned to the IV heparin
regimen received substantially more heparin. The
IV-administered heparin was more effective as evi-
denced by the observation that the activated partial
thromboplastin time (APTT) was in the target range
at 24 h in 71% of patients who received IV heparin,
and in only 37% of those given subcutaneous hepa-
rin. Patients assigned to IV heparin had a significantly
lower rate of recurrence than those given subcutaneous
heparin.

Figure 3. Low doses of heparin clear rapidly from plasma
through a saturable (cellular) mechanism and the slower, nonsat-
urable, dose-independent mechanism of renal clearance. Very
high doses of heparin are cleared predominantly through the
slower nonsaturable mechanism of clearance. t � half-life. Re-
printed with permission from CHEST.

Figure 4. As heparin enters the circulation, it binds to heparin-
binding proteins (ie, other plasma proteins), endothelial cells,
macrophages, and ATIII. Only heparin with the high-affinity
pentasaccharide binds to ATIII, but binding to other proteins and
to cells is nonspecific and occurs independently of the ATIII
binding site. Reprinted with permission from CHEST.
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Raschke et al52 randomized patients to receive
heparin in fixed doses (5,000-U bolus followed by
1,000 U/h infusion) or adjusted doses using a weight-
based nomogram (starting dose, 80-U/kg bolus fol-
lowed by 18 U/kg/h infusion). Patients whose hepa-
rin was weight adjusted received higher doses within
the first 24 h than those given fixed doses. The rate
of recurrent thromboembolism was significantly
lower with the weight-adjusted heparin regimen.

Initial dosing of IV heparin for venous thrombo-
embolism is either weight-based (80 U/kg bolus and
18 U/kg/h infusion52) or administered as a bolus of
5,000 U followed by an infusion of at least 32,000
U/d.53 If heparin is given subcutaneously for treat-
ment of venous thromboembolism, there are at
least two options: (1) an initial IV bolus of approx-
imately 5,000 U followed by 250 U/kg bid54; or (2)
an initial subcutaneous dose of 333 U/kg followed
by 250 U/kg bid.55

The doses of heparin recommended for treatment
of acute coronary syndromes are lower than those
used to treat venous thromboembolism. Thus, the
American College of Cardiology56 recommends a
heparin bolus of 60 to 70 U/kg (maximum 5,000 U)
followed by an infusion of 12 to 15 U/kg/h (maximum
1,000 U/h) for unstable angina and non–ST-segment
elevation myocardial infarction. Even lower doses of
heparin are recommended57 when heparin is given
in conjunction with fibrinolytic agents for treatment
of ST-segment elevation myocardial infarction. Here,
the bolus is about 60 U/kg (maximum 4,000 U), and the
infusion is 12 U/kg/h (maximum of 1,000 U/kg/h).

2.1.4 Monitoring: The risk of heparin-associated
bleeding increases with heparin dose58,59 and with
concomitant administration of fibrinolytic agents60–63

or glycoprotein IIb/IIIa inhibitors.64,65 The risk of
bleeding also is increased by recent surgery, trauma,
invasive procedures, or concomitant hemostatic de-
fects.66 Investigators have reported a relationship
between the dose of heparin administered and both
its efficacy37,50,67 and safety.64,65 Because the antico-
agulant response to heparin varies among patients, it

is standard practice to monitor heparin and to adjust
the dose based on the results of coagulation tests.
The evidence for adjusting the dose of heparin to
maintain a therapeutic range is weak and based on a
post hoc subgroup analysis of a descriptive study.68

In contrast, the evidence for maintaining the inter-
national normalized ratio (INR) within a therapeutic
range in patients who are treated with vitamin K
antagonists is strong because it is based on consistent
results of randomized trials and case-control studies.

When given in therapeutic doses, the anticoagu-
lant effect of heparin is usually monitored using the
APPT. The activated clotting time (ACT) is used to
monitor the higher heparin doses given to patients
undergoing percutaneous coronary interventions or
cardiopulmonary bypass surgery.

A retrospective study done in the 1970s suggested
that an APTT ratio between 1.5 and 2.5 was associ-
ated with a reduced risk of recurrent venous throm-
boembolism.68 Based on this study, a therapeutic
APTT range of 1.5 to 2.5 times control gained wide
acceptance. The clinical relevance of this therapeutic
range is uncertain because the validity of this range
has not been confirmed by randomized trials and
because the reagents and instruments used to mea-
sure the APTT have changed.69–78 Depending on the
APTT reagent and the coagulometer used for the
test, APTT results ranging from 48 to 108 s can be
measured in samples with a heparin concentration of
0.3 U/mL, as determined using an anti-Xa assay.71,73

With heparin levels of 0.3 to 0.7 anti-Xa U/mL,
modern APTT reagents and coagulometers produce
APTT ratios that range from 1.6 to 2.7 times to 3.7 to
6.2 times control.69–74,76–83 Although various heparin
dose-adjustment nomograms have been developed
(Tables 3, 453,67), none is applicable to all APTT
reagents.73 For these reasons, the therapeutic APTT
range should be adapted to the responsiveness of the
reagent and coagulometer used.69,72,74,75,77,78,80,82–85

In the study that established a therapeutic range for
the APTT,68 the APTT ratio of 1.5 to 2.5 corre-
sponded to a heparin level of 0.2 to 0.4 U by
protamine titration and a heparin level of 0.3 to 0.7 U

Table 3—Protocol for Heparin Dose Adjustment*

APTT, s
Repeat

Bolus Dose, U
Stop Infusion,

min
Change Rate (Dose) of Infusion
mL/h at 40 U/mL (U per 24 h)

Time of Next
APTT, h

� 50 5,000 0 � 3 (� 2,880) 6
50–59 0 � 3 (� 2,880) 6
60–85 0 0 (0) Next morning
86–95 0 � 2 (� 1,920) Next morning
96–120 30 � 2 (� 1,920) 6
� 120 60 � 4 (� 3,840) 6

*Adapted from Cruickshank et al53/1991.
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measured by an anti-Xa assay. Like APTT assays,
anti-Xa assays vary in their responsiveness to hepa-
rin. Therefore, an appropriate anti-Xa assay should
be selected for adjusting the APTT range. For
treatment of venous thrombosis, it would be reason-
able to select an APTT range that correlates with a
heparin level of 0.3 to 0.7 U anti-Xa (or 0.2 to 0.4 U
by protamine titration). The therapeutic range for
coronary indications is unknown but is likely to
correspond to heparin levels that are about 10%
lower than used to treat patients with venous throm-
boembolism. The results of a randomized trial55 in
patients with venous thromboembolism that showed
that unmonitored weight-adjusted subcutaneous hepa-
rin given twice daily in high doses was as safe and
effective as weight-adjusted LMWH challenges the
need for APTT monitoring of heparin administered
subcutaneously.

2.1.5 Heparin Resistance: Heparin resistance is a
term used to describe the situation when patients
require unusually high doses of heparin to achieve a
therapeutic APTT.86–88 Several mechanisms explain
heparin resistance, including AT deficiency,75 increased
heparin clearance,41,87 elevations in heparin-binding
proteins,42,89 and elevations in factor VIII88,90 and/or
fibrinogen.90 Aprotinin and nitroglycerin may cause
drug-induced heparin resistance,91,92 although the as-
sociation with nitroglycerin is controversial.93 Elevated
levels of factor VIII represent a common mechanism
for apparent heparin resistance.88 Because elevated
factor VIII levels shorten the APTT, there is a dissoci-
ation between the APTT and heparin levels measured
by anti-Xa activity.87,88

In patients with venous thromboembolism who
required large doses of heparin (� 35,000 U/d),
those randomized to heparin dosing based on anti-Xa
levels (target range, 0.35 to 0.7 U/mL) had similar
clinical outcomes and received lower doses of hepa-
rin than those randomized to dose adjustment based
on APTT values.88 Given these results, it is reason-

able to adjust heparin doses based on anti-Xa
levels in patients with venous thromboembolism
who require high doses of heparin to achieve a
therapeutic APTT.

2.1.6 Limitations of Heparin: In addition to hem-
orrhagic complications, heparin has limitations based
on its pharmacokinetic properties; its ability to in-
duce immune-mediated platelet activation, which
can lead to HIT (discussed in chapter on HIT by
Warkentin et al212); and its effect on bone metabo-
lism, which can lead to osteoporosis. Other nonhem-
orrhagic side effects are very uncommon and include
skin reactions that can progress to necrosis, alopecia,
and hypersensitivity.94 Heparin therapy also can cause
elevations of serum transaminases. This phenomenon is
benign and not associated with liver disease.

AT-independent binding of heparin to plasma pro-
teins,95 proteins released from platelets19 and possibly
to endothelial cells, result in the variable anticoagulant
response to heparin and to the phenomenon of heparin
resistance88; AT-independent binding to macrophages
and endothelial cells also results in its dose-dependent
mechanism of clearance.

The main nonhemorrhagic side effects of heparin are
HIT and osteoporosis. HIT is caused by heparin-
dependent antibodies, which usually are of the IgG
subclass, that bind to a conformationally modified
epitope on platelet factor 4 (PF4). Simultaneous bind-
ing of these antibodies to Fc receptors on the platelet
surface causes platelet activation. Activated platelets
are removed from the circulation, which causes throm-
bocytopenia. In addition, these activated platelets and
microparticles provide a surface onto which coagula-
tion factor complexes can assemble to promote throm-
bin generation. This phenomenon can then trigger
venous or arterial thrombosis. Osteoporosis is caused
by binding of heparin to osteoblasts,36 which then
release factors that activate osteoclasts.

2.1.7 Reversing the Anticoagulant Effect of Hepa-
rin: One advantage of heparin is that IV protamine
sulfate can rapidly reverse its anticoagulant effects.
Protamine sulfate is a basic protein derived from fish
sperm that binds to heparin to form a stable salt.
Protamine sulfate, 1 mg, will neutralize approxi-
mately 100 U of heparin. Therefore, a patient who
bleeds immediately after receiving an IV bolus of
5,000 U of heparin requires 50 mg of protamine
sulfate to neutralize the heparin. Protamine sulfate is
cleared from the circulation with a half-life of about
7 min. Because the half-life of IV heparin is 60 to 90
min when heparin is given as an IV infusion, only
heparin given during the preceding several hours
needs to be considered when calculating the dose of
protamine sulfate that needs to be administered.

Table 4—Various Heparin Dose-Adjustment
Nomograms Developed*

Variables Adjustment

Initial dose 80 U/kg bolus, then 18 U/kg/h
APTT, � 35 s 80 U/kg bolus, then increase 4 U/kg/h
APTT, 35–45 s 40 U/kg bolus, then increase 2 U/kg/h
APTT, 46–70 s† No change
APTT, 71–90 s Decrease infusion rate by 2 U/kg/h
APTT, � 90 s Hold infusion 1 h, then decrease

infusion rate by 3 U/kg/h

*Adapted from Raschke et al67/1996.
†Therapeutic APTT range of 46 to 70 s corresponded to anti-Xa
activity of 0.3 to 0.7 U/mL.
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Therefore, a patient receiving a continuous IV infu-
sion of heparin at 1,250 U/h requires approximately
30 mg of protamine sulfate. Neutralization of subcu-
taneously administered heparin may require a pro-
longed infusion of protamine sulfate. The APTT can
be used to assess the effectiveness of protamine
sulfate neutralization of the anticoagulant effects of
heparin.96

The risk of severe adverse reactions to protamine
sulfate, such as hypotension or bradycardia, can be
minimized by administering the protamine slowly.
Patients who have previously received protamine
sulfate-containing insulin, have undergone vasec-
tomy, or have known sensitivity to fish are at in-
creased risk to have preformed antibodies against
protamine sulfate and to suffer from allergic reac-
tions, including anaphylaxis.97,98 Patients at risk for
protamine sulfate allergy can be pretreated with
corticosteroids and antihistamines.

