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Background: Ultrasound guidance is now a standard nerve loca-
lization technique for peripheral nerve block (PNB). Ultrasonogra-
phy allows simultaneous visualization of the target nerve, needle,
local anesthetic injectate, and surrounding anatomical structures.
Accurate deposition of local anesthetic next to the nerve is essen-
tial to the success of the nerve block procedure. Due to limitations
in the visibility of both needle tip and nerve surface, the precise
relationship between needle tip and target nerve is unknown at
the moment of injection. Importantly, nerve injury may result
both from an inappropriately placed needle tip and inappropri-
ately placed local anesthetic. The relationship between the block
needle tip and target nerve is of paramount importance to the safe
conduct of peripheral nerve block.
Methods: This review summarizes the evolution of nerve locali-
zation in regional anesthesia, characterizes a problem faced by
clinicians in performing ultrasound-guided nerve block, and
explores the potential technological solutions to this problem.
Results: To date, technology newly applied to PNB includes real-
time 3D imaging, multi-planar magnetic needle guidance, and
inline injection pressure monitoring. This review postulates that
optical reflectance spectroscopy and bioimpedance may allow for
accurate identification of the relationship between needle tip and
target nerve, currently a high priority deficit in PNB techniques.
Conclusions: Until it is known how best to define the relation-
ship between needle and nerve at the moment of injection, some
common sense principles are suggested.

Editorial comment: what this article tells us
This topical review summarizes the evolution of nerve localization in regional anesthesia, and
explores future technological directions within this clinical field of medicine.

Peripheral nerve block (PNB) procedures
involve the placement of a needle and local
anesthetic next to target nerves. The success of
PNB is determined principally by the location of
the needle tip and the subsequent location of
administered drug(s). ‘Regional anesthesia

always works – provided you put the right dose
of the right drug in the right place’.1 In deter-
mining the ‘right place’ to deposit local anes-
thetic, reliable nerve localization techniques are
required which permit accurate and safe needle
placement in the immediate vicinity of the

Acta Anaesthesiologica Scandinavica (2015)

ª 2015 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd 1

REVIEW ARTICLE

John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel




peripheral nerve. Injection too far from the
nerve risks block failure,2 and injection within
the nerve risks nerve injury.3

Perioperative nerve injury may occur follow-
ing anesthesia and surgery,4,5 with contempora-
neous estimates of nerve injury following PNB
of 4–6 per 10,000 blocks.6–8 Although rare, iat-
rogenic nerve injury can result in permanent
sensory and motor dysfunction with neuropathic
pain. These devastating complications can have
catastrophic physical, psychological, social, and
economic consequences for the injured party.
The peripheral nerve is a complex highly het-

erogeneous structure with variable micro ana-
tomical architecture from root to terminal
branch. Figure 1 illustrates the key components
of a peripheral nerve. Nerve injury may occur
via a number of mechanisms, some of which
relate to the block procedure and others relate
to the perioperative environment. Procedure-
related nerve injury involves three interrelated
mechanisms.9 Firstly, if placed within the nerve,
the block needle itself may cause direct trauma
with disruption of nerve fascicles and intraneu-
ral blood vessels.10 Even without direct fascicle
or vessel injury, intraneural needle placement
has been shown to cause inflammation within
the nerve, with subsequent demyelination and
impairment of nerve function.11,12 Secondly,
local anesthetic injection may cause harm. Injec-
tion of local anesthetic within a nerve may cause
a spike in intraneural pressure, which can
impair neural blood flow resulting in hypoxia
and cell death (intraneural, extrafascicular injec-
tion).13 Should the needle tip pierce the peri-
neurium, as little as 0.5 ml of injectate may be
sufficient to rupture the fascicle (intraneural, in-

trafascicular injection).14 Finally, local anesthetic
agents are known to be directly neurotoxic via
mechanisms which are as of yet poorly under-
stood. Local anesthetic-related neurotoxicity is
known to be concentration dependent, with
higher concentrations being more injurious.15,16

Interestingly, observational models of intraneu-
ral needle placement and local anesthetic injec-
tion have demonstrated that not all intraneural
injections result in clinically apparent nerve
injury.17,18

Although there is no universal consensus on
the ‘right place’ to inject local anesthetic, it is
intuitive that the avoidance of intraneural nee-
dle placement is desirable, and that this strategy
might result in safer regional anesthesia. Inno-
vative technologies are required to assist clini-
cians in avoidance of needle nerve contact and
intraneural needle placement during the perfor-
mance of PNB. The following paragraphs out-
line the evolution of nerve localization
techniques used during PNB, describe the cur-
rent limitations of these techniques in detecting
accidental nerve puncture, and investigate possi-
ble future directions for nerve localization.

