The process of hemodynamic stabilization

What's going wrong? Differential diagnosis in hemodynamic failure

Azriel Perel

Professor and Chairman Department of Anesthesiology and Intensive Care Sheba Medical Center, Tel Aviv University, Israel

ISICEM 2007 Brussels

Disclosure

The speaker cooperates with the following companies

CritiSense Drager-Siemens iMDsoft InSightec Pulsion* Critically ill patients do often have complex hemodynamics (hypovolemia, myocardial depression or both).

Only in rare case does the 'diagnosis' tell you what is the main physiological disturbance.

Co-morbidities often complicate the hemodynamic status.

Critically ill patients often present us with therapeutic conflicts (e.g., hemodynamic instability and ARDS). In such situations therapeutic decisions are often critical since:

Occult hypoperfusion is associated with increased mortality.

Volume overload may cause or worsen heart failure and/or pulmonary (and other organ) edema and is associated with increased mortality.

HEMODYNAMIC MONITORING

The 'minimalist' approach

- The 'consensus' approach
- The 'advanced cardiopulmonary monitoring' approach

Post from the ccm-l@list.pitt.edu 2003

"72yo man with a significant cardiac history who underwent removal of massive renal cell carcinoma and a necrotic gallbladder.

Following 24 hrs - oliguric, hypotensive but responsive to fluids. **<u>20L positive balance over 24h</u>**. Blew up like a balloon, but interestingly urine output still 45ml/hr. On a bit of noradrenaline...

I came into the unit at 0400 to start CVVHD.... whilst I was scrubbing he arrested."

Question: "Don't you think that the patient may have been under-monitored?"

"The biggest problem with ALL the fancy numbers (and even the non-fancy numbers like CVP & MAP), is that in the individual patient...you have NO idea what the "best" number is supposed to be....

So then we get back to old fashioned clinical examination, measurement of indices of tissue function, and careful therapeutic trials, which may in some cases give us information later than the fancy machines, but at least the information is reliable."

I call this the "Back to Nature" movement....

The PiCClin Study Part I: Clinicians' prediction of advanced cardiopulmonary variables in critically ill patients.

Methods: Cardiopulmonary assessment was done in critically ill patients from 12 European ICU's just before the use of the PiCCO monitoring system (Pulsion, Germany).

A Perel¹, M Maggiorini², M Malbrain³, JL Teboul⁴, J Belda⁵, E One to four physicians per patient independently predicted the cardiac output (CO), Fernández Mondéjar⁶, M Kirov, J Wendon⁶, G Kourakin¹, R Systemic vascular resistance⁶ (SVR), pretoad (indexed global end-diastolic volume -GEDVI), finance A Haller², R Stocker², M Lang², A Aguilar⁵, A Smetkin⁷, C ventil Knowelsv⁸), randsinge kedeektratsas cthar Sundow Ared¹ (EV Cwiter, Tel Aviv Unit

The first set of PiCCO measurements was then recorded and followed by Cardiac output GEDVi SVR physioians self-rating of the accuracy of their pre-RicCO prediction spain⁵;

		1		ľ	400	•	0	- 4	£
Hos		2	200						ern
1100		3			700		5	8	0111
Stat	Please tick	4	400		_				nital
Diai	along the	5	_		1000		10	12	riai,
Ion	columns	6	600		_				
LON	where	7	_		1300		15	16	
	appropriate	8	800						
		9			1600		20	20	
		10	1000						
		12	_		190 <u>0</u>		25	24	
		13	1200						
		>13	>1200		>1900		>25	>24	

The patient population included 165 patients, which were evaluated by 135 residents and 122 specialists (total of 257 questionnaires).

The main reasons for using the PiCCO included:

- > Unclear fluid status (109)
- Suspected sepsis / septic shock (70)
- Respiratory failure (42)
- Cardiogenic shock (19)
- Renal failure (27)
- > Other (18).

The accuracy of predicted cardiopulmonary parameters

	CO	SVR	GEDVi	SVV	EVLWi
	(n=256)	(n=254)	(n=253)	(n=214)	(n=235)
Underestimation	127	46	72	85	69
>20%	(49.6%)	(18.1%)	(28.0%)	(39.7%)	(29.4%)
Within ± 20%	99	90	93	64	93
	(38.6%)	(35.4%)	(50.2%)	(29.9%)	(39.6%)
Overestimation >20%	30	116	73	65	73
	(11.7%)	(45.7%)	(21.0%)	(30.4%)	(31.1%)

The PiCClin Study

Conclusions PiCClin (part I):

The ability of physicians to predict advanced cardiopulmonary parameters based on clinical evaluation and conventional monitoring alone has considerable limitations and is not improved by experience.

Intensivists often tend to assume that CO is lower, that SVR is higher and that preload is lower than the actually measured values. This may be due to a common misinterpretation of hypotension. Intensive Care Med DOI 10.1007/s00134-007-0531-4

INTERNATIONAL CONSENