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Pulmonary Artery Catheterization and
Esophageal Doppler Monitoring in the
ICU*

Paul E. Marik, MD, FCCP

The clinical assessment of cardiac performance and ventricular preload is notoriously unreliable
in critically ill patients. Consequently, a number of technologies have been developed to provide
the clinician with indexes of cardiovascular function to assist in therapeutic decision making.
Foremost among these is the pulmonary artery catheter (PAC). Indeed, the PAC has largely
shaped the practice of modern critical care. Yet, the information provided by the PAC is largely
misunderstood, and its efficacy is never proven. Recently, continuous esophageal Doppler
monitoring has emerged as an alternative to pulmonary artery catheterization. This paper
evaluates the clinical utility of the PAC and esophageal Doppler monitoring in assessing the
hemodynamic status of ICU patients. (CHEST 1999; 116:1085–1091)

Key words: cardiac function; esophageal Doppler; ICU; pulmonary artery catheter; pulmonary artery occlusion
pressure; right ventricular end-diastolic volume index

Abbreviations: CI 5 cardiac index; CO 5 cardiac output; Ftc 5 corrected flow time; LVEDP 5 left ventricular
end-diastolic pressure; LVEDV 5 left ventricular end-diastolic volume; PAC 5 pulmonary artery catheter;
PAOP 5 pulmonary artery occlusion pressure; Pcap 5 pulmonary capillary pressure; PEEP 5 positive end-expiratory
pressure; RVEDV 5 right ventricular end-diastolic volume; RVEDVI 5 right ventricular end-diastolic volume index;
RVEF 5 right ventricular ejection fraction

T he bedside assessment of cardiac performance
and ventricular preload is perhaps one of the

most difficult and yet vitally important problems in
critical care medicine. The traditional clinical signs
of cardiac function such as BP, urine output, jugular
venous distension, skin perfusion, and skin turgor are
unreliable in the ICU setting. This is illustrated by
the studies of Connors et al1 and Fein and col-
leagues,2 who demonstrated that in the majority of
instances, critical care staff were unable to correctly
predict a patient’s hemodynamic profile from clinical
examination alone.

According to the Frank-Starling principle, the
vigor of cardiac contraction relates directly to muscle
fiber length at end-diastole.3 This presystolic fiber

stretch, or preload, is proportionate to end-diastolic
volume.4 Left ventricular end-diastolic volume
(LVEDV; preload) is therefore a major factor deter-
mining cardiac output (CO).3 In order to make
rational management decisions in terms of fluid and
vasoactive drug therapy, the intensivist needs to
correctly assess the patient’s preload. An accurate
knowledge of preload is essential in determining the
adequacy of fluid resuscitation. The clinician needs
to be able to predict the change in CO in response to
a fluid challenge (ie, recruitable CO). In addition, an
estimation of CO is essential in patients with evi-
dence of inadequate tissue perfusion.5 Ideally, the
technology that provides these hemodynamic param-
eters should be noninvasive, accurate, reliable, and
continuous. Currently, no single monitoring tool
meets all of these criteria. Thermodilution CO com-
bined with radionuclide ejection fraction (and the
calculation of LVEDV) is the most accurate method
of determining cardiac performance in the ICU.
However, radionuclide cardiac imaging in the ICU is
essentially a research tool with many limitations.
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Although the risk/benefit ratio of pulmonary artery
catheterization has yet to be determined, this proce-
dure has become one of the most common proce-
dures performed in critically ill patients around the
world.6–11 This paper will outline the utility and
limitations of the pulmonary artery catheter (PAC)
and the emerging role of esophageal Doppler mon-
itoring in assessing cardiac performance in the ICU.