The evolution of nerve localization

The first reports of regional anesthesia appeared
in the 1880s.19,20 Nerve localization techniques
were based upon anatomical landmarks and for-
mal surgical dissection. Percutaneous techniques
using hollow needles subsequently developed,
relying on needle-to-nerve contact and paresthe-
sia to confirm needle location at or within a tar-
get nerve. Proponents of this technique claimed
high success rates without adverse sequelae,
even suggesting that the absence of paresthesia
was an indicator of likely failed block: ‘No par-
esthesia, no anesthesia’.21 By the mid-20th cen-
tury, tactile cues of fascial clicks and pops
became important with reports of successful
block without deliberately seeking paresthe-
sia.22 Blind needle placement guided by clicks,
pops, and paresthesia are, poor markers of needle
tip location. The presence of paresthesia infers
needle-to-nerve contact (if not needle into nerve
puncture). Neither paresthesia nor tactile feed-
back reliably defines the relationship between
needle tip and target nerve during blind PNB
techniques.

Epineurium Blood vessels Fascicle

Endoneurium

Axon surrounded 
by myelin sheath

Perineurium

Fig. 1. Nerve structure.
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Electrical nerve stimulation

Stanley J. and L. Charlotte Sarnoff reported the
use of prolonged peripheral nerve block for the
treatment of hiccups in 1950.23 In 1962, Green-
blatt and Denson used a small portable transis-
torized nerve stimulator to perform PNB
heralding the entry of electrical nerve stimula-
tion (NS) into regional anesthesia.24 By 1969,
nerve stimulators for performance of nerve block
were readily available and in widespread use.25

Nerve localization with NS requires an electri-
cal circuit between a constant current generator,
the block needle (the cathode), and the patient
(the anode, a conductive electrode placed on the
skin surface).26,27 Short electrical pulses result
in nerve cell depolarization causing either pares-
thesia or muscle contraction.28 According to
Ohm’s law (Equation 1), the current required to
cause nerve depolarization is inversely propor-
tional to the distance between needle and
nerve.26 This, it was thought, provided an indi-
cation of needle position relative to the nerve
being stimulated.

CurrentðIÞ ¼ VoltageðVÞ
ResistanceðRÞ (1)

Paresthesia or muscle contraction using a cur-
rent of between 0.30 and 0.50 mA is taken to
indicate the desired needle tip location for drug
administration.28 Responses at stimulation cur-
rents of < 0.2 mA are thought to indicate intra-
neural needle placement. Recent data have
questioned the validity of a simple interpreta-
tion of Ohm’s law in living tissue. Significant
inter-individual variation exists as to the mini-
mum stimulation threshold of peripheral
nerves.29 Intraneural needle placement does not
always lead to nerve stimulation.30 Individual
electrophysiological sensitivities, nerve struc-
tural diversity, and varying properties of peri-
neural tissues may account for these
observations,31–33 each suggesting that NS is a
somewhat insensitive tool in the detection of
needle nerve contact.32,34,35

Using a conceptual framework, based upon
the physics of electricity, assumptions were
made as to proximity relationship between the
needle tip and the target nerve. Unfortunately,

the sensitivity of this technology in identifying
needle nerve contact is poor.

Ultrasound guidance

Ultrasonography permits visualization of block
needle, target nerve(s), and local anesthetic in-
jectate.36,37 This allows accurate paraneural nee-
dle placement, which in turn facilitates rapid
onset PNB and high block success rates using
small volumes of local anesthetic.38 Ultrasound
(US), as a nerve localization technique, permits
a detailed and person-specific examination of
the anatomy involved in PNB.
Medical US utilizes sound waves in the fre-

quency range of 3–15 MHz. Nerve visualization
requires the use of probes with the capability of
producing US at 10–15 MHz. Ultrasound at
these frequencies provides excellent spatial res-
olution, allowing the discrimination of nerve
architecture. The ultrasonographic appearance of
nerves varies with anatomical location and the
quantity of connective tissue within the nerve.
Nerve roots are usually circular and have a
bright hyperechoic surface a dark hypoechoic
center (Fig. 2), while nerves further in the
periphery (median nerve in the forearm) have a
more honeycomb appearance (Fig. 3). Knowl-
edge of the unique appearance of nerves at spe-
cific locations permits the anesthesiologist to
readily identify and target the correct nerve(s)
for specific procedures. Due to its watery consis-
tency, the injected local anesthetic behaves like

