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Abstract Background: Oxygenation
is impaired in almost all subjects
during anesthesia, and hypoxemia for
shorter or longer periods is a common
finding. Moreover, postoperative
lung complications occur in 3–10%
after elective abdominal surgery and
more in emergency operations. Dis-
cussion: Rapid collapse of alveoli on
induction of anesthesia and more
widespread closure of airways seem
to explain the oxygenation impair-
ment and may also contribute to
postoperative pulmonary infection.
Causative mechanisms to atelectasis
and airway closure seem to be loss of

respiratory muscle tone and gas re-
sorption. Conclusion: Avoiding high
inspired oxygen fractions during both
induction and maintenance of anes-
thesia prevents or reduces atelectasis,
while intermittent “vital capacity”
maneuvers recruit atelectatic lung
regions.
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Introduction

Anesthesia during mechanical ventilation is administered
to 10–15 million patients per year in the countries of the
European Union. A frequent finding is impaired oxy-
genation, despite the administration of 30–40% oxygen in
the inspired gas. Increased alveolar-arterial oxygen ten-
sion difference (PA-aO2) is therefore seen in 90% or more
of anesthetized patients [1]. This holds true for all anes-
thetic regimes, whether intravenous or inhalational agents
are used, and whether the patient is breathing sponta-
neously or is ventilated mechanically [2]. Moreover,
postoperative pulmonary complications occur in 3–10%
of patients undergoing elective abdominal surgery [3, 4],
and more in emergency surgery. To what extent postop-
erative complications are caused by a respiratory dys-
function during anesthesia is not clear. However, atelec-
tasis that develops during anesthesia remains in the
postoperative period, and impairment in arterial oxygen-
ation and decrease in forced spirometry are correlated
with the size of the atelectasis [5]. Moreover, in view of

the large number of anesthesias that are given in the
Western world even a moderate complication rate will
have considerable social and economic consequences.

This review examines the morphological and func-
tional causes of impaired oxygenation that is regularly
seen during anesthesia and mechanical ventilation.

Gas exchange

Shunt, as calculated from arterial, mixed venous, and al-
veolar PO2 [6], increases from 1–2% in the waking sub-
ject to 8–10% in the anesthetized patient [1]. The standard
shunt equation is based on the assumption of two popu-
lations of alveoli, those that are “ideally” perfused in
proportion to their ventilation and those that are perfused
but not at all ventilated (the shunt). However, the lung
does not contain two populations of alveoli only. There
are a number of units with less ventilation than perfusion,
with low ventilation-perfusion ratios (“low VA/Q re-
gions”), as well as units that are ventilated in excess of
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their perfusion (“high VA/Q regions”). Perfusion of low
VA/Q regions also impedes the oxygenation of blood and
to a varying extent is included in the calculated “shunt.”
The shunt, as measured by the standard oxygen technique,
should therefore rather be called “venous admixture” [1].
A good correlation between venous admixture and the
sum of “true” shunt and perfusion of “low VA/Q regions”
was seen in a study of 45 anesthetized subjects [7].

The extent by which venous admixture includes low
VA/Q regions depends on the inspired oxygen fraction
(FIO2). The higher it is, the less of low VA/Q is included.
However, with high FIO2 the regions with low VA/Q
collapse because of gas adsorption and be transformed to
shunt regions [8, 9].

A more detailed picture of the distribution of VA/Q
ratios with no need to change FIO2 can be obtained by the
multiple inert gas elimination technique [10]. This tech-
nique is based on the infusion of a number of inert gases
(usually six) in a vein and the calculations of the retention
(arterial/mixed venous concentration ratio) and excretion
(mixed expired/mixed venous concentration ratio) of each
gas. The ratios, together with the measured solubilities of
the inert gases, enable the construction of a virtually
continuous distribution of ventilation and perfusion
against VA/Q ratios.

When this technique is applied to the anesthesia set-
ting, a major finding is increased dispersion of VA/Q with
the appearance of low VA/Q ratios. Thus there is impaired
matching of ventilation and perfusion during anesthesia
with regions that are poorly ventilated in relation to their
perfusion. Another major observation is the appearance of
true shunt of around 8%, but frequently exceeding 20%
[11, 12, 13]. Figure 1 presents an example of a VA/Q
distribution. Thus there seem to be at least two major
functional causes of impaired oxygenation during anes-

thesia, low VA/Q and true shunt. The morphological
correlates are be discussed below.

