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nderstanding How Opioids Contribute
o Reward and Analgesia

oward L. Fields, M.D., Ph.D.

Opioids acting at the mu opioid (MOP) receptor produce powerful analgesia. They also produce an intensely
rewarding effect that can lead to addiction. The analgesic effect of MOP receptor agonists derives from a direct
inhibitory effect on pain transmission at the spinal-cord level and through activation of a descending pain-
modulatory pathway. The rewarding effect of MOP agonists is the result of their actions in the mesostriatal dopamine
pathway classically associated with both natural and drug rewards. Both the analgesic and rewarding effect of MOP
agonists are best understood in the context of decision making under conditions of conflict. Pain is one of many
competing motivational states, and endogenous opioids suppress responses to noxious stimuli in the presence of
conflicting motivations, such as hunger or a threatening predator. When a food reward is available, MOP agonists
microinjected into the mesostriatal circuit promote its consumption, while concomitantly suppressing responses to
noxious stimulation. The mesostriatal “reward” circuit, thus, appears to perform a function critical to decision making
and can either amplify or suppress responses to noxious stimuli. Reg Anesth Pain Med 2007;32:242-246.

Key Words: Morphine, Pain modulation, Accumbens, Medulla, Periaqueductal gray, Threat, Palatability.
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ecause pain is ubiquitous and is associated with
robust objective and subjective responses, it

as been conceptualized in many different ways.
ne broadly accepted concept is that pain is the

ensation that results from somatic stimuli of suffi-
ient intensity to threaten tissue damage (see Sher-
ington, p. 2291). According to this view, the rele-
ant events for understanding pain revolve around
he properties of the noxious stimulus. Because
timulus intensity typically correlates with the like-
ihood of significant tissue injury, this view has
een affirmed by careful psychophysical studies
hat demonstrate human reports of perceived pain
ntensity are a robust and reproducible function of
timulus intensity.2 Furthermore, when one studies
he neurons of the afferent pathways that mediate
ain sensation, their firing rate is also a reliable
unction of stimulus intensity.3

These study results are all well and good; how-
ver, in the real world, when tissue injuries occur,
actors other than the properties of the stimulus
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lay a major role in determining what an individual
xperiences. Clinicians who see patients with long-
tanding pain problems are often struck by exacer-
ations and remissions in the severity of the pa-
ient’s pain that are independent of objective
hanges in a peripheral pathologic process. To the
ontrary, these fluctuations in pain level are often
orrelated with life stresses or changes in mood.
ome painful conditions (e.g., migraine headache
r fibromyalgia) have no identified tissue-damaging
rocess. The opposite also occurs; individuals (ath-
etes during a competition or soldiers in battle4,5)
ommonly sustain a significant acute injury without
xperiencing any immediate pain. Furthermore, pla-
ebo treatment often gives potent analgesia.6,7

These seemingly disparate observations show
hat a comprehensive framework for understanding
ain must encompass not only the reliable re-
ponses to controlled stimuli observed in the psy-
hophysical laboratory but also the perplexing vari-
bility that is seen by physicians in clinical practice.
n important step toward such a comprehensive
iew begins by asking the following question: What
iological purpose could possibly be served by hav-
ng such variable responses to similar tissue-dam-
ging stimuli? One simplifying framework that
oves us in that direction is to consider that pain is

ust one of the many motivations that determine
he behavior of an individual. Within this larger
ramework, pain can be conceptualized as a moti-
ation that often occurs in the setting of other

onflicting motivations. For example, consider that
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ou are hanging on a ledge by your fingers, the pain
n your hands and arms is growing, but if you let go,
he consequences are extreme, so survival demands
hat you tolerate much greater pain. Consider a less
xtreme example: You are sitting in an uncomfort-
ble chair. However, dessert is about to be served,
nd it is your favorite. Chances are, you will endure
he discomfort a little while longer.