Fig. 2. Interscalene brachial plexus. ASM, anterior scalene muscle;

MSM, middle scalene muscle; SCM, sternocleidomastoid muscle; C5,

fifth cervical nerve root in interscalene groove; C6, sixth cervical

nerve root in interscalene groove.
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a contrast medium enabling visualization of its
distribution around the nerve.36 A thorough
understanding of how the US image is con-
structed is required to appropriately interpret
images to guide needles during PNB. A descrip-
tion of the challenges in image interpretation
and common image-related anomalies has been
published.39,40

Ultrasound guidance vs. nerve stimulation:
nerve injury and needle nerve contact

When compared with NS, US guidance is supe-
rior from the perspective of success rates, onset
times, number of needle passes, and limiting
local anesthetic dose.41–48 It is not known
whether this superiority translates into
improved patient safety. The definition of what
constitutes a nerve injury is somewhat ambigu-
ous, ranging from transient paresthesia lasting
< 12 h to motor deficit extending beyond 48 h.
Multiple factors including patient co-morbidi-
ties, surgery type and duration, and circumfer-
ential limb tourniquets make the interpretation
of published literature on adverse outcomes fol-
lowing PNB difficult. Data comparing the fre-
quency of complications during PNB performed
with either US or NS are sparse.49

International regional anesthesia registries
collecting prospective outcome data have
reported the frequency of transient nerve injury
as 4–6 per 10,000 blocks.6–8,50,51 The Dartmouth
registry51 provides some insight into the rela-

tionship between block location, dose, and
injury. More than half of the injuries reported
arose following interscalene block, and high
volume injectate (30 ml) was used in all
reported injuries. Fredrickson and Kilfoyle
reported prospective data on neurological symp-
toms in 1000 patients following ultrasound-
guided peripheral nerve block (USGPNB) at
10 days, 1 and 6 months. Neurological symp-
toms were identified in 8%, 4%, and 0.6% at
each time point respectively, although symp-
toms were minor and deemed to be unrelated to
USGPNB.52 Liu and colleagues, reported pro-
spective data from patients undergoing shoulder
surgery under USGPNB and identified 0.4%
with neurological symptoms at 1-week post-
procedure.53 Liu also identified the frequency of
unintentional intraneural injection during US-
GPNB as 42/257 (17%) without reported post-
operative neurological symptoms.54

Detecting needle-to-nerve contact is problem-
atic. Macfarlane, Bhatia, and Brull examined
several animal models for needle-to-nerve con-
tact and intraneural injection. They concluded
that neither NS nor US are sensitive enough to
be reliable.32 Vassiliou and co-workers studied
whether combining US and NS achieved a
higher rate of “close needle tip placements” than
either modality alone, concluding better needle
placement with the combined approach.55 Stein-
feldt explored the relationship between needle
nerve contact and needle type.11,12 Needle nerve
contact, with or without nerve puncture, results
in an inflammatory response which may contrib-
ute to impaired nerve function. In determining
the relationship between intraneural needle
placement, ultrasound, and NS currents (0.2–
0.5 mA), Robards et al. concluded that the
absence of a motor response to NS does not
exclude intraneural needle position.56

The American Society of Regional Anesthesia
and Pain Medicine (ASRA) practice advisory on
neurologic complications states: “No nerve local-
ization or monitoring technique has been shown
to be clearly superior in terms of reducing the
frequency of clinical injury” because “There are
no animal or human data to support the superi-
ority of one nerve localization technique – pares-
thesia, nerve stimulation, ultrasound – over
another with regards to reducing the likelihood
of nerve injury”.57

Fig. 3. Median nerve in the forearm. FDS, flexor digitorum

superficialis muscles; FDP, flexor digitorum profundus muscles.
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Summary

Nerve localization methods have evolved from
blind needle placement using endpoints such as
paresthesia, nerve stimulation, and ultrasound
guidance. Nerve injury can occur when PNB
needles, local anesthetic, or both are placed
beneath the epineurium of a peripheral nerve.
The relationship between needle and nerve
immediately prior to injection is therefore of
critical importance. The following paragraphs
discuss methods that may be used in the future
to achieve more accurate information on needle
tip location.