A number of other substances or devices have
been shown to neutralize the anticoagulant effects of
unfractionated heparin (UFH). These include hexad-
imethrine (polybrene),99,100 heparinase (neutralase),101

PF4,102,103 extracorporeal heparin-removal devices,104

and synthetic protamine variants.105 None of these
substances or devices are approved for clinical use.

2.2 LMWHs

LMWHs are derived from UFH by chemical or
enzymatic depolymerization. LMWHs have reduced
inhibitory activity against thrombin relative to factor
Xa14,106–109; have a more favorable benefit-to-risk
ratio than heparin in animal models,110,111 and when
used to treat venous thromboembolism112; and have
superior pharmacokinetic properties.113–119

Structure and Mechanism of Action: LMWHs are
about one third the molecular weight of UFH. They
have a mean molecular weight of 4,000 to 5,000,
which corresponds to about 15 saccharide units, and
a molecular weight range of 2,000 to 9,000. Table 5
shows the various LMWHs approved for use in
Europe, Canada, and the United States. Because
they are prepared using different methods of depo-
lymerization, the various LMWHs differ, at least to
some extent, in their pharmacokinetic properties and
anticoagulant profiles. Therefore, these drugs are not
clinically interchangeable.

Depolymerization of heparin yields low-molecular-
weight fragments that exhibit reduced binding to
proteins and cells (Table 6). The reduced affinity for
proteins and cells explains the anticoagulant, phar-
macokinetic, and other biological differences be-
tween heparin and LMWH. Thus, compared with
heparin, LMWHs have reduced ability to inactivate

thrombin because the smaller fragments cannot bind
simultaneously to AT and thrombin. Reduced bind-
ing to plasma proteins other than AT is responsible
for the more predictable dose-response relationship
of LMWHs.120 Decreased binding to macrophages
and endothelial cells explains the longer plasma
half-life of LMWH relative to UFH, whereas re-
duced binding to platelets and PF4 explains the
lower incidence of HIT.121,122 Finally, the decreased
binding of LMWH to osteoblasts results in less
activation of osteoclasts and less bone loss.35,36

Like heparin, LMWHs produce their major antico-
agulant effect by activating AT. The interaction with
AT is mediated by a unique pentasaccharide sequence
found on fewer than one third of LMWH mole-
cules.7,123 Because only pentasaccharide-containing
heparin chains composed of at least 18 saccharide
units are of sufficient length to bridge AT to throm-
bin, 50 to 75% of LMWH chains are too short to
catalyze thrombin inhibition. However, these chains
are capable of promoting factor Xa inactivation by
AT because this reaction does not require bridging.
Because virtually all molecules of UFH contain at

Table 6—Biological Consequences of Reduced Binding
of LMWH to Proteins and Cells

Binding
Target Biologic Effects Clinical Consequence

Thrombin Reduced anti-IIa
activity relative to
anti-Xa activity

Unknown

Proteins More predictable
anticoagulant
response

Coagulation monitoring
unnecessary

Macrophages Cleared through
renal mechanism

Longer plasma half-life
permits once-daily
administration

Platelets Reduced formation
of HIT antibodies

Reduced incidence of
HIT

Osteoblasts Reduced activation
of osteoclasts

Lower risk of
osteopenia

Table 5—Methods for Preparation of LMWHs
and Danaparoid

Agent Method of Preparation

Dalteparin (Fragmin) Nitrous acid depolymerization
Danaparoid sodium (Orgaran) Prepared from animal gut mucosa;

contains heparan sulfate (84%),
dermatan sulfate (12%),
and chondroitin sulfate (4%)

Enoxaparin sodium
(Lovenox/Clexane)

Benzylation followed by
alkaline depolymerization

Nadroparin calcium
(Fraxiparin)

Nitrous acid depolymerization

Tinzaparin (Innohep) Enzymatic depolymerization
with heparinase
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least 18 saccharide units, heparin has an anti-Xa-to-
anti-IIa ratio of 1:1. In contrast, commercial LM-
WHs have anti-Xa-to-anti-IIa ratios between 2:1 and
4:1, depending on their molecular size distribution.
At present, there is no evidence that the differences in
anti-Xa-to-anti-IIa ratio among the LMWHs influence
clinical outcomes, such as recurrent thrombosis or
bleeding complications. Numerous randomized clinical
trials have shown that LMWHs are safe and effective
for the prevention and treatment of venous thrombo-
embolism and for the treatment of non–ST-elevation
acute coronary syndromes.

2.2.2 Pharmacokinetics: LMWHs have pharmaco-
kinetic advantages over heparin113,114,119; after sub-
cutaneous injection, the bioavailability of LMWHs is
about 90%, and LMWHs produce a more predict-
able anticoagulant response than heparin.124 The
elimination half-life of LMWHs, which is 3 to 6 h
after subcutaneous injection, is dose independent,
and anti-Xa levels peak 3 to 5 h after dosing. One
limitation of LMWHs is that they are cleared by the
kidneys, so their biological half-life is prolonged in
patients with renal failure.125,126

2.2.3 Monitoring Antithrombotic Effect: LMWHs
typically are administered in fixed or weight-adjusted
doses for thromboprophylaxis and in weight-adjusted
doses for therapeutic purposes. Laboratory monitor-
ing is not generally necessary, but some authori-
ties127–129 suggest that monitoring be done in obese
patients and in patients with renal insufficiency.
Monitoring also may be advisable when treatment
doses of LMWH are given during pregnancy. If
monitoring is required, the anti-Xa level is the
recommended test.130

Although some studies131,132 reported that high
anti-Xa levels are associated with an increased bleed-
ing risk, several other studies133–135 failed to show a
relationship between anti-Xa levels and bleeding. A
randomized controlled trial136 comparing monitored
and unmonitored dalteparin therapy for treatment of
venous thromboembolism showed no benefit of
monitoring. Therefore, routine anti-Xa monitoring is
not indicated.