Ethologists and experimental psychologists have
tudied such conflict situations in simplified form in
nimals. They have demonstrated that behavioral
esponses to pain can be suppressed under a variety
f conditions; for example, during micturition,8 in
he presence of a predator, or when confined to an
nvironment in which severe pain has previously
een experienced.9,10 Pain responses are also sup-
ressed in situations in which rodents anticipate
eward.11 Under many circumstances, such sup-
ression of pain responses can be prevented by
dministration of nonselective opioid-receptor an-
agonists such as naloxone. Interestingly, in this
egard, placebo analgesia can also be reversed by
aloxone.7,12 This finding indicates that endoge-
ous opioids are a key signaling molecule for pain
uppression and that pain suppression often occurs
n clinical situations in which the patient believes a
reatment effective for pain has been given.

This critical role of endogenous opioids in pain
uppression provides an important insight about
he biology of opioid analgesics. Opioid analgesics
uch as morphine do not simply inhibit pain-trans-
ission pathways; they mimic the action of endog-

nous opioids that are released in response to specific
onflict situations; that is, when a noxious stimulus is
resent, but a compelling reason exists to avoid
esponding. These compelling reasons include the
hreat of even greater injury or death or the possible
oss of some highly desired reward. In this article, I
ill briefly describe current views of where and
ow opioids act to reduce responses to pain.

he Pain Sensory System and Spinal
pioid Analgesia

Throughout the body are primary afferent noci-
eptors with terminals that contain receptor mole-
ules sensitive to mechanical deformation, temper-
ture extremes, lowering of pH, and a variety of
ctivating substances released by inflammation or
ther pathologic processes.13 With appropriate
timuli, these receptor molecules depolarize the pe-
ipheral terminals of unmyelinated and small-
iameter myelinated primary afferents. The depo-
arization induces action potentials that propagate
o the central terminals of the afferents in the su-

erficial layers (I, II, and V) of the gray matter of the t
pinal cord.3 When active, the spinal-cord terminals
f primary afferent nociceptors release glutamate,
nd many also corelease a peptidergic neurotrans-
itter. These neurotransmitters combine to pro-

uce prolonged firing of the second-order and
hird-order neurons in the dorsal horn. Activity in
hese spinal-cord projection neurons then propa-
ates to the brain stem and thalamus, where their
xons terminate. The brain-stem and thalamic neu-
ons that receive the nociceptive message from the
pinal cord project to a variety of forebrain struc-
ures, including the amygdala, the hypothalamus,
nd the somatosensory, anterior cingulate, and in-
ular cortices.14,15 Imaging studies have shown ro-
ust correlations between stimulus intensity, acti-
ation of these cortical areas, and patient reports of
ain.16

Opioids control the pain-transmission pathway
irectly through actions in the superficial layers of
he dorsal horn.17 Both primary afferent terminals
nd second-order dorsal-horn neurons bear mu
pioid (MOP) and delta opioid (DOP) receptors.18

pinal application of MOP agonists reduces excita-
ory neurotransmitter release from primary afferent
erminals by inhibiting a voltage-gated calcium
hannel.19,20 Opioids also directly depolarize sec-
nd-order dorsal-horn neurons by opening an in-
ardly rectifying potassium channel.21 These ac-

ions of opioids in the dorsal horn make a major
ontribution to the clinical efficacy of spinal appli-
ation of MOP agonists such as morphine.

pioids and Pain-Modulatory Systems

Although spinal opioids are highly effective for
ain relief, the opioid story has much more to it.
ery early on, investigators discovered that su-
raspinal sites contribute to the analgesic effect of
ystemically administered opioids.17 In fact, careful
apping of the forebrain by microinjection of
OPs showed very significant hot spots for analge-

ia in cortex, hypothalamus, midbrain periaqueduc-
al gray (PAG) matter, and rostral ventromedial
edulla (RVM).17,22,23 Furthermore, either lesions

r microinjection of opioid antagonists into some of
hese same sites blocked the analgesic effect of sys-
emic MOPs. These studies demonstrated that when
orphine is given systemically, it acts in a distrib-
ted and simultaneous manner at multiple su-
raspinal sites. Furthermore, cutting the dorsolat-
ral funiculus of the spinal cord blocks the analgesic
ffect of low-dose systemic morphine.23 This find-
ng showed that, in addition to its direct action on
he spinal cord, systemic morphine also activates
upraspinal structures that project down and con-