Future directions for nerve localization
techniques and extraneural needle placement

Inline pressure monitoring

The injection of solution into a non-distensible
space will cause pressure within that space to
rise. This might be appreciated by the operator
as relative ease or difficulty of injection, and can
be measured using the compressed air injection
technique58 and commercially available inline
pressure manometers like B-smart (Concert
Medical, Needham, MA, USA). Compressed air
techniques rely on subjective feedback from the
syringe and are subject to significant inter-indi-
vidual variability. The use of automated injec-
tion pressure monitoring might limit inter-
individual variability and improve the objectiv-
ity of this strategy to limit needle-to-nerve con-
tact.59 Hadzic et al. studied the relationship
between injection pressure and neurological
outcome of subgluteal sciatic block in an animal
model. High injection pressures (> 20 psi) irre-
spective of needle tip location cause both clini-
cally and histologically evident nerve injuries.14

In humans undergoing interscalene block, Gads-
den et al. studied the relationship between
opening injection pressure and needle-to-nerve
contact. In this study, high opening pressure
(≥ 15 psi) consistently detected needle-to-nerve
contact.60 Thus, the use of inline pressure moni-
toring might alert the clinician to intraneural
and intrafascicular needle placement, potentially
preventing nerve injury. High opening pressure
may be caused by factors other than intraneural
needle placement – needle obstruction, tissue

compression, and injection into a tendon, not
just needle-to-nerve contact. Such non-specific-
ity might negatively influence operator behavior
and impact block performance. Further clinical
validation is required to define the true utility
of this inline injectate manometry during PNB.

Advances in ultrasound imaging

Marhofer et al. published a two part review on
“Fifteen years of ultrasound guidance in regio-
nal anesthesia”. Part 1 of the review concluded
“if experience in other technological fields is to
be used as a yardstick of the pace of develop-
ment, the next 15 years will see an exponential
increase in the quality of both 2D images and
3D ultrasound images”.61 In using conventional
B-mode US, the clinician is provided with a nar-
row two-dimensional (2D) representation of
underlying anatomy. To guide a needle, this 2D
image must be cognitively processed and appro-
priate visuospatial interpretations made. A
three-dimensional (3D) image might permit bet-
ter nerve surface identification, and assist identi-
fication of appropriate needle path and
endpoint. Real-time 3D US imaging (also
known as 4D where 3D alone refers to static 3D
images that can be collected and manipulated at
a later stage62) has been used for: (1) continuous
sciatic block at the popliteal fossa63; (2) axillary
brachial plexus block; and (3) radial nerve
block.64 Future progression of 3D ultrasonogra-
phy is likely to bring a wider image volume
and thus more information to the clinician. The
absolute advantage of this technology is the
ability to manipulate imaging planes without
moving the probe.65 Although it is believed that
3D US imaging will further enhance the use of
US for PNB procedures, this imaging modality
requires a new image interpretation skill set.
Currently, clinicians learn 2D, cross-sectional
anatomies as undergraduates. The application of
anatomical representation using 2D US is some-
what intuitive. Three-dimensional imaging in
real-time is as of yet an unknown entity, as are
the skills required to safely perform PNB using
such a modality.61 A recent publication on 3D
US imaging to evaluate local anesthetic spread
and perineural catheter placement, suggests that
the complexity of the technique coupled with
an increased amount of information, could limit
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the practicality and cost effectiveness in daily
clinical practice.66 Further studies are required
to determine the true role of 3D/4D US imaging
in peripheral nerve block.

Multiplaner magnetic and robotic needle
guidance

Magnetic needle guidance permits needle track-
ing and prediction of needle trajectory. Using a
magnetic field and sensors on the needle and
ultrasound probe, real-time overlay of needle
trajectory and needle tip location on the 2D
ultrasound image is achieved.67 This technology
may prove useful in assisting needle guidance
from point A to point B, but it does not assist in
determining the relationship between the nee-
dle tip and nerve. It is therefore not useful in
either detecting or preventing needle-to-nerve
contact.
Robotic devices have been developed to assist

with the performance of complex skills during
surgery. Robotic assistance in bench models of
regional anesthesia has been reported in which
robots advanced the needle toward a target.68,69

This may prove useful limiting needling errors
associated with PNB performance.70 There are,
however, no data to validate the use of robotics
within the context of clinical PNB performance,
and none to suggest better definition of needle
nerve relationship.