For treatment of venous thromboembolism, a con-
servative peak anti-Xa level with twice-daily enoxaparin
or nadroparin is 0.6 to 1.0 U/mL.129,130,137,138 The
target range for peak anti-Xa levels (measured 4 h
after dosing) with once-daily enoxaparin is likely to
be � 1.0 U/mL,130 whereas it is 0.85 U/mL with
tinzaparin and 1.3 U/mL and 1.05 U/mL with na-
droparin and dalteparin, respectively.138

Recommendation

2.2.3 In patients treated with LMWH, we rec-
ommend against routine coagulation monitor-
ing (Grade 1C). In pregnant women treated with
therapeutic doses of LMWH, we recommend
monitoring of anti-Xa levels (Grade 1C).

2.2.4 Dosing and Monitoring in Special Situations:
With enoxaparin, anti-Xa activity is increased to
appropriate levels when the drug is administered to
obese patients in doses based on total body weight
up to 144 kg.139 The same is true for dalteparin140,141

and tinzaparin142 in patients weighing up to 190 and
165 kg, respectively. In a metaanalysis, which in-
cluded data on 921 patients with a BMI of 30,143

there was no excess in the rate of major bleeding
over that observed in nonobese patients who re-
ceived LMWH in doses adjusted by total body
weight. For thromboprophylaxis with fixed-dose
enoxaparin and nadroparin, there is a strong negative
correlation between total body weight and anti-Xa
levels in obese patients.144–146 Two small prospective
trials147,148 have examined this issue in patients un-
dergoing bariatric surgery, with inconclusive find-
ings. The existing data, however, suggest that weight-
based prophylactic dosing is preferable to fixed
dosing for obese patients.

Appropriate dosing of LMWH in patients with
severe renal insufficiency is uncertain. Contempo-
rary randomized controlled trials evaluating LMWH
efficacy and safety have generally excluded patients
with severe renal insufficiency, defined in most
studies as a creatinine clearance (CrCl) � 30 mL/
min. With few exceptions,149 pharmacokinetic stud-
ies have demonstrated that clearance of the anti-Xa
effect of LMWH is highly correlated with CrCl.150

This was also observed in a large study151 of patients
receiving therapeutic-dose enoxaparin for coronary
indications, where a strong linear relationship was
reported between CrCl and enoxaparin clearance
(R � 0.85; p � 0.001). Of particular concern is the
potential for accumulation of anti-Xa activity after
multiple therapeutic doses. A linear correlation was
shown between CrCl and anti-Xa levels (p � 0.0005)
after multiple therapeutic doses of enoxaparin, with
significantly increased anti-Xa levels in patients with
a CrCl � 30 mL/min.152 Accumulation after multiple
prophylactic doses appears to occur less frequently,
but it is still observed. Thus, after multiple prophy-
lactic doses of enoxaparin, anti-Xa clearance was
reduced by 39%, and drug exposure (area under the
curve of anti-Xa activity vs time) was 35% higher in
patients with a CrCl � 30 mL/min compared with
that in patients with a CrCl � 30 mL/min.153 The
data on accumulation with LMWHs other than
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enoxaparin are limited. When used in full therapeu-
tic doses, nadroparin clearance, but not tinzaparin
clearance, was shown to be correlated with CrCl
(R � 0.49; p � 0.002),154 even when the CrCl was as
low as 20 mL/min.155 The apparent difference in
tinzaparin clearance in patients with severe renal
insufficiency may reflect its higher molecular weight
relative to other LMWH preparations, which may
result in clearance by hepatic rather than renal
mechanisms.

Decreased LMWH clearance has been associated
with increased bleeding risks in patients with severe
renal insufficiency. In a recent metaanalysis, Lim
et al156 compared the risk of major bleeding and
anti-Xa levels in patients receiving LMWH who had
severe renal insufficiency (CrCl � 30 mL/min) with
those in patients without renal impairment (CrCl
� 30 mL/min). In 12 studies156 involving 4,971
patients given LMWH, the odds ratio (OR) for major
bleeding was 2.25 (95% CI, 1.19 to 4.27) in patients
with a CrCl � 30 mL/min compared with that in
those with a CrCl � 30 mL/min. Use of therapeutic-
dose enoxaparin was associated with a further in-
crease in major bleeding in patients with a CrCl
� 30 mL/min (8.3% vs 2.4%; OR 3.88; 95% CI, 1.78
to 8.45), but this was not observed when enoxaparin
was empirically dose reduced (0.9% vs 1.9%; OR
0.58; 95% CI, 0.09 to 3.78). Based on these data,
nondialysis-dependent patients with CrCl � 30 mL/
min who are treated with standard therapeutic doses
of enoxaparin have an increased risk of major bleed-
ing, and empiric dose reduction appears to reduce
this risk. No conclusions could be made regarding
other LMWHs because of limited data.

Increased bleeding also was found in a post-hoc
analysis of data from the ESSENCE and TIMI 11B
trials,143 where CrCl � 30 mL/min was associated
with an increased risk for major hemorrhage in patients
receiving therapeutic doses of enoxaparin (RR � 6.1;
95% CI, 2.47–14.88; p � 0.0019). In another study of
patients with either venous thromboembolism or
acute coronary ischemia treated with therapeutic
doses of enoxaparin or tinzaparin,157 a CrCl � 20
mL/min was associated with an RR of 2.8 (95% CI,
1.0 to 7.8) for bleeding complications. Finally, in a
retrospective study of patients receiving multiple
doses of enoxaparin,158 patients with renal insuffi-
ciency had an RR for any bleeding complication of
2.3 (p � 0.01) and an RR for major hemorrhage of
15.0 (p � 0.001).

