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Overview:  The focus of the lecture is “how better understanding of local anesthetic mechanisms can improve 
current and future clinical uses of these agents for regional anesthesia and analgesia”.   
1.   Recent Research on Ion Channels and Local Anesthetic Mechanisms     

a. Actions on sodium channels.  Local anesthetics inhibit flux of sodium ions through voltage-gated sodium 
channels and block impulse propagation. The Modulated Receptor Hypothesis emphasizes the higher binding 
affinity of local anesthetics for open and inactive Na+ channels compared to resting Na+ channels (Figure 1). 
Differential binding to channels in different conformations may underlie use-dependent blockade:  block intensifies 
with higher rates of nerve stimulation(1). Local anesthetics have multiple molecular and cellular actions, including: 
(a)  blockade of calcium and potassium (2,3) (4)channels and  NMDA receptors(5), (b) impairment of axoplasmic 
transport  (c) blockade of transduction of mechanical stimuli in nociceptors(6)  (d) anti-inflammatory (7), anti-
thrombotic, and microvascular effects (8) and (e) neuronal(9) and myocyte (10) injury.  Anti-inflammatory effects of 
local anesthetics involve local, contralateral, systemic, and segmental spinal actions(11,12).  

b. Local anesthetic uptake and distribution into nerve.  Tissue barriers limit local anesthetic potency and 
effectiveness by impairing passage of drug from extraneural sites into nerve.  The simplified diagram in Figure 2 
emphasizes that for local anesthetics, unlike most systemically acting drugs, uptake from injection sites into the 
central circulation takes drug away from, rather than towards, effect sites, and the central circulation is in parallel 
with, rather than in series with, the path from administration site to effect site.  Less than 2% of an injected dose in 
peripheral nerve blocks enters the nerve. (13) Changes in local blood flow (14) and permeability can dramatically 
modify local anesthetic potency and duration.   The requirement for high solubility and rapid diffusion in both 
aqueous and lipophilic environments is a major physical-chemical constraint limiting development of new local 
anesthetics.   

c.   Local anesthetics are extremely useful   Local anesthetic-based analgesic approaches, both neuraxial and 
peripheral, are essential components of a multimodal approach to postoperative recovery that permits early 
mobilization and minimizes postoperative disability (15 ) (16) . Systemically-administered local anesthetics are 
useful analgesics for neuropathic pain.  In some patients and in animal models, the duration of pain relief from 
intravenous lidocaine far outlasts the duration of therapeutic drug concentrations in plasma (17). Multiple sites of 
action underlie systemic lidocaine’s efficacy in neuropathic pain (18).  Lidocaine suppressed ectopic discharges in 
rat dorsal root ganglia and at peripheral sites of nerve injury at very low doses (19). Lidocaine reduces c-fiber-
evoked activity in isolated rat spinal cord via reductions in NMDA and neurokinin receptor-mediated post-synaptic 
depolarizations. (20)  Mexiletine’s utility is limited by gastrointestinal and CNS side-effects.  Systemic lidocaine 
may have a role for prevention and treatment of postoperative pain(21) and for selected patients with opioid-
refractory pain in palliative care (22). Regional anesthesia and analgesia may modulate development of neuropathic 
pain in some clinical settings and in some animal models (23); controversy persists regarding  factors that impact on 
effectiveness.   
2.    Current-generation local anesthetics produce systemic and local toxicities 
a. Local anesthetic cardiotoxicity and CNS toxicity (especially seizures) continue to cause cardiac arrests, 
neurologic injuries, and deaths on a regular basis.  Epidemiologic information on systemic complications is sparse 
and largely retrospective (24). Pediatric data are available from two prospective studies of regional anesthesia in 
France and other French-speaking countries (25) (26), and from a report of a pediatric cardiac arrest registry (27) .   
In a registry from Japan, local anesthetic toxicity accounted for only a small fraction of cardiac arrests occurring in 
association with regional anesthesia(28).   Local anesthetic toxicity can cause morbidity and mortality when used by 
the “tumescent” technique in plastic surgical procedures, such as liposuction, particularly when recommended doses 
are exceeded.  Mortality estimates for liposuction have ranged as high as 1:5,000 procedures (29). Multiple factors 
reduce the systemic safety margin for local anesthetics and regional anesthesia in infants, compared with adults(30) . 
Chloroprocaine is unique among available agents in that its clearance by plasma esterases is extremely rapid, even in 
preterm neonates(31,32).   This feature makes chloroprocaine uniquely suited for epidural infusions in neonates.   
b. Methemoglobinemia – A recent FDA advisory cited cases of clinically significant methemoglobinemia 
following topical use of benzocaine, particularly with mucosal administration(33).     
c. Local anesthetics produce concentration-dependent local tissue toxicity in nerves (34) and muscles(10).     
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3.   Local Anesthetic Failure:  Inflammation, Infection, Tachyphylaxis, Hyperalgesia, Neuropathic Pain, and 
Genetics   Local anesthetics frequently fail to provide analgesia in sites of infection or inflammation. This is a 
substantial problem in dentistry – in the setting of a tooth abscess or severe pulpitis, failure rates of local anesthesia 
may exceed 70%.  Both PK versus PD mechanisms (including activation of peripheral excitatory amino acid 
receptors) may be involved in inflammation-induced local anesthetic failure(35,36) . Repeated or prolonged 
administration of local anesthetics can fail due to tachyphylaxis, which may involve PK (37)and more prominently 
PD (38-40) (41) mechanisms related to hyperalgesia (38)  (42) .  Co-administration of systemic or neuraxial opioids 
with local anesthetics in epidural infusions slows development of tachyphylaxis (43).  In a rat model, tachyphylaxis 
was associated with hyperalgesia, and was prevented by blockade of NMDA receptors or via blockade of NO 
synthase  (38-40).  Rotation among local anesthetics was helpful in a study of intrathecal infusions for advanced 
cancer. (44)    Occasional patients report that “local anesthetics don’t work for me”. While most  cases probably 
reflect inadequate technique or drug and dose selection, or conditions of inflammation or hyperalgesia as described 
above, genetic variations in sodium channels could lead to reduced local anesthetic responsiveness in some patients 
(45,46). Sodium channel variants are implicated in a rapidly-expanding spectrum of neurologic(47-49) and 
cardiovascular(50,51) disorders.   
4.  Selected approaches to making a “better” local anesthetic  Available local anesthetics have shortcomings. 
They are not sufficiently selective for sensory, autonomic, or motor blockade.  True “differential epidural block” is 
not achievable by currently available agents.  They have toxicities as noted above.  In many contexts, the duration of 
analgesia is too short.   Efforts to produce newer and/or better local anesthetics have followed several directions.     