Optical reflectance spectroscopy

Optical reflectance spectroscopy has been used
to differentiate tissue types at needle tip. This
technique uses optical fibers to carry visible and
near-infrared light to the tissue in contact with
the needle tip. Tissues absorb and reflect light
differently depending on their composition.
Sensing fibers in the device detect reflected and
scattered light over a set spectrum of wave-
lengths. The quantity of light absorption and
scatter by natural chromophores such as hemo-
globin, water, and lipids in a tissue at particular
wavelengths is dependent on cell size and
molecular structure. It is these characteristics
that define the optical properties of a tissue.71

After some calculation, the absolute optical
properties of tissues are quantified and subse-
quently absolute absorber concentrations can be

determined, i.e., concentration of deoxygenated
hemoglobin, oxygenated hemoglobin and
water.72 Based on the quantities of different
chromophores in a specimen the tissue type can
be identified. Differences in chromophore vol-
ume fractions are determined using diffusion
reflectance spectroscopy.73

Non-invasive detection of breast cancer using
clinical optical tomography and near-infrared
spectroscopy has been investigated.74 Invasive
applications of this technology include tissue
diagnostics to allow disease states to be detected
in vivo with a long-term view to replace biop-
sies and histological analysis but more urgently
to provide additional guidance in locating the
optimum sites for biopsy.75 Prostate76 and ovar-
ian77 cancers have been identified by invasive
use of optical reflectance spectroscopy. This
technique has also provided stereotactic guid-
ance during neurosurgery.78 In 1985, a fiber-
optic needle stylet was used to identify biologi-
cal fluids such as blood, bile, water, and the
reflective intima of a blood or bile vessel at the
needle tip allowing for its location to be known
during percutaneous diagnostic and therapeutic
procedures.79 More recent studies have demon-
strated the ability to identify transitions from
subcutaneous fat to skeletal muscle and from
the muscle to the nerve target region in vivo on
swine and humans using optical impedance
spectroscopy. The novel optical needle stylet has
also identified vascular needle penetration
which would prevent accidental intravascular
anesthetic release during the USGPNB proce-
dure.80 Optical reflectance spectroscopy can dif-
ferentiate tissue type and detect target nerves
accurately. If integrated with USGPNB, proce-
dural short comings, as characterized, might be
eliminated and procedural safety improved.81,82

Bioimpedance

All objects will impede electrical current to
some degree. When AC is applied to biological
material impedance is referred to as bioimped-
ance. The measurement of tissue bioimpedance
could provide valuable information about both
tissue type and physiological events of inter-
est.83 Several electrodes are used for impedance
measurement: a small current is applied to one
or more electrode while other electrodes pick up
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the resulting voltage. As the conductivity in bio-
logical materials is electrolytic and based on
Na+ and Cl$ ions, changes in the content of
liquid or the ion concentration lead to changes
in bioimpedance. Furthermore, cell membranes
have low conductivity; hence, the concentration
of cells also influences bioimpedance.84,85 The
cell membrane separates two electrolytic sys-
tems, i.e., intracellular fluid from extracellular
fluid, which gives cells capacitor (energy stor-
ing) characteristics.83,86 The resistive and capaci-
tive components of biological tissues therefore
are well described by the concept of complex
impedance.87 Cell size, orientation, and mem-
brane thickness also influence bioimpedance
thus increasing its ability to discriminate
between tissues.88

Bioimpedance analysis has long been consid-
ered a potential tool for medical diagnostics in
many different ways as it offers easy to apply
techniques with low costs.89 Current and poten-
tial medical applications for bioimpedance pri-
marily exploit the principle that the content of
liquid and the concentration of ions in the sam-
ple give different tissue types different and
characteristic bioimpedances. Some tissues are
very good conductors of electricity, while others
are poor conductors. For example, bone is a
poor conductor with a typical resistivity of
> 40 Ω at 10 kHz, while muscle is a relativity
good conductor of electric charge demonstrating
resistivity of 2–4 Ω at 10 kHz.90 Bioimpedance,
the inverse of conductance, can therefore be
employed by the same token by measuring the
tissue resistance under AC.90 Investigations and
current uses of this technology for medical
diagnostics are divided into two categories: (1)
invasive applications and (2) non-invasive
applications.
Non-invasive applications include Electrical