In the setting of severe renal insufficiency where
therapeutic anticoagulation is required, use of UFH
avoids the problems associated with impaired clear-
ance of LMWH preparations. Although there is no
specific CrCl threshold at which the risk for accu-
mulation becomes clinically significant, a CrCl of

about 30 mL/min is a reasonable cutoff value based
on the available literature. If LMWH is chosen,
anti-Xa monitoring and/or dose reduction should be
done to ensure that there is no accumulation. In the
case of enoxaparin, dose reduction may be used in
patients with CrCl � 30 mL/min. The recom-
mended treatment dose of enoxaparin for patients
with a CrCl � 30 mL/min who have acute coronary
syndromes or venous thromboembolism is 50% of
the usual dose (ie, 1 mg/kg once daily). No specific
recommendations have been made for other LMWH
preparations.

When given in prophylactic doses, LMWH has not
been shown to increase the risk of bleeding compli-
cations, irrespective of the degree of impairment of
renal function. Although higher anti-Xa levels were
found in patients with renal failure who received
repeated once-daily prophylactic doses of enoxapa-
rin, the mean peak anti-Xa level was only 0.6 U/mL,
and the trough was � 0.2 U/mL. No increased bleed-
ing was observed.153 In a prospective cohort study of
critically ill patients with a wide range of renal
function,159 including some with acute renal failure
who required hemodialysis, dalteparin bioaccumula-
tion was not observed despite repeated dosing. The
current recommendation for prophylactic dose enox-
aparin in patients with a CrCl � 30 mL/min is 50%
of the usual dose (ie, 30 mg once daily). No specific
recommendations have been made for other LMWH
preparations.

Recommendation

2.2.4 In obese patients given LMWH prophy-
laxis or treatment, we suggest weight-based
dosing (Grade 2C). In patients with severe renal
insufficiency (CrCl < 30 mL/min) who require
therapeutic anticoagulation, we suggest the use
of UFH instead of LMWH (Grade 2C). If LMWH
is used in patients with severe renal insuffi-
ciency (CrCl < 30 mL/min) who require thera-
peutic anticoagulation, we suggest using 50% of
the recommended dose (Grade 2C).

2.2.5 Reversing the Anticoagulant Effects of
LMWH: There is no proven method for neutralizing
LMWH. Studies in vitro and in animals160–163 have
demonstrated that protamine sulfate neutralizes the
anti-IIa activity of LMWH, thereby normalizing the
APTT and the thrombin time. However, protamine
sulfate neutralizes a variable portion of the anti-Xa
activity of LMWH. It is likely that incomplete neu-
tralization of anti-Xa activity reflects the fact that
protamine does not bind to LMWH fragments
within the LMWH preparations.120
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The clinical significance of incomplete anti-Xa
neutralization of LMWH by protamine sulfate is
unclear. In a small case series,161 protamine sulfate
failed to correct clinical bleeding associated with
LMWH in two of three patients, but there are no
human studies that convincingly demonstrate or
refute a beneficial effect of protamine sulfate on
bleeding associated with the use of LMWH. One
animal study164 reported a reduction in bleeding
with protamine sulfate in a microvascular bleeding
model, despite persistent anti-Xa activity. Another
study165 demonstrated incomplete attenuation of
bleeding.

A recent case report166 described the successful
use of recombinant activated factor VII to control
bleeding in a postoperative patient with renal failure
who was receiving LMWH. In animal studies, syn-
thetic protamine variants have been shown to be
highly effective in neutralizing the anticoagulant
effects of LMWH, including anti-Xa activity, and
appear to be less toxic than protamine sulfate.167–170

Adenosine triphosphate completely reversed clinical
bleeding related to LMWH in a rat model.171 These
agents are not approved for clinical use.

The following approach is recommended in clini-
cal situations where the anticoagulant effect of
LMWH needs to be neutralized. If LMWH was
given within 8 h, protamine sulfate should be admin-
istered in a dose of 1mg per 100 anti-Xa units of
LMWH (1 mg enoxaparin equals approximately 100
anti-Xa units). A second dose of 0.5 mg protamine
sulfate per 100 anti-Xa units should be administered
if bleeding continues. Smaller doses of protamine
sulfate can be given if the time since LMWH
administration is longer than 8 h.

2.2.6 Nonhemorrhagic Complications: The fre-
quency of HIT is threefold lower with LMWHs than
with heparin, which reflects the fact that the inter-
action of heparin with PF4 is chain-length depen-
dent. Although binding to PF4 is reduced, LMWHs
can form complexes with PF4 that are capable of
binding HIT antibodies. Consequently, in patients
with HIT antibodies, there is cross-reactivity with
LMWH (see chapter by Warkentin et al212).

The risk of osteoporosis is lower with LMWH than
with heparin. Likely, this reflects the lower affinity of
LMWH for bone cells. Monreal et al172 compared
the effects of heparin and LMWH on bone loss in
rats and demonstrated that although both produced
bone loss, the osteopenic effect was greater with
heparin than with LMWH. In contrast, using differ-
ent measures of bone loss, Mätzsch et al173 reported
that with similar anti-factor Xa activities, the effects
of LMWH and UFH on experimental bone loss were
similar. Muir et al174 reported that heparin and

LMWH both produced a dose-dependent decrease
in cancellous bone volume in rats. However, the
effects were greater with UFH than with LMWH.
These investigators35 also showed that although both
anticoagulants inhibited bone nodule formation and
increased alkaline phosphatase in a dose-dependent
manner, UFH had a six-fold greater effect than
LMWH. Other investigators also reported that LMWH
causes significant inhibition of osteoblast growth175 and
produces osteopenic changes in rats.176

Three small prospective clinical studies have re-
ported on the effects of prophylactic doses of LMWH
on bone density. The first was a cohort study177 in
which 16 women receiving enoxaparin (40 mg/d) dur-
ing pregnancy had serial bone density measurements of
the proximal femur. Baseline measurements were
taken within 2 weeks of starting therapy and then at 6
to 8 weeks and 6 months postpartum. Patients received
enoxaparin for a mean duration of 25 weeks (range, 19
to 32 weeks). Compared with baseline values, there was
no significant change in mean bone density at 6 weeks
postpartum, and no patient experienced a � 10%
decrease in bone mass. At 6 months postpartum, there
was a significant reduction in mean bone density
(p � 0.02), and 2 of the 14 patients evaluated (14%)
had a � 10% decrease.

