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There have been few, if any, significant new drugs
introduced into the practice of anesthesiology in the
last 10 years. Look at when the Food and Drug Ad-
ministration approved our “new” drugs (Table 1):

This lack of progress does not reflect a lack of
unmet medical needs. If we examine the three
classes of drugs typically associated with anesthesia
practice, we find significant problems with the
present armamentarium.

There are numerous problems with the available
hypnotics. The inhaled anesthetics, as a class, appear
to be pronociceptive at low concentrations (1–3), po-
tentially increasing postoperative pain. Propofol
stings on injection, despite the various tricks used to
attenuate this brief, but intense, pain (4,5). Propofol
infusions are associated with acidosis and multiorgan
failure in children (6) and occasionally in adults (7).
Thiopental is unsuitable for maintenance because of
accumulation. Etomidate for induction causes myo-
clonus, and maintenance of anesthesia results in adre-
nal suppression (8,9).

Our available analgesics are limited to opioids, ket-
amine, and nonsteroidal antiinflammatory drugs
(NSAIDs). The opioids share the common side effects
of ventilatory depression, ileus, sedation, pruritus, uri-
nary retention, and addictive potential. Ketamine
causes psychosis. The nonselective NSAIDs are asso-
ciated with increased risk of bleeding and may delay
bone healing, whereas the cyclooxygenase (COX)-2
selective NSAIDs are prothrombotic (10).

As to muscle relaxants, we still do not have a re-
placement for succinylcholine. Rapacuronium showed
promise when it was approved in 1999, but it lasted on
the market for less than 1 year because it causes severe
bronchoconstriction (11) by an unusual action on M3
muscarinic receptors (12). In fact, the last exciting
development in muscle relaxants was when vecuro-
nium went generic in 1995.

The good news is that we are not an orphaned
specialty. There are exciting, new pharmaceuticals in
the pipeline that may profoundly change the practice
of anesthesia over the next decade. I will quickly sum-
marize information that is publicly available about
these. By way of disclosure, I have consulted to Alza,

Amphastar, AstraZeneca, Delex, Durect, Endo, Glaxo,
Guilford, Painceptor, and Theravance, whose prod-
ucts are mentioned below.

Hypnotics
A number of companies are working on alternative
formulations for propofol (13). The primary goals are
to remove or alter the lipid, which may be associated
with propofol syndrome. The “Diprivan” formulation
of propofol, the original product from AstraZeneca, is
a mixture of propofol in Intralipid, a mixture of long-
chain triglycerides. Intralipid may cause dysfunction
of the reticuloendothelial system (14,15). Furthermore,
the pain on injection with propofol is associated with
the free fraction, (16,17) and modifications of the for-
mulation can potentially reduce the free propofol con-
centration (18).

The Braun Corporation introduced the “Lipuro”
formulation emulsifying propofol in medium- and
long-chain triglycerides. The Lipuro formulation does
not alter the pharmacokinetics of propofol (16), but it
is associated with less pain on injection (19,20). Tri-
glyceride chain length influences how triglycerides
affect the immune system (21), and the medium-chain
triglyceride formulations have been shown to be ben-
eficial in vitro (22). However, I could not find any
studies suggesting that use of the medium-chain for-
mulation of propofol had any beneficial effects on the
immune system when compared with the original
Diprivan formulation.

Another medium-chain triglyceride propofol for-
mulation is IDD-D propofol, developed by RTP
Pharma, a Canadian company. This is a 2% formula-
tion, twice the concentration of propofol found in
Diprivan. Although it reduces the lipid load (as would
be expected, because it is twice as much propofol per
cc of lipid vehicle) (23), it is associated with increased
pain on injection and, interestingly, a slower onset of
drug effect than Diprivan (24). Increased pain on in-
jection has also been reported for the “Ampofol” low-
fat propofol formulation developed by Amphastar
(25,26).
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Cyclodextrins are water-soluble cyclic carbohy-
drates. As shown in Figure 1 they contain a hydro-
phobic cavity that can accommodate a lipid-soluble
drug molecule (27). Egan and colleagues documented
equivalent propofol pharmacokinetics and pharmaco-
dynamics with a sulfobutyl ether-�-cyclodextrin and
Diprivan (28,29).