Hypoxic pulmonary vasoconstriction

Attenuation of hypoxic pulmonary vasoconstriction
(HPV) is frequently considered a mechanism of impaired
gas exchange during anesthesia. Most inhalational anes-
thetics inhibit HPV in isolated lung preparations [14].
However, no such effect has been seen with intravenous
anesthetics (barbiturates) [15]. Results from human
studies vary, reasonably explained by the complexity of
the experiment that causes several variables to change at
the same time. In studies with no gross changes in cardiac
output the inhalational anesthetics isoflurane and halo-
thane depress the HPV response by 50% at twice the
minimum alveolar concentration [16]. The HPV response
acts efficiently both in the atelectatic lung (where HPV
seems to be more important than mechanical kinking of
vessels) and during ventilation with hypoxic gases [17].

The breathing of pure oxygen may increase the shunt
by promoting alveolar collapse [18]. High FIO2 may also
increase shunt by increasing alveolar PO2 and thus at-
tenuate the HPV response [16]. Similarly, pulmonary
hypertension counters HPV, presumably by requiring
higher muscle force to constrict a vessel.

It should also be emphasized that attenuation of the
HPV response cannot be the only disturbance during an-
esthesia to cause gas exchange impairment. If there were
no corresponding ventilatory impediment, loss of pul-
monary vascular tone would be of no significance since
adequate gas exchange would still occur. Loss of HPV
can only aggravate an existing VA/Q mismatch.

Fig. 1 Right Ventilation-per-
fusion matching (VA/Q) in an
anesthetized subject. Note the
large normal mode centered on
a VA/Q ratio of 1, as well as a
low VA/Q mode with VA/Q ra-
tios between 0.01 and 0.1, and
finally shunt (VA/Q=0). Left
The morphological and func-
tional correlates with intermit-
tent airway closure explaining
low VA/Q and atelectasis ex-
plaining the shunt
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Lung volume and respiratory mechanics

The resting lung volume (functional residual capacity,
FRC) is reduced by 0.8–1.0 l by changing body position
from upright to supine, and there is another decrease by
0.4–0.5 l when anesthesia is induced [19]. The end-ex-
piratory lung volume is thus reduced from approx. 3.5 to
2 l, the latter being close or equal to residual volume.
When one tries to breathe voluntarily at that level, one
realizes the difficulty in doing so! The decrease seems to
be related to loss of respiratory muscle tone, shifting the
balance between the elastic recoil force of the lung and
the outward forces of the chest wall to a lower chest and
lung volume [20, 21]. Maintenance of muscle tone, such
as during ketamine anesthesia, does not reduce FRC [22].
The effect of body position and anesthesia on FRC is
shown in Fig. 2. As seen here, FRC increases with age.
This is dealt with below.

Compliance of the respiratory system (lungs and chest
wall) is also reduced during anesthesia, from a mean of 95
to 60 ml/cmH2O [23]. This may be due mainly to de-
creased lung compliance [23]. Rehder and coworkers [24]
ruled out direct effects of the anesthetic on the lung tissue,
and it is more likely that the fall in compliance is a
consequence of the reduced FRC. This promotes airway
closure and atelectasis, as is discussed below.

The resistance of the respiratory system and of the
lungs has also been measured, showing considerable in-
crease during both spontaneous breathing and mechanical
ventilation [23, 24]. However, studies on resistance dur-
ing anesthesia have been hampered by different experi-
mental conditions during the awake and the anesthetized
conditions. Thus studies that enables comparison of re-
sistance under both isovolume and isoflow conditions are

still lacking. It is rather likely that the increased lung
resistance merely reflects the reduced FRC.