The second study178 was an open randomized trial
that included 44 pregnant women with venous
thromboembolism. Patients were assigned to either
prophylactic doses of LMWH (dalteparin, n � 21)
once daily subcutaneously or UFH (n � 23) twice
daily subcutaneously during pregnancy and the pu-
erperium. Dual radiograph absorptiometry of the
lumbosacral spine was performed at 1, 6, 16, and 52
weeks. A healthy untreated control group was in-
cluded for comparison. Mean bone density of the
lumbar spine was significantly lower in the UFH
group than in the dalteparin or control groups. Bone
density measurements did not differ between the
dalteparin and nonrandomized control groups.

The third clinical trial179 compared the effects of
long-term treatment with LMWH and acenocou-
marol on bone mineral density in 86 patients with
venous thromboembolism. Treatment was given for
3 to 24 months. At 1 and 2 years of follow-up, the
mean decrease in bone density of the femur was
1.8% and 2.6% in patients given acenocoumarol and
3.1% and 4.8% in patients given enoxaparin, respec-
tively. These differences were not statistically signif-
icant. In summary, both UFH and LMWH prepara-
tions have the potential to produce osteopenia, but
the risk is greater with UFH.

2.3 Fondaparinux
2.3.1 Discovery of the Natural High-Affinity

Pentasaccharide: Building on the discovery of
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Choay et al,8 who isolated heparin fragments with
high affinity for AT, Choay et al8 and Thunberg et
al180 demonstrated that the minimum heparin frag-
ment necessary for high-affinity binding to AT con-
sisted of a pentasaccharide. Choay et al181,182 then
isolated this high-affinity pentasaccharide and dem-
onstrated that it formed an equimolar complex with
AT and enhanced AT-mediated inhibition of factor
Xa. In 1987, Atha et al183 reported that both the 3-O-
and 6-O-sulfated glucosamine residues within the
pentasaccharide sequence were critical for its activ-
ity. These observations paved the way for the devel-
opment of fondaparinux.

2.3.2 Pharmacology: A synthetic analog of the
AT-binding pentasaccharide found in heparin and
LMWH was prepared and its structure modified so
as to increase its affinity for AT, thereby increasing
its specific activity and half-life. The resulting syn-
thetic pentasaccharide, fondaparinux, has a molecu-
lar weight of 1728. Its specific anti-Xa activity is
higher than that of LMWH (about 700 U/mg and
100 U/mg, respectively), and its half-life after sub-
cutaneous injection is longer than that of LMWH
(17 h and � 4 h, respectively). The use of LMWH as
the reference preparation for expressing the anti-Xa
activity of fondaparinux is problematic.184,185 Fondapa-
rinux binds to AT and produces a conformational
change at the reactive site of AT that enhances its
reactivity with factor Xa.186 AT then forms a covalent
complex with factor Xa. Fondaparinux is released from
AT and is available to activate additional AT molecules.
Because it is too short to bridge AT to thrombin,
fondaparinux does not increase the rate of thrombin
inhibition by AT.

The pharmacokinetic properties and metabolism
of fondaparinux have been studied in healthy volun-
teers.187,188 After subcutaneous injection, fondapa-
rinux is rapidly and completely absorbed. A steady
state is reached after the third or fourth once-daily
dose, and fondaparinux is excreted unchanged in the
urine. The terminal half-life is 17 h in young subjects
and 21 h in elderly volunteers. Fondaparinux pro-
duces a predictable anticoagulant response and ex-
hibits linear pharmacokinetics when given in subcuta-
neous doses of 2 to 8 mg or in IV doses ranging from 2
to 20 mg.188 There is minimal nonspecific binding of
fondaparinux to plasma proteins other than AT, and
most of the compound is bound to AT.189

Based on its excellent bioavailability after subcu-
taneous injection, lack of variability in anticoagulant
response and long half-life, fondaparinux can be
administered subcutaneously once daily in fixed
doses without laboratory monitoring. Fondaparinux
is contraindicated in patients with renal insufficiency
(CrCl � 30 mL/min).

2.3.3 Dosing and Monitoring: Fondaparinux is
given at a fixed dose of 2.5 mg for thromboprophylaxis.
For treatment of deep vein thrombosis or pulmonary
embolism, the drug is given at a dose of 7.5 mg for
patients with a body weight of 50 to 100 kg; the dose is
decreased to 5 mg for patients weighing � 50 kg and
increased to 10 mg for those weighing � 100 kg. For
patients with acute coronary syndromes, a once-daily
fondaparinux dose of 2.5 mg is used.

Fondaparinux has not been monitored in clinical
studies. Therefore, routine coagulation monitoring is
not recommended. Some experts recommend a 50%
reduction in the fondaparinux dose when the drug is
given for thromboprophylaxis in patients with moder-
ately severe renal insufficiency (ie, CrCl � 50 mL/min).

Although coagulation monitoring is not recom-
mended routinely, there may be circumstances when
it is useful to determine the anticoagulant activity of
fondaparinux. This can be measured using anti-Xa
assays. To calculate drug levels, fondaparinux must
be used as a reference standard in the assay. The
therapeutic anti-Xa range for fondaparinux has not
been established; however, when given at the 2.5-mg
daily dose, levels of 0.2 to 0.4 �g/mL can be
expected, whereas levels of 0.5 to 1.5 �g/mL are
achieved with the 7.5-mg daily dose.