Another option being explored for propofol deliv-
ery is micelles, as shown in Figure 2. These micelles
are small, which makes formulations of propofol in
micelles visually clear (30). Maelor, a UK pharmaceu-
tical company, has developed a micellar formulation
of propofol that is apparently associated with in-
creased pain on injection (31). A clear formulation of
propofol, Cleofol, has recently been introduced in In-
dia by Themis Medicare. The clear appearance sug-
gests that the propofol is emulsified in micelles, al-
though the manufacturer has not disclosed the
preparation. This formulation is associated with an
89% incidence of severe pain on injection (32), as well
as damage to infusion sets (33) and veins (34). In fact,
this formulation is so problematic that one group of
investigators concluded that the Cleofol propofol for-
mulation “should only be used for patients who de-
mand a pure vegetarian induction agent” (35).

Finally, Guilford Pharmaceuticals has been pursu-
ing development of water-soluble prodrug of propo-
fol, termed “Aquavan” (36,37). As shown in Figure 3,
Aquavan is a phosphate-linked propofol prodrug that
releases phosphate and formaldehyde on hydrolysis.
The propofol concentration peaks approximately
8 min after an injection of Aquavan (38). Almost all
subjects receiving Aquavan report a paresthesia on
injection (39) that has been described as “a transient
unpleasant sensation of burning or tingling of moder-
ate severity in the anal and genital region” (40). The
slow onset of sedation with Aquavan renders it un-
suitable to replace propofol as an anesthetic induction
agent. Aquavan is now being developed by MGI
Pharma for procedural sedation.

A truly novel hypnotic is currently in development
at Theravance Corporation. This compound has been
described only in abstracts (41–43). Figure 4 shows the
offset of drug effect in rats after Diprivan infusions of
20 min, 3 h, and 7 h (left bars), and THRX-918661
(right bars). No available data suggests that this drug
has advanced to clinical trials, but a hypnotic with

ultra-rapid metabolism could revolutionize anesthetic
practice as much as Diprivan did 20 years ago.

Xenon continues to be explored for its hypnotic
properties, and one company, Protexeon, is currently
developing xenon for commercial use (44). Xenon has
potent analgesic properties (45,46). However, much of
the current interest in xenon is based on its neuropro-
tective properties (47–49). Xenon has been shown to

Table 1.

• Desflurane 3 1992
• Mivacurium 3 1992
• Rocuronium 3 1994
• Cisatracurium 3 1995
• Sevoflurane 3 1995
• Remifentanil 3 1996
• Dexmedetomidine 3 1999
• Since then 3 Nothing!

Figure 1. Cyclodextrins, water-soluble cyclic carbohydrates, contain
a hydrophobic cavity that can accommodate a lipid-soluble drug
molecule. From Baker and Naguib (13).

Figure 2. Micelles. From Baker and Naguib (13).

Figure 3. Aquavan, a water-soluble prodrug of propofol. From
Gibiansky et al. (38).
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produce more rapid recovery than isoflurane, with a
favorable cardiovascular and respiratory profile (50).
The primary obstacle towards use of xenon is the high
cost, estimated to be approximately $160 for a 4-h
anesthetic (51). The cost is not astronomical, given that
xenon comes close to being an “ideal” inhaled anes-
thetic, but the cost has precluded any company from
bringing xenon to market.

Melatonin and melatonin analogs possess hypnotic
properties when injected IV, comparable to the prop-
erties of propofol and thiopental, at least in rats (52).
The electroencephalographic (EEG) effects of IV mel-
atonin resemble the effects of thiopental and propofol
(53). The melatonin analog 2-bromomelatonin is more
potent than melatonin. It also renders rats uncon-
scious, with rapid onset and recovery, similar to that
observed with propofol (54). Low concentrations of
2-bromomelatonin also appear to be analgesic in rats,
unlike propofol, which has no analgesic properties. To
date no human data exist on the use of melatonin to
induce or maintain anesthesia.

Muscle Relaxants

The drug shown in Figure 5 is GW280430A, and asym-
metric mixed-onium chlorofumarates, currently under
development by GlaxoSmithKline (55,56). This is a
novel structure for a muscle relaxant, although it has
many similarities to mivacurium. GW280430A under-
goes metabolism in the plasma by alkaline hydrolysis
and, apparently more significantly, spontaneous for-
mation of cysteine adducts, deactivating the molecule
(57). Because this is a spontaneous reaction in blood, it
does not depend on any catalytic activity and thus
should be associated with very little genetic variability
in the population.