Atelectasis

In their classical study in 1963 Bendixen and coworkers
[25] proposed “a concept of atelectasis” as a cause of
impaired oxygenation during anesthesia. They had ob-
served a subsequent decrease in compliance of the res-
piratory system and a similar subsequent decrease in ar-
terial oxygenation in both anesthetized humans and ex-
perimental animals. This was interpreted as the formation
of atelectasis. However, other research groups who were
unable to reproduce their findings noted a more rapid fall
in compliance and PaO2 on induction of anesthesia.
Moreover, atelectasis could not be shown by conventional
chest radiography.

In the middle 1980s new observations were made that
may explain the altered function of the lung during an-
esthesia. Using computed tomography (CT) with trans-
verse exposures of the chest Brismar and coworkers [26]
demonstrated prompt development of densities in de-
pendent regions of both lungs during anesthesia. Similar
densities had previously been seen in anesthetized infants
[27]. Morphological studies of these densities in various
animals supported the diagnosis of atelectasis [28]. An
example of atelectasis as shown by CT is shown in Fig. 3.

Atelectasis appears in around 90% of patients who are
anesthetized [7]. It occurs both during spontaneous
breathing and after muscle paralysis and regardless of
whether intravenous or inhalational anesthetics are used
[2]. The atelectatic area on CT slice near the diaphragm is
generally approx. 5–6% of the total lung area but can
easily exceed 15–20%. It should also be remembered that
the amount of tissue that is collapsed is even larger, the
atelectatic area comprising mainly lung tissue whereas the
aerated lung consists only of 20–40% tissue, the rest be-
ing air. Thus 15–20% of the lung is regularly collapsed at
the base of the lung during uneventful anesthesia—before
any surgery has been done! Abdominal surgery adds only
little to the atelectasis, but it can remain for several days
in the postoperative period [5]. It is likely to be a focus of
infection and may contribute to pulmonary complications
[29]. One should also note that after thoracic surgery and
cardiopulmonary bypass more than 50% of the lung can
remain collapsed even several hours after surgery [30].
The amount of atelectasis decreases towards the apex,
which is mostly spared (fully aerated).

There is a weak correlation between the size of the
atelectasis and body weight or body mass index [31],
obese patients showing larger atelectatic areas than lean
ones. While this was expected, it came as a surprise that
the atelectasis is independent of age, with children and
young persons showing as much atelectasis as elderly
patients [7]. Another unexpected observation was that

Fig. 2 Functional residual capacity (FRC) and closing capacity
(CC, the lung volume at which airways begin to close during ex-
piration). Note the decrease in FRC from sitting or standing to
supine and the further decrease with anesthesia. Note also the slight
increase in volumes with age, an effect of loss of elastic tissue in
the lung (as well as elsewhere in the body). Note also the much
faster increase in CC with age, making airway closure more com-
mon in elderly. Airway closure during a breath occurs at ages of
30 years and more in the supine anesthetized subject
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patients with chronic obstructive lung disease show less,
or even no, atelectasis during the 45 min of anesthesia of
study [32]. The mechanism that prevents the lung from
collapsing is not clear, but it may be airway closure oc-
curring before alveolar collapse takes place or an altered
balance between the chest wall and the lung that counters
a decrease in the lung dimensions.

There is a good correlation between the amount of
atelectasis and pulmonary shunt as measured by the
multiple inert gas elimination technique. The regression
equation based on 45 patients studied during inhalational
anesthesia has been calculated as: shunt=0.8 �atelectasis
+1.7 (r=0.81, p<0.01), with atelectasis as a percentage of
the lung area just above the diaphragm on CT and shunt
as a percentage of cardiac output. Interestingly, shunt did
not increase with age [7]. Combining CT and single
photon emission computed tomography confirms the
distribution of shunt and its location within the atelectatic
area [33] (Fig. 4).

Airway closure

In addition to atelectasis, intermittent closure of airways
can be expected to reduce the ventilation of dependent
lung regions. Such lung regions may then become “low
VA/Q” units if perfusion is maintained or not reduced to
the same extent as ventilation. Airway closure increases
with age [34] (see also Fig. 2) as does the perfusion to
“low VA/Q” regions [7]. Since anesthesia causes an FRC
reduction by 0.4–0.5 l [35], it may be anticipated that
airway closure becomes even more prominent in the
anesthetized subject. There is accumulating evidence that
this is indeed the case [36, 37, 38]. The reduced ventila-
tion in the lower half of the lung just above the atelectasis
that can be seen in Fig. 4 is thus reasonably explained by
airway closure. It can also be seen that ventilation is
smaller than perfusion, causing “low VA/Q” regions.
These contribute to impaired oxygenation during the an-
esthesia.