Fondaparinux does not bind to protamine sulfate,
the antidote for heparin. If uncontrollable bleeding
occurs with fondaparinux, recombinant factor VIIa
may be effective.190

2.3.4 Nonhemorrhagic Side Effects: Fondaparinux
has low affinity for PF4 and does not cross-react with
HIT antibodies.191 There have been no reports of
HIT with fondaparinux, and this agent has been used
successfully to treat HIT patients.192

Heparin and LMWH can cause urticarial skin
reactions. Rarely, skin necrosis can occur at injection
sites. In these cases, HIT should be suspected. In a
single-case report,193 fondaparinux was used success-
fully in a patient who developed skin reactions to
three different LMWH preparations.

To date, studies on the effects of fondaparinux on
bone metabolism have been limited to in vitro
experiments using cultured osteoblasts. In one study,
fondaparinux was compared with heparin, daltepa-
rin, or enoxaparin. Osteoblasts exposed to fondapa-
rinux showed significantly higher mitochondrial
activity and protein synthesis than unexposed osteo-
blasts. In contrast, therapeutically relevant concentra-
tions of heparin, dalteparin, or enoxaparin decreased
matrix collagen type II content and calcification;
fondaparinux had no effect on these measures of
osteoblastic activity.194 A second study compared the
effects of fondaparinux and dalteparin on human os-
teoblasts in culture. Dalteparin inhibited osteoblast
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proliferation, protein synthesis, and the decreased lev-
els of osteocalcin and alkaline phosphatase. In contrast,
fondaparinux had no effect.195 Because of insufficient
safety data, fondaparinux is contraindicated in preg-
nancy, although one pharmacologic study showed that
there was no placental transfer of the pentasacccha-
ride.196

Danaparoid Sodium

Although it is a mixture of glycosaminoglycans
(heparan sulfate, dermatan sulfate, and chondroitin
sulfate), danaparoid acts as an anticoagulant primar-
ily by catalyzing the inhibition of factor Xa in an
AT-dependent fashion. The drug has low specific
anti-Xa activity. Based on anti-Xa levels, danaparoid
has a half-life of approximately 25 h.

Although danaparoid was shown to be effective for
the prevention of venous thrombosis in high-risk
patients, it is no longer marketed for this indication.
Currently, its use is limited to the management of
patients with HIT. Danaparoid is the only agent that
has been evaluated for HIT in a randomized clinical
trial,213 where it was reported to be significantly
better than dextran. High success rates in the treat-
ment of HIT also have been observed in retrospec-
tive studies.214 Danaparoid is approved for the treat-
ment of HIT in some countries (eg, the Netherlands,
Belgium, New Zealand) but not in the United States.
Danaparoid does not prolong the INR, which facil-
itates monitoring when transitioning HIT patients
from danaparoid to vitamin K antagonists. The long
half-life of danaparoid is a disadvantage if patients
require urgent surgery or invasive procedures. There
is no antidote for danaparoid, which is problematic
for patients who have serious bleeding.

3.0 Direct Thrombin Inhibitors

In contrast to indirect anticoagulants, which re-
quire a plasma cofactor to exert their activity, direct
thrombin inhibitors have intrinsic activity because
they bind to thrombin and block its enzymatic
activity. The currently approved direct thrombin
inhibitors are hirudin, bivalirudin, and argatroban.

Hirudin

A 65-amino acid polypeptide originally isolated
from the salivary glands of the medicinal leech,
Hirudo medicinalis,197,198 hirudin is now available in
recombinant forms. Expressed in yeast, recombinant
hirudins differ from native hirudin in that the Tyr
residue at position 63 is not sulfated. Two recombi-
nant forms of hirudin, known as lepirudin and
desirudin, are currently approved for clinical use in

North America and in Europe, respectively. Lepiru-
din is licensed for treatment of thrombosis compli-
cating HIT, whereas desirudin is approved in Europe
for postoperative thromboprophylaxis in patients un-
dergoing elective hip arthroplasty.

Although there are minor differences in the amino-
terminal composition of the two forms of recombi-
nant hirudin, their mechanism of action and phar-
macokinetic properties are identical. Both inhibit
thrombin in a bivalent fashion. Thus, their globular
amino-terminal domains interact with the active site
of thrombin, whereas the anionic carboxy-terminal
tails bind to exosite 1 on thrombin, the substrate-
binding site.198 Both lepirudin and desirudin form
high-affinity stoichiometric complexes with throm-
bin that are essentially irreversible.

Dosing and Monitoring: The recommended dose
of IV lepirudin for HIT is 0.15 mg/kg/h, with or
without an initial bolus of 0.4 mg/kg. The anticoag-
ulant effect of lepirudin in this setting is monitored
by using the APTT, and the dose is adjusted to
achieve a target APTT ratio of 1.5 to 2.5.

When given for thromboprophylaxis after elective
hip replacement surgery, desirudin is given subcuta-
neously at a dose of 15 mg twice daily. Routine APTT
monitoring is unnecessary with this dose of desirudin.

The plasma half-life of the hirudins is 60 min after
IV injection and 120 min after subcutaneous injec-
tion.199 Hirudin is cleared via the kidneys, and the
drug accumulates in patients with renal insuffi-
ciency. The dose of hirudin must be reduced when
the CrCl is � 60 mL/min and the drug is contrain-
dicated in patients with renal failure.199

Antibodies against hirudin develop in up to 40% of
patients treated with lepirudin. Although most of
these antibodies have no clinical impact, some can
prolong the plasma half-life of lepirudin, resulting in
drug accumulation. In addition, anaphylaxis can oc-
cur if patients with antibodies are reexposed to
hirudin. Consequently, an alternative anticoagulant
should be used in HIT patients who have previously
been treated with hirudin.