The onset of action of GW280430A is only slightly
slower than succinylcholine. In human studies, peak
effect at a dose of 0.18 mg/kg (ED95) ranges from 2.3
to 3 min, with recovery in approximately 10 min (56).
Increasing the dose to 0.54 mg/kg (three times the
ED95) hastens the onset time to 1.2 to 1.8 min and

increases block duration to approximately 15 min.
Higher doses cause the release of histamine, similar to
mivacurium, without significantly enhancing the rate
of onset. GW280430A comes the closest to a true suc-
cinylcholine replacement of any nondepolarizing
muscle relaxant to date.

The other exciting development for muscle relax-
ants is sugammadex, a name as novel as the com-
pound. Sugammadex is a cyclodextrin specifically de-
signed to bind rocuronium (58). Shown in Figure 6,
sugammadex has a pocket that specifically binds rocu-
ronium (59). By binding the available rocuronium,
sugammadex rapidly and completely reverses neuro-
muscular blockade, even in the presence of an ongoing
infusion of rocuronium. In human studies, sugamma-
dex 8.0 mg/kg reversed neuromuscular blockade
within 1 min of administration, without any apparent
toxicity (60). If sugammadex does not have some as-
yet unappreciated toxicity, it will render conventional
pharmacological reversal of neuromuscular blockade
obsolete. Patients will no longer be exposed to the
nausea-inducing properties of neostigmine, on the
tachycardic effects of atropine and glycopyrrolate.
Moreover, imperfect titration of a muscle relaxant oc-
casionally creates a block that cannot be readily re-
versed at the conclusion of anesthesia. This will no
longer be an issue with sugammadex, as even pro-
found neuromuscular blockade can be readily re-
versed by giving an adequate dose of sugammadex.

Analgesics

Analgesics are perhaps the most exciting area of phar-
maceutical development related to the practice of an-
esthesia. This review will cover new developments in
opioid pharmacology, followed by a discussion of
other centrally acting analgesics, and conclude on the
subject of peripherally acting analgesics.

Opioids. Perhaps the most remarkable change in
analgesics in the past 10 years has been the morphing
of fentanyl from an esoteric IV analgesic exclusively

Figure 4. Offset of drug effect in rats after Diprivan infusions of
20 min, 3 h, and 7 h (left bars), and THRX-918661 (right bars). From
Beattie et al. (41). Figure 5. GW280430A, and asymmetric mixed-onium chlorofuma-

rates. From Savarese et al. (55).
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used by anesthesiologists to a drug commonly used
for many kinds of chronic pain. This has been accom-
plished through the introduction of transdermal fent-
anyl for cancer pain, and the subsequent introduction
of oral transmucosal fentanyl citrate for “break-
through pain” in cancer patients. Duragesic sales were
$1.2 billion in 2004, making it one of the most com-
mercially successful analgesics ever introduced. Actiq
sales in 2005 were expected to exceed $400 million.
Cephalon, the company that sells Actiq, is now work-
ing on a rapidly dissolving sublingual fentanyl tablet
called “Oravescent,” which provides more rapid onset
than the oral transmucosal fentanyl delivery system
(61).

Pharmaceutical companies continue to innovate
with fentanyl delivery systems. Alza recently received
approval for “E-trans” fentanyl, a transdermal ionto-
phoretic fentanyl delivery system. As shown in Figure
7, pain relief with the E-trans fentanyl delivery system
was comparable to that of patient-controlled analgesia
(PCA) morphine for postoperative analgesia (62).

Another route of fentanyl delivery is through the
lungs. Inhaled free fentanyl has a rapid peak and
offset, resembling IV administered fentanyl (63). How-
ever, the rate of onset and the duration of effect can be
modulated by encapsulating inhaled fentanyl in lipo-
somes (64), an approach being explored by Delex
pharmaceuticals.

Sufentanil is also being adapted to the needs of
patients with chronic pain. Durect, an Alza spinoff, is
developing a system to deliver systemic sufentanil
over a period of months with an injectable osmotic
pump (65). The device, shown in Figure 8, is approx-
imately the size of a matchstick. Because sufentanil is
highly potent, this one device can potentially delivery
3 to 6 mo of sufentanil to a patient with chronic,
unrelenting pain.

Morphine is another old analgesic that has been
reintroduced recently with a novel delivery system. In

2004 Endo Pharmaceutical introduced “DepoDur,”
epidural morphine in a liposomal formulation. A sin-
gle epidural injection provides up to 2 days of effec-
tive analgesia after hip replacement surgery (66). This
formulation of extended-release morphine has also
proven effective after cesarean delivery (67) and ab-
dominal surgery (68).