The PAC

When faced with a critically ill patient with hemo-
dynamic instability, the question that is often posed
is whether a PAC should be inserted. There is little
scientific data to help answer this question. It is clear
that the inappropriate use and poor understanding of
the PAC leads to excessive mortality.9,12–14 It is also
evident that the PAC is a very useful diagnostic tool
that aids in the management of critically ill patients.
PACs should therefore only be used by physicians
who have extensive experience in their use. Further-
more, the data must be interpreted in the context of
the clinical scenario. Too often, the attending physi-
cian reviews the patient’s “numbers” without ever
setting eyes on the patient.

Thermodilution CO

There is no true reference technique for the
clinical determination of CO. The reproducibility
and accuracy of the thermodilution method of CO
determination has been compared with both the
Fick method and the dye-dilution method.15–18 An
analysis of this data reveals that the three methods
are of equal merit and can be used as independent
references.19 However, an assessment of the repro-
ducibility of the thermodilution technique demon-
strates that there must be a difference of at least 15%
between the mean of three CO determinations to be
clinically significant.19

The Pulmonary Artery Occlusion Pressure and
Preload

Since its introduction to clinical medicine almost
30 years ago, the PAC has been assumed to be a
reliable and valid indicator of left ventricular pre-
load. Indeed, perhaps the most common reason for
inserting a PAC in the ICU is to measure the
pulmonary artery occlusion pressure (PAOP) in or-
der to assess a patient’s “volume status.” However, it
was not long after the introduction of the PAC that
studies began to appear demonstrating that the
PAOP was a poor reflection of preload.20,21 Despite
the fact that this observation has been confirmed in
a multitude of studies, many physicians still errone-
ously believe that the PAOP is useful in assessing a

patient’s intravascular volume. This factor together
with the incorrect interpretation of the PAOP may
largely explain the excess mortality associated with
the use of the PAC.9,12–14,22

For the PAOP to be an accurate measure of
LVEDV, all of the following criteria must be met: (1)
a valid and accurate PAOP tracing is obtained; (2)
the PAOP is correctly interpreted; (3) the PAOP is
an accurate refection of the left ventricular end-
diastolic pressure (LVEDP); and finally, and most
importantly, (4) that there is a linear and predicable
relationship between the LVEDP and the LVEDV.
As will become evident, in most clinical situations it
is rare for all of these criteria to be met, and the
PAOP therefore becomes a very poor and misleading
measure of left ventricular preload.23

Morris and colleagues24 assessed the technical
adequacy of 2,711 PAOP recordings. These authors
reported that 31% of these recordings were techni-
cally inadequate, resulting in unreliable readings. It
should be appreciated that numerous factors, includ-
ing improper positioning of the PAC, incorrect cali-
bration and balancing of the transducer, and exces-
sive damping may result in invalid PAOP values.23–25

Even if a valid PAOP waveform is obtained, it is
likely that in as many as 50% of cases, the PAOP will
be incorrectly interpreted.12–14 Even among physi-
cians with special qualifications in critical care med-
icine, there is often disagreement as to the correct
interpretation of the PAOP tracing, resulting in large
interobserver variability.22,26 These factors add to the
unreliability of the PAOP reading.

The distending pressure resulting in left ventricu-
lar diastolic filling is the difference between the
simultaneous intracavity pressure and the juxtacar-
diac pressure. A noncompliant ventricle or one sur-
rounded by increased intrathoracic pressure requires
a higher-than-normal intracavitary pressure to
achieve any specified presystolic volume. Increased
intrathoracic pressure associated with positive pres-
sure ventilation and the positive end-expiratory pres-
sure (PEEP) has a significant effect on juxtacardiac
pressure. A PEEP . 8 to 10 cm H2O increases
juxtacardiac pressure and, therefore, the pressure
gradient between the left atrium and atmospheric
pressure, but not the transmural distending pres-
sure.27 This artifactually increases the PAOP.27 For-
mulas that subtract a percentage of the PEEP from
the PAOP are of little practical value, because the
fraction of the PEEP that is transmitted to the heart
is difficult to estimate.27,28