a. Use of single enantiomers, rather than racemic mixtures.   Ropivacaine and levo-bupivacaine were developed 
based on the finding of degrees of stereoselectivity  in cardiotoxicity and degrees of sensory versus motor blockade 
for these agents in preclinical studies. These agents produce modest improvement in either sensory selectivity or 
therapeutic indices (ratio of effective to toxic doses) compared to the racemic mixtures. The degree of improvement 
in sensory selectivity has appeared variable in previous studies(52).  Ropivacaine may have up to a 1.5- 2-fold 
increase in therapeutic index compared with bupivacaine in both infant and adult rats(53).  This difference may be 
relevant for infants, since the maximum safe infusion rate for epidural bupivacaine in neonates and younger infants, 
roughly 0.2 mg/kg/hr(54), is probably insufficient as the sole agent to provide epidural analgesia for a substantial 
fraction of neonates and younger infants, even with optimal dermatomal placement.   

b.  Sustained-release formulations     Peripheral nerve blocks are useful, but they sometimes don’t last long enough 
to influence the overall course of postoperative recovery.  One approach to prolonged-duration local anesthesia is to 
deliver local anesthetics using a sustained-release system, such as liposomes(55,56 ), microspheres  (57-59) , or 
other types of microparticles.   Our group developed formulations using bupivacaine, small amounts of the anti-
inflammatory steroid, dexamethasone, and a biodegradable polymer, PLGA, much like that in some types of 
absorbable suture material(57-59). Animal studies showed excellent safety, with low plasma bupivacaine 
concentrations, and nerve blockade lasting 2-7 days, depending on the species, dose, and site of administration. 
Initial human studies also showed excellent promise.  Commercial development stalled in Phase 2 studies, but I 
remain optimistic that some type of formulation can be effective for prolonged infiltration anesthesia for surgery in 
the thorax and abdomen.  

c.  Old molecules previously used for other purposes.     Two commonly used systemic drugs have been re-evaluated 
as local anesthetics:  amitriptyline (60) (61) (a tricyclic antidepressant widely used orally for treatment of 
neuropathic pain), ketamine(62) (a well-known sedative-analgesic-anesthetic agent which acts as an antagonist at 
NMDA receptors and probably has several other sites of action).  Recent animal studies suggest that both agents 
produce conduction blockade in vivo, and appear to block sodium channels in vitro. It remains to be determined 
whether these agents will afford clinically important improvements in duration, safety or sensory selectivity.  Local 
neurotoxicity may limit the clinical safety of amitriptyline (63) . 

d. Site 1 Sodium Channel Toxins  Tetrodotoxin (TTX) and saxitoxin (STX) have long been known to bind to a 
specific site on sodium channels, designated as site 1, and to have extremely high potency in blocking some, but not 
all, sodium channels in isolated cell bodies or axons.  They were rejected as clinically useful local anesthetics 
because in early studies there was severe systemic toxicity (diaphragm paralysis and vasodilation) at most doses 
sufficient to produce conduction blockade of peripheral nerves.   Studies by Kohane et al. in our group using 
combinations of site 1 toxins with either vasoconstrictors or conventional local anesthetics suggest that these and 
other combinations may sufficiently improve therapeutic indices to permit use as long-acting local 
anesthetics(64,65).    
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e.  Butamben     Butamben is a formulation used to provide prolonged analgesia, especially for patients with 
terminal malignancy.   There remains some controversy about its mechanisms of action, but it appears to have both 
aspects of a semi-controlled sustained release system, actions as a neurolytic agent (66), and actions on T-type 
calcium channels and subclasses of potassium channels (4) .     

 f. New molecules that target sodium channel subtypes.    There are a large number of different sodium channel 
subtypes in different mammalian tissues.  Several groups of investigators used molecular biologic approaches to 
identify sodium channels which are expressed predominantly in smaller sensory neurons(67). Some of these sodium 
channels, (denoted as either SNS, PN or NaN subtypes in different publications), are relatively resistant to blockade 
by TTX.  Rodent models of inflammation and nerve injury have produce some variability in results; in some studies 
expression of certain SNS channels is increased by inflammation and decreased by painful nerve injury (67).  There 
has been some drug development activity in targeting these sodium channel subtypes for development of analgesics, 
but available information in this regard is too preliminary to permit conclusions at present.  

5.    Conclusions 
Local anesthetics are extremely useful, but their safety and effectiveness would be improved by development of 
agents that produce less systemic and local toxicity, by better ability to control duration and by agents that could 
produce more sensory-selective blockade.    
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            Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Simplified model of differential binding of local anesthetics to sodium channels in different conformations.  
         Local anesthetics binding changes the relative stability of different conformations and alters the kinetics of  
         channel opening and inactivation.   
         
                           
              Figure 2  
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                the central circulation, and the 
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