Morphine-6-glucuronide is another “old” analgesic.
However, this active metabolite of morphine has
never been introduced into clinical practice. Neverthe-
less, it is currently being developed for postoperative
analgesia by CeNeS Pharmaceuticals. Studies suggest
that morphine-6-glucuronide causes less ventilatory
depression per an equipotent analgesic dose than mor-
phine in human volunteers (69). It may also have
activity in peripheral antinociception (70).

Finally, there are exciting developments in drugs
that antagonize opioid side effects. Two drugs are
very near Food and Drug Administration approval,
alvimopan from Adolor and methylnaltrexone from
Progenics. Alvimpan, the “Molecule of the Month” in
June 2005 (71), is an orally delivered �-opioid antag-
onist to prevent opioid-induced ileus (72). It has very
little systemic absorption, and it does not cross the

Figure 6. Sugammadex, a cyclodextrin specifically designed to bind
rocuronium. From Epemolu et al. (59).

Figure 7. Pain relief with the E-trans fentanyl delivery system was
comparable to that of patient-controlled analgesia (PCA) morphine
for postoperative analgesia. From Viscusi et al. (62).

Figure 8. Injectable osmotic pump developed by Durect to deliver
systemic sufentanil over a period of months. From
www.durect.com.
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blood-brain barrier. It effectively reverses opioid-
induced ileus (73). Methylnaltrexone is absorbed sys-
temically after oral delivery but does not cross the
blood-brain barrier. It is being developed for oral, IV,
and subcutaneous delivery. It also effectively reverses
ileus, and it is exceedingly well tolerated (74).

In a landmark study, Manzke (an anesthesiology
resident at the time) and colleagues identified the role
of 5HT4 (a) agonists on opioid-induced ventilatory de-
pression (75). Specifically, a Novartis 5HT4 (a) agonist,
BIMU8, selectively reversed fentanyl-induced ventila-
tory depression, without affecting analgesic response
in rats. This creates the possibility that opioids could
be co-formulated with 5HT4 (a) agonists, preventing
opioid-induced ventilatory depression.

Other Centrally Acting Analgesics. Melatonin pos-
sesses analgesic activity that is reversed by naloxone
(76). Recent studies suggest that the analgesic activity
of melatonin is related to the release of �-endorphin
(77). Melatonin also has anti-inflammatory properties
that may contribute to its analgesic effects (78).

Cannabinoids are also a potentially important new
class of analgesics. Dronabinol is a synthetic �-9-
tetrahydrocannabinol that has demonstrated analgesia
in patients with multiple sclerosis (79). However, the
use of dronabinol is limited by dizziness and other
central effects. Ajulemic acid is a novel cannabinoid
with no psychotropic effects (80). It has been shown to
be effective in chronic neuropathic pain (81,82).

Peripherally Acting Analgesics. Peripheral kappa
opioid agonists continue to be pursued as analgesic
targets (83). There is evidence that peripheral kappa
agonists can be effective analgesics (84,85). Adolor
Corporation continues to explore peripheral � opioid
agonists as well.

Many peripheral opioids act through the “Transient
Receptor Potential V1” (aka VR1 and TRPV1) ion
channel. This channel, located mostly on C fibers in
the periphery, is sensitive to capsaicin, acid, heat, and
some lipids. Opening this channel permits the influx
of calcium, triggering an action potential.

Calcium is toxic to C fibers in high doses. Capsaicin
can hold this channel open long enough to permit
enough calcium to enter to cause the C fiber to become
non-functional. This is the basis of capsaicin use for
chronic pain (86). Resiniferatoxin permits enough
calcium to enter that the C fiber is permanently
destroyed, providing long-term analgesia through
selective chemical ablation of C fibers (87–89). Resinif-
eratoxin is another potentially revolutionary develop-
ment in anesthetic pharmacology, particularly in the
treatment of severe chronic pain in terminally ill
patients.

Acid causes pain both through TRPV1 receptors as
well as through specific, acid-sensing ion channels
(90). The “ASIC” channels blocked by the diuretic

amiloride are promising candidates for analgesic de-
velopment (91). Painceptor, a Canadian company, cur-
rently has identified candidate ASIC antagonists.

Conclusion
After a decade of relatively sparse pharmaceutical
industry interest in anesthetic drugs, we are now
posed to see dramatic developments in the three major
classes of drugs primarily associated with our spe-
cialty: hypnotics, muscle relaxants, and analgesics. Of
these, the analgesic pipeline has the most candidates,
and it addresses the largest unmet medical need of our
specialty.
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