As much as 74% of the impaired arterial oxygenation
can be explained by atelectasis and airway closure taken
together, according to the equation [39]: PaO2 (mmHg)=
218–22 �ln atelectasis (cm2)�0.06 (CV�ERV) (ml)

Fig. 3 Computed tomography in a subject when awake (upper left),
during anesthesia with spontaneous breathing (upper right), after
muscle paralysis (lower left), and 1 h postoperatively (lower right).
Note the appearance of atelectasis already during spontaneous
breathing during anesthesia with a slight further increase with
mechanical ventilation (mainly explained by the end-expiratory
exposure in the paralyzed subject whereas during spontaneous

breathing the exposure covers most of the breath). Note also that
the anesthesia-induced atelectasis remains for some time in the
postoperative period. The large gray area in the middle of the right
lung field (to the left in the CT image) is the diaphragm and liver
that have been moved cranially during anesthesia. (Redrawn from
[23])
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(r=0.86, p<0.001) where (CV�ERV) indicates the amount
of airway closure occurring above FRC, CV is closing
volume, and ERV is expiratory reserve volume. A simple
three-compartment lung model can thus be constructed to
explain oxygenation impairment during anesthesia. The
model consists of one compartment with “normal” ven-
tilation and perfusion, one with airway closure that im-
pedes ventilation, and one of collapsed lung with no
ventilation at all. This is shown in Fig. 1 together with the
subsequent impact on the VA/Q distribution.

Anesthesia vs. muscle paralysis

How much of the lung function impairment is produced
by the anesthetic and how much by the muscle paralysis?
Interestingly, the anesthetic per se causes a fall in FRC
despite the maintenance of spontaneous breathing [20,
40]. The addition of muscle paralysis does not produce a
further drop in FRC. Since airway closure and atelectasis
depends on the lung volume the findings suggest that
most of the impairment is caused by the anesthesia per se
[2]. Figure 3 shows the appearance of atelectasis during
spontaneous breathing with no significant increase with
muscle paralysis. However, there may be a difference
between spontaneous and mechanical ventilation; that is,
the spontaneous breath may have a different effect on the

aeration of the lung than the mechanically delivered. The
diaphragm during the active respiration moves with the
dorsal, dependent part making the largest excursions
whereas during passive ventilation the anterior, nonde-
pendent part is pushed away more than other regions [41].
The spontaneous breath may therefore recruit collapsed
tissue in the bottom of the lung better than the mechanical
breath. The CT sequence in Fig. 3 does not provide
substantial support to this, and it may be that any positive
effect is that recruited tissue stays open with spontaneous
breathing whereas slow derecruitment occurs with me-
chanical breaths. This remains to be tested.

Anesthesia vs. acute respiratory distress syndrome

Hallmarks of acute respiratory failure and its most severe
form, acute respiratory distress syndrome (ARDS), are
hypoxemia, reduced respiratory compliance, and atelec-
tasis/consolidation as seen on CT of the lung [42, 43].
There are indeed qualitative similarities between anes-
thesia and ARDS, however with much more severe
changes in ARDS. Widespread but mainly dependent lung
regions collapse under their own weight, causing atelec-
tasis. In addition, alveoli may become fluid filled. How-
ever, can it be that the treatment of ARDS per se adds to
the atelectasis? This is indeed rather likely. Loss of