The use of the PAOP to measure left ventricular
preload in absolute or relative terms assumes a direct
relationship between the LVEDP and the LVEDV.
This pressure-volume curve which describes left
ventricular compliance is normally curvilinear. Fur-
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thermore, alterations in left ventricular compliance
shifts the pressure-volume curve. Factors that alter
left ventricular compliance include left ventricular
preload, left ventricular afterload, left ventricular
mass, and ventricular fiber stiffness. Myocardial isch-
emia, sepsis, diabetes, obesity, aging, sustained
tachycardia, dialysis, cardioplegia, as well as other
factors alter myocardial fiber stiffness.29–39 In addi-
tion, the left ventricular pressure-volume curve is
affected by the degree of right ventricular filling.
Since the two ventricles are physically coupled by the
interventricular septum and by the constraining ef-
fects of the pericardium, the end-diastolic pressure-
volume curve of either ventricle is dependent on the
diastolic volume of the other. In normal control
subjects, volume unloading will result in a decrease
in both the LVEDV and the right ventricular end-
diastolic volume (RVEDV). However, in patients
with pulmonary hypertension, a decrease in venous
return with a reduction in the RVEDV may be
associated with a paradoxical increase in the
LVEDV.40 The increase in the LVEDV occurring in
association with a decrease in the RVEDV is referred
to as diastolic ventricular interaction.41 In critically ill
patients, many of the factors that determine left
ventricular compliance are in a state of dynamic flux,
making it exceedingly difficult to estimate the
LVEDV from the LVEDP. This alteration in the left
ventricular pressure-volume curve is the major factor
accounting for the poor relationship between the
PAOP and the LVEDV. This observation was noted
as early as 1975, when Baek and colleagues20 dem-
onstrated a poor correlation between blood volume
(as measured by an isotope technique) and the
PAOP. Subsequently, Calvin and coworkers21 dem-
onstrated a poor relationship between the LVEDV
(as measured by radionuclide angiography) and the
PAOP. Thys et al42 compared the PAOP to the
LVEDV as determined by two-dimensional echocar-
diography. These authors found a poor correlation
(r 5 0.34) between these two variables. The value of
preload determination in any individual patient,
however, is being able to predict the change in CO in
response to fluid loading (ie, recruitable CO). Nu-
merous studies in diverse clinical settings have dem-
onstrated that the PAOP is a very poor estimate of
left ventricular preload and a poor predictor of the
change in CO in response to a fluid challenge.43–58

From the available data, the PAOP must be regarded
as an unreliable index of the LVEDV both in large
patient groups as well as in individual patients
assessed over time.23 The change in the PAOP in
response to fluid loading reflects left ventricle com-
pliance rather than providing an indication of the
adequacy of left ventricular filling.23 The change in

CO in response to fluid loading, however, provides
an indication of the position of the ventricle on the
Frank-Starling curve.

The Volumetric PAC

The use of a PAC with a rapid response thermistor
and an ECG electrode allows recognition along the
rewarming phase of the thermodilution curve of a
series of plateaus that are produced by the pulsatile
ejection of blood from the right ventricle. The
temperature drop between two successive beats
allows computation of the right ventricular ejection
fraction (RVEF). Once the RVEF is known, the right
ventricular end-systolic and end-diastolic volumes
can be calculated from the stroke volume. Several
groups of investigators have validated the RVEF
measurements obtained by the thermodilution tech-
nique by comparing them with radionuclide imaging,
echocardiography, and biplane angiography.59–63

It has been suggested that the RVEDV index
(RVEDVI) is a better indicator of preload in criti-
cally ill patients than the PAOP. Several groups of
investigators have reported an excellent correlation
between the RVEDVI and cardiac index (CI), and
they have found the RVEDVI to be superior to the
PAOP in determining the preload status of pa-
tients.44,45,47,49–52,55,64 However, some authors have
suggested that the correlation between the RVEDVI
and CI is related to the fact that these two variables
are mathematically coupled.65 However, the correla-
tion between the RVEDVI and CI remains when the
variables are mathematically uncoupled or the CI is
determined by the Fick method.45,64 For any given
patient, the relationship between the RVEDVI and
CI will depend on right ventricular function. This
was recently illustrated by the report of Cheatham
and colleagues,53 who demonstrated that the corre-
lation coefficient between RVEDVI and CI im-
proved when it was stratified by RVEF.