rol pain transmission at the level of the spinal cord.
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ubsequent work demonstrated a “top-down” pain
odulatory circuit that includes such structures as

rontal-lobe cortical regions and the hypothalamus
nd amygdala. These regions project to the PAG,
hich, in turn, relays via the RVM to the superficial

ayers of the dorsal horn.23 This anatomic arrange-
ent enables the descending system to control no-

iceptive transmission at the first central synapse,
here the nociceptive primary afferents terminate.
he component nuclei of this pain-modulatory
athway contain MOP receptors and a relatively
igh concentration of the endogenous opioid pep-
ides leucine and methionine enkephalin. Further-
ore, activation of the descending pathway at ros-

ral sites leads to release of endogenous opioids in
ownstream regions.24

ctivation of the Opioid Pain-
odulatory Pathway by Expectation

f Harm or Expectation of Reward

When rodents encounter a threat, such as a pred-
tor or an environment in which they have re-
eived a significant and inescapable noxious stimu-
us, they typically freeze and become transiently
nalgesic. This form of stress-induced analgesia can
e blocked by lesions of the central nucleus of the
mygdala and by opioid antagonists (e.g., nalox-
ne), given either systemically, into the PAG, or
nto the RVM.10,25,26 In this case, the analgesic effect
f being placed in a threatening context can be
onceptualized as a “decision” to not respond to an
mposed noxious stimulus. Its biological signifi-
ance is illustrated by placing a rat in proximity to a
redator, such as a cat. In this case, the value to the
at of avoiding movement is obvious because the
redator is “judged” by the rat to be the greater
hreat than the noxious stimulus.9,27 This “do not
espond to pain” decision is implemented by the
pioid-mediated, pain-modulatory pathway de-
cribed above. A “do not respond” decision has also
een demonstrated under conditions of anticipated
eward. Dum and Herz11 trained rats by feeding
hem on a hot plate held at room temperature. Of 2
roups of rats, the first group was fed regular labo-
atory chow, and the second group was fed highly
alatable chocolate treats. After several feeding ses-
ions, the rats were simply placed on the hot plate,
hich was then turned on. The rats fed regular

how jumped off the hot plate at about 5 seconds,
hereas those that had been fed the chocolate re-
ained on the hot plate almost twice as long. When

iven before the hot plate was turned on, naloxone
ad no effect on rats that had been fed regular

how, whereas it shortened the escape latency for v
he chocolate-fed rats, completely eliminating the
ifference between them and the chow-fed group.

idirectional Control of Pain:
rain-Stem ON and OFF Cells and
ehavioral Decision

Clearly, under certain conditions of conflict, the
do not respond to the noxious stimulus” decision is
mplemented by activation of a descending pain-

odulatory pathway that depends on endogenous
OP agonists. Interestingly, in this regard, the

omponent neurons of this descending modulatory
athway are of two distinct types: OFF cells that are
ctivated by MOP agonists and inhibit responses to
oxious stimuli and ON cells that are activated by
oxious stimuli, are inhibited by MOP agonists, and

acilitate responses to noxious stimulation.22 ON
nd OFF cells are found in the PAG, the dorsolateral
ons, and the RVM. RVM ON and OFF cells project
irectly to the dorsal horn, where they modulate
ain transmission. Because lesions of the RVM do
ot inhibit responses to noxious stimuli, removal of

acilitation is insufficient to block behavioral re-
ponses to noxious stimulation. This observation
eans that activation of RVM OFF cells (rather than

nhibition of ON cells) is critical for suppressing
esponses to noxious stimuli. On the other hand,
N cells can be activated under a variety of condi-

ions associated with hyperalgesia. These conditions
nclude acute opioid abstinence and tonic noxious
timuli. I propose that when the individual makes a
do not respond to pain” decision, OFF cells are
ctivated. In contrast, when the decision is to re-
pond, ON cells are activated.

esolimbic Dopamine Pathways
nd the “Decision Circuit”