Impedance Tomography (EIT), a form of real-
time bedside imaging90,91 which has been used
in the diagnosis of breast cancer,92–94 epilepsy,
acute stroke91,95, and measurement of gastric
emptying during continuous infusion of liquid
feed.96–99 EIT imaging is low cost and non-haz-
ardous which permits its use for surveillance
over protracted time intervals. Bioelectrical
Impedance Analysis (BIA) allows measurement
of human body composition mainly to estimate
total body water and fat-free mass in clinical

settings.100,101 Skin impedance is used to detect
and to classify skin cancer102–107 and to diag-
nose or analyze allergic reactions,108,109 diabe-
tes mellitus,110 skin irritations111,112, and skin
moisture.113 Impedance cardiography offers a
continuous, non-invasive, operator-independent
method of monitoring cardiac output and
stroke volume offering a potential tool in diag-
nosis, treatment, and observation of
patients.114,115

Invasive applications of bioimpedance using
needle-type probes may have more relevance to
regional anesthesia than non-invasive applica-
tions. Many studies relating to invasive bioim-
pedance measurement suggest that the use of a
bespoke probe/needle might aid tissue identifi-
cation and potentially detect needle to nerve
contact in regional anesthesia. This concept is
been exploited for many medical applications to
date. In 1969, impedance measurement was
used for detection neural structures during per-
cutaneous cordotomy. Penetration of spinal cord
was confirmed by a rise in bioimpedance from
that of the surrounding cerebrospinal fluid.116

Kalvøy’s group during several in vivo investiga-
tions determined the position of a needle within
different kinds of tissue like muscle, liver,
spleen, fat, etc.117 Various bioimpedance biopsy
probes have been trialed for biopsies of brain
tumors,118,119 pulmonary masses,120 prostate
cancer121,122, and renal biopsies.123 In 2008,
Tsui et al. evaluated the role of impedance mea-
surement in an experimental model of USGPNB.
They found a significant difference in bioimped-
ance between extraneural and intraneural tissue.
Consequently, the group postulated that bioim-
pedance measurement could be a useful warn-
ing signal to avoid intraneural injection in the
future.124 With this technology’s ability to dif-
ferentiate tissue type with a high degree of accu-
racy and resolution, the current procedural
inability to objectively detect optimum needle
tip location for PNB delivery may be resolved
by using bioimpedance.

Conclusion

This review has summarized the major
advances in PNB nerve localization techniques
and how PNB has progressed from landmark
based blind procedures to sighted guidance
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using ultrasound. As PNB techniques have
evolved, so have the challenges facing regional
anesthesiologists. A reliable method of charac-
terizing the relationship between needle and
target nerve immediately prior to injection dur-
ing PNB is required. The integration of any
such solution into PNB procedural skills must
(1) solve the problem as characterized; (2) les-
sen the cognitive burden of the anesthesiolo-
gist; (3) improve procedure-related outcomes;
and (4) not adversely affect patient outcome.
To date, technology newly applied to PNB
includes real-time 3D imaging, multi-planar
magnetic needle guidance, and inline injection
pressure monitoring. This review identified the
relationship between needle tip and target
nerve as a high priority deficit in PNB tech-
niques, and postulates that optical reflectance
spectroscopy and bioimpedance may hold the
solution to accurately address this challenge.
Until it is known how best to define the rela-
tionship between needle and nerve at the
moment of injection, some common sense prin-
ciples might be appropriate: (1) the desired
location for local anesthetic solution is around
the nerve and not in it (the paraneural space);
(2) use a needle in-plane guidance technique;
(3) only advance the needle when visible on
ultrasound; (4) target the fascia at the periph-
ery of the nerve, not the center of the nerve;
(5) always aspirate the needle before injection;
(6) inject small quantities of local anesthetic
0.5–1 ml; (7) inspect the target nerve for signs
of intraneural injection, and reposition to
ensure injection outside the nerve; (8) do not
persist to inject if there is resistance to injec-
tion; and (8) maintain verbal contact with and
seek feedback from the patient.
In conclusion, the novel application of exist-

ing and modifiable technology may assist physi-
cians in overcoming the procedural limitations
inherent within ultrasound-guided peripheral
nerve block. Characterization of these challenges
and matching innovative technology may in
time improve procedural safety and efficacy.
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