The value of the RVEDVI is the ability to predict
the change in CO in response to a fluid challenge.
Diebel and colleagues55 demonstrated the RVEDVI
to be an excellent predictor of recruitable CO,
whereas the PAOP performed poorly. The optimal
RVEDVI will depend on right ventricular function
(ie, RVEF), and it is likely that this value will change
during the course of a patient’s illness. The optimal
RVEDVI has been reported to range from 90 to 140
mL/m2.51,52,55 When a volumetric PAC is used, the
optimal RVEDVI should be determined by plotting
RVEDVI against CI (see Figure 1). The volumetric
PAC is particularly useful in determining the preload
in patients who are being ventilated with PEEP, a
setting in which the PAOP reading becomes unin-
terpretable.28,49,53,61
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Determination of Pulmonary Capillary Pressure

It has been assumed that the PAOP reflects the
pulmonary capillary pressure (Pcap). This is based
on the assumption that there is minimal resistance
through the pulmonary veins, because, as the balloon
is inflated and flow stops, resistance is no longer
taken into account in the measurement of PAOP. In
normal lungs, with minimal resistance in the pulmo-
nary veins, this assumption may be correct and the
PAOP may reflect the Pcap. However, various stim-
uli such as hypoxia and inflammatory mediators
affect pulmonary arterial and venous resistance to
varying degrees. Therefore, in the presence of in-
creased pulmonary arterial and venous resistance, as
in disorders such as ARDS and sepsis, there is no
longer a consistent relationship between Pcap and
PAOP.66 Pcap, not PAOP, is the driving pressure
forcing fluid from the pulmonary microvasculature.
Collee and colleagues67 reported a method of esti-
mating the Pcap from the pulmonary artery pressure
tracing with balloon occlusion. These authors iden-
tified two exponential pressure decay components,
the slower one representing the discharge of the
Pcap through the pulmonary venous resistance. By
extrapolating this exponential to its origin at the
moment of pulmonary artery occlusion, a pressure
within the pulmonary vascular bed that approximates
Pcap was identified (see Figure 2). Holloway et al68

validated this method in an animal model, where
they demonstrated a close relationship between the
Pcap estimated with this method and both the
isogravimetric measurement and the Gaars mathe-
matical estimate of microvascular pressure.69

Continuous Esophageal Doppler

The transesophageal Doppler is currently the most
promising noninvasive technique for monitoring car-
diac function in ICU patients. The esophageal
Doppler first described in 1971 and subsequently
refined by Singer provides a minimally invasive
means of continuously monitoring cardiac function
in the ICU.70,71 When an ultrasound beam is di-
rected at a column of flowing blood, the reflected
sound wave will shift in frequency. The magnitude of
this Doppler shift is directly proportional to the
velocity of blood flow. Stroke volume can be calcu-
lated by multiplying this average blood velocity
during a systolic cycle by the ejection time (stroke
distance) and by the cross-sectional area through
which the blood flows (see Figure 3).71 Doppler
signals can be obtained with an ultrasound probe
placed externally at the suprasternal notch and di-
rected at the ascending aorta. However, esophageal
Doppler monitoring has a number of advantages
over the transcutaneous approach. The close prox-
imity of the descending aorta to the esophagus
provides an excellent window for obtaining Doppler
signals. Furthermore, once positioned, the trans-
esophageal probe is stabilized by the esophagus,
thereby permitting continuous monitoring. The
cross-sectional area of the descending aorta can be
estimated by nomograms based on the patient’s age,
weight, and height. A correction factor is required to
transform the blood flow measured in the descend-