These examples clearly show that under circum-
tances in which anticipated harm or reward con-
ict with the motivation to escape from a noxious
timulus, the decision to respond to the greater
hreat or to the reward involves inhibition of the
esponse expected from the noxious stimulus. This
do not respond to pain” decision is typically im-
lemented by the opioid-mediated, descending
ain-modulatory system via the PAG and RVM pro-
ection to the dorsal horn. Conversely, the decision
o respond to the noxious stimulus is promoted by
ctivation of the descending facilitatory pathway,
ith activation of ON cells. Although interesting

nd informative, this observation leaves open a
ore interesting and more general question: How

nd where in the nervous system is the “respond”

ersus “do not respond” decision made?



e
u
w
F
c
a
h
t
b
o
i
a
r
h
t
p
n

l
k
s
i
i
a
t
n
N
a
v
a
t
s
a
m
t

i
a
S
v
f
e
p
n
i
p
i
t
p
c
i
a
t
t

f
a

t
c
s
n
a
n
a
w
t
p
w
t

1

1

1

1

1

1

Understanding Opioid Contributions • Fields 245
The answer to this question is, as one might
xpect, quite complicated, and it appears to depend
pon the nature of the drive state that is competing
ith noxious input for access to the motor system.
or the sake of this short review, I will focus on the
onflict between a palatable food reward and

concomitant noxious stimulus. Several studies
ave confirmed the competitive interaction be-
ween feeding (approach) and escape (avoidance)
ehaviors. Food consumption raises escape thresh-
lds for noxious stimuli, and noxious stimuli will
nterrupt feeding.28,29 Furthermore, as discussed
bove,11 animals that expect a highly palatable food
eward in a specific context have significantly
igher pain thresholds when they are in that con-
ext. Importantly, their ability to wait for the ex-
ected reward was blocked by the opioid antagonist
aloxone.
Although the specific brain circuitry that under-

ies the analgesic effect of reward expectancy is not
nown, a reasonable hypothesis is that the meso-
triatal circuit implicated in drug and food reward is
nvolved. Microinjection of MOP agonists directly
nto the ventral striatum (specifically the nucleus
ccumbens [NAc]) selectively enhances consump-
ion of palatable food30 and suppresses responses to
oxious stimuli.31 MOP agonist injection into the
Ac activates neurons in the lateral hypothalamus
nd in the dopaminergic brain-stem region, the
entral tegmental area.32 Furthermore, injection of
ddicting drugs such as morphine or cocaine into
hese regions produces both reward and analge-
ia.33,34 These studies link anticipated reward to
nalgesia and are consistent with the idea that
esostriatal dopamine neurons are critical for

his effect.
Electrophysiologic studies of the NAc yield some

nsight into the decision-making process. The NAc
ppears to contain multiple subsets of neurons.
ome of these subsets encode the relative reward
alue or the expected reward value of a palatable
ood.35,36 Evidence also suggests that neurons that
ncode anticipated reward promote reward ap-
roach and consumption.37 Other subsets of NAc
eurons appear to inhibit these approach behav-

ors, and I, along with other investigators, have
roposed that they promote competing behav-
ors.36,37 One possibility is that the NAc neurons
hat promote the response to pain inhibit those that
romote consumption of palatable food. In any
ase, these studies indicate that the ventral striatum
s a critical element in the circuitry involved in
ction selection under conditions of conflict. Fur-
hermore, MOPs in this region promote the selec-

ion of actions that lead to consumption of palatable
oods and, concomitantly, suppress the selection of
ctions that lead to escape from noxious stimuli.
In summary, conceptualizing pain as a motiva-

ional state that typically occurs in the setting of
onflicting motivations leads to a deeper under-
tanding of both the biological meaning and the
eural mechanism of opioid analgesia. Threat or
nticipated reward can elicit the release of endoge-
ous opioids that inhibit pain responses through
ctivation of a descending pain-modulatory path-
ay. Opioids also directly affect the decision process

hrough an action in the mesostriatal dopamine
athway, where they concomitantly promote re-
ard seeking and raise the threshold for responding

o noxious stimulation.
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