Fig. 4 Transverse computed tomography with atelectasis visible in
the dependent parts of both lungs (left) and corresponding vertical
distributions of ventilation and lung blood flow by isotope tech-
nique (single photon emission computed tomography, right) in an
anesthetized subject. Note that ventilation is distributed preferen-
tially to upper lung regions, contrary to what is normally seen in the

waking subject. Note also the decreasing ventilation in the lower
part and the complete cessation of ventilation in the bottom, cor-
responding to the atelectatic area. Perfusion, on the other hand,
increases down the lung, except for the bottom-most region where a
decrease is seen (so-called “zone IV”). (Redrawn from [28])
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muscle tone, as caused by muscle relaxants, anesthetics,
and sedatives, and the use of high oxygen concentration in
inspired gas are the prerequisites to produce atelectasis in
the lung healthy subject during anesthesia. This is com-
mon treatment in ARDS and certainly adds to the collapse
and consolidation caused by the disease itself. Mainte-
nance of muscle tone and modest use of supplemental
oxygen may be a better approach to treatment than abuse
of muscle depressants and oxygen. There is hardly any
confirmation of beneficial effects of supranormal oxygen
tension in blood, but it is frequently seen in the treatment
of ARDS!

Prevention of atelectasis during anesthesia

There are several interventions that can help prevent at-
electasis or even reopen collapsed tissue. These are dis-
cussed below.

PEEP

The application of 10 cmH2O positive end-expiratory
pressure (PEEP) has been tested in several studies and
been shown consistently to reopen collapsed lung tissue.
This is more likely an effect of increased inspiratory
airway pressure than of PEEP per se [26, 44]. However,
some atelectasis persists in most patients. Whether further
increase in the PEEP level reopens this tissue was not
analyzed in these studies. PEEP, however, appears not to
be the ideal procedure. First, shunt is not reduced pro-
portionately, and arterial oxygenation may not improve
significantly. Hewlett and coworkers [45] warned as early
as 1974 of the “indiscriminate use of PEEP in routine
anesthesia.” The persistence of shunt may be explained by
a redistribution of blood flow towards more dependent
parts of the lungs when intrathoracic pressure is increased
by PEEP. Under such circumstances any persisting atel-
ectasis in the bottom of the lung receives a larger share of
the pulmonary blood flow than without PEEP [46]. Also,
increased intrathoracic pressure impedes venous return
and decreases cardiac output. This results in a lower ve-
nous oxygen tension for a given oxygen uptake and re-
duces arterial oxygen tension [8]. Second, the lung rec-
ollapses rapidly after discontinuation of PEEP. Within
1 min after cessation of PEEP the collapse is as large as it
was before the application of PEEP [26].

Maintenance of muscle tone

The use of an anesthetic that allows maintenance of res-
piratory muscle tone prevents the formation of atelectasis.
Ketamine does not impair muscle tone and does not cause
atelectasis. This is the only anesthetic so far tested that

does not cause collapse. However, if muscle relaxation is
required, atelectasis appears as with other anesthetics
[22]. Another attempt is to restore respiratory muscle tone
by pacing of the diaphragm. This was tested by applying
phrenic nerve stimulation, which did reduce the atelec-
tatic area [47]. The effect, however, was small, and this
technique is certainly too complicated to be used as a
routine during anesthesia and surgery.

Recruitment maneuvers

The use of a sigh maneuver, or a double tidal volume, has
been advocated to reopen any collapsed lung tissue [48].
However, the atelectasis is not decreased by tidal volume
or by a sigh up to an airway pressure of 20 cmH2O. Not
until an airway pressure of 30 cmH2O is reached does the
atelectasis decrease to approximately one-half the initial
size. Complete reopening of all collapsed lung tissue re-
quires an inflation pressure of 40 cmH2O (Fig. 5) [48].
Such a large inflation corresponds to a maximum spon-
taneous inspiration and can thus be called a vital capacity
maneuver.

Because the vital capacity maneuver may result in
adverse cardiovascular events, the dynamics in resolving
atelectasis during such a procedure was analyzed [49]. It

Fig. 5 Computed tomography in a patient awake (left upper) dur-
ing anesthesia at zero airway pressure (Paw), i.e., after a normal
expiration (right upper), after an inflation to Paw 20 (left lower)
and 40 cmH2O (right lower) and a breath hold of 15 s. Note the
appearance of atelectasis in the dorsal part of the lungs during
anesthesia and the persistence of the atelecatsis even with inflation
to 20 cmH2O. Not until Paw was increased to 30 cmH2O did some
of the atelectasis reopen. A Paw of 40 cmH2O was required to open
up all atelectasis (From [48] with permission from the publisher)
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