Figure 1. Ventricular function curve for a patient with pneu-
monia showing the relationship between the RVEDVI and CI.
The optimal RVEDVI was estimated to be about 105 mL/m2. Figure 2. The phasic pulmonary artery pressure trace (dotted

line) is superimposed on the pulmonary artery pressure trace
during pulmonary artery occlusion (solid line). The time of
pulmonary artery occlusion can then be identified (Oc) when the
two traces sharply diverge. Pcap is estimated as the pressure at
which the exponential approximation to the occluded trace (see
text) intersects the vertical line drawn at the moment of occlu-
sion. (Reproduced with permission from Collee et al.67)
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ing thoracic aorta into a global CO. Despite these
assumptions and potential sources of error, a good
correlation has been demonstrated between the CO
measured by esophageal Doppler and simulta-
neously by thermodilution and Fick methods.71–79

Recently, a transesophageal Doppler probe with an
ultrasonic probe that allows the near simultaneous
measurement of both the velocity of the descending
aortic blood flow and the descending aortic diameter
has been described.80 The aortic cross-sectional di-
ameter as measured with this device has been re-
ported to correlate closely with that determined by
transesophageal echocardiography, and the descend-
ing aortic blood flow showed good agreement with
the CO as measured by thermodilution.80

In contrast to the PAC, the probe of the esophageal
Doppler monitor can be inserted within minutes, it
requires minimal technical skill, and it is not associated
with major complications.81–83 The probe has been
reported to have been left in situ for . 2 two weeks
without complications.84 Lefrant and colleagues77 have
demonstrated that a period of training involving no
more than 12 patients is required to ensure reliability of
CO measurements with esophageal Doppler. A major
advantage of transesophageal Doppler is the ability to
provide continuous real-time monitoring.

Esophageal Doppler monitoring would be of lim-
ited clinical utility if it only provided an estimate of
CO. However, the characteristics of the Doppler
flow-velocity waveform provides information on both
cardiac preload and contractility (see Figure 3). The
peak flow-velocity that is readily identified as the
apex of the waveform is a good indicator of myocar-
dial contractility. Furthermore, the left ventricular
ejection time (or flow-time) corrected for heart rate
provides an index of preload. Laboratory studies
have demonstrated a good correlation between
Doppler peak velocity and electromagnetic catheter-

measured flow as well as measured contractility.85 In
addition, an infusion of dobutamine in normal subjects
has been shown to produce a dose-dependent increase
in the peak velocity.86 Esmolol was shown to have the
opposite effect. Singer and colleagues71,82 demon-
strated a good correlation between the corrected flow
time (Ftc) and changes in preload: when preload was
increased from hypovolemic states, the Ftc increased,
and when preload was decreased from normovolemic
states, the Ftc decreased. Despite the potential advan-
tages of continuous esophageal Doppler monitoring,
the clinical experience with this technology in limited.
Sinclair and colleagues87 recently demonstrated the
clinical utility of continuous esophageal Doppler mon-
itoring in patients undergoing proximal femoral frac-
ture repair. In this prospective, randomized, and
blinded study, those patients whose intraoperative vol-
ume status was optimized by the use of esophageal
Doppler had a higher CI at the end of surgery and a
significantly shorter hospital stay.

Conclusion

Critically ill patients whose cardiac status remains
difficult to determine clinically may benefit from
invasive monitoring using a volumetric PAC or non-
invasive monitoring with a continuous esophageal
Doppler. Because the PAOP frequently provides
misleading information, we believe that a nonvolu-
metric PAC has an unfavorable risk/benefit ratio.
However, it is vital to emphasize that the information
obtained from both the PAC and esophageal Dop-
pler should never be interpreted in isolation. The
change in heart rate, CO, PAOP, RVEDVI, Ftc,
oxygenation, BP, and urine output in response to a
therapeutic intervention needs to be evaluated and
interpreted to guide further therapeutic decisions.
Furthermore, these variables must be assessed in the
context of the patient’s underlying disease process
and the presence or absence of tissue hypoxia.5
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