Bivalirudin: A 20-amino acid synthetic polypep-
tide, bivalirudin is an analog of hirudin.200 The
amino-terminal D-Phe-Pro-Arg-Pro sequence, which
binds to the active site of thrombin, is connected via
four Gly residues to a carboxy-terminal dodecapep-
tide that interacts with exosite 1 on thrombin.201 Like
hirudin, bivalirudin forms a 1:1 stoichiometric com-
plex with thrombin. However, once bound, thrombin
cleaves the Pro-Arg bond within the amino terminal
of bivalirudin, thereby allowing recovery of thrombin
activity.202 Bivalirudin has a plasma half-life of 25
min after IV injection,203 and only 20% is excreted
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via the kidneys.204 Bivalirudin is licensed as an
alternative to heparin in patients undergoing percu-
taneous coronary interventions. The currently rec-
ommended dose is a bolus of 0.7 mg/kg followed by
an infusion of 1.75 mg/kg/h for the duration of the
procedure.

Bivalirudin is licensed as an alternative to heparin
in HIT patients (with or without thrombosis) who
require percutaneous coronary interventions. The
drug also is being explored as an alternative to
heparin in patients undergoing cardiopulmonary by-
pass surgery.

In contrast to hirudin, bivalirudin is not immuno-
genic. However, antibodies against hirudin can cross-
react with bivalirudin in vitro. The clinical conse-
quences of this cross-reactivity are uncertain.

Argatroban: A competitive inhibitor of thrombin,
argatroban binds noncovalently to the active site of
thrombin to form a reversible complex.205–207 The
plasma half-life of argatroban is 45 min. It is metab-
olized in the liver207 via the cytochrome P450 3A4/5
enzyme system. Consequently, argatroban must be
used with caution in patients with hepatic dysfunc-
tion. Because it is not renally excreted, however,
argatroban is particularly useful in HIT patients with
severe renal impairment.

Argatroban is licensed for treatment and prevention
of HIT-associated thrombosis and for anticoagulation
during percutaneous coronary interventions when hep-
arin is contraindicated because of a recent history of
HIT. Argatroban is given as a continuous IV infusion at
a dose of 2 �g/kg/min, and the dose is adjusted to
maintain the APTT ratio in the 1.5 to 3.0 range.

Recommendation

3.0 In patients who receive either lepirudin or
desirudin and have renal insufficiency (CrCl
< 60 mL/min but > 30 mL/min), we recom-
mend that the dose be reduced and the drug be
monitored using the APTT (Grade 1C). In pa-
tients with a CrCl < 30 mL/min, we recommend
against the use of lepirudin or desirudin (Grade
1C). In patients who require anticoagulation
and have previously received lepirudin or de-
sirudin, we recommend against repeated use of
these drugs because of the risk of anaphylaxis
(Grade 1C).

3.1 Monitoring of Direct Thrombin Inhibitors

Although the APTT is used to monitor therapy
with direct thrombin inhibitors, this test is not ideal.
The dose response is not linear, and the APTT
reaches a plateau with higher doses of the various

drugs. In addition, APTT reagents vary in their
sensitivities to direct thrombin inhibitors. The ecarin
clotting time yields a more linear dose response, but
this test is not widely available and has not been
standardized.

All of the direct thrombin inhibitors increase the
INR, albeit to a variable extent. When given in
therapeutic doses, argatroban has the greatest effect
on the INR. This phenomenon complicates transi-
tioning from argatroban to vitamin K antagonists. To
overcome this problem, the INR can be measured
after stopping the argatroban infusion for several
hours. Because holding argatroban may expose
patients to a risk of thrombosis, another option is
to monitor the vitamin K antagonist with a chro-
mogenic factor X assay. In this setting, factor X
levels � 45% have been associated with INR
values � 2 when the effect of argatroban has been
eliminated.208 Monitoring factor X levels may be
safer than aiming for an INR of 4 or higher when
vitamin K antagonists are given in conjunction with
argatroban.209,210

Recommendation

3.1 In patients receiving argatroban who are
being transitioned to a vitamin K antagonist, we
suggest that factor X levels, measured using a
chromogenic assay, be used to adjust the dose
of the vitamin K antagonist (Grade 2C).

3.2 Reversal of Anticoagulant Effects

There are no specific antidotes for direct thrombin
inhibitors. Using inhibition of thrombin generation
in shed blood as an index of activity, recombinant
factor VIIa can reverse the anticoagulant effect of
direct thrombin inhibitors in healthy volunteers.211

Although recombinant factor VIIa reduces bleed-
ing induced by direct thrombin inhibitors in ani-
mals, the utility of this agent in patients has not
been established.

Hemodialysis or hemoperfusion can remove biva-
lirudin or argatroban. Given their short half-lives,
however, this is rarely necessary. Dialysis using
special dialysis membranes can clear hirudin.
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Addendum

On page 153S, first column, second paragraph
under Argatroban, the authors wish to add the
following clarifying language:
Recommended Dosage for HIT/Heparin-Induced
Thrombosis Thrombocytopenia Syndrome Patients
Undergoing Percutaneous Coronary Interventions

For the initial dosage, an infusion of argatroban
should be started at a concentration of 25 �g/kg/min,
and a bolus of 350 �g/kg should be administered via
a large-bore IV line over 3 to 5 min (see Table 9 from
the argatroban prescribing information). The ACT
should be checked 5 to 10 min after the bolus dose
is completed. The procedure may proceed if the
ACT is � 300 s.

Dosage Adjustment

If the ACT is � 300 s, an additional IV bolus dose
of 150 �g/kg should be administered, the infusion
dose should be increased to 30 �g/kg/min, and the
ACT should be checked 5 to 10 min later (see Table
9 from the argatroban prescribing information). If
the ACT is � 450 s, the infusion rate should be
decreased to 15 �g/kg/min, and the ACT should be
checked 5 to 10 min later (see Table 9 from the
argatroban prescribing information). Once a thera-
peutic ACT (between 300 and 450 s) has been
achieved, this infusion dose should be continued for
the duration of the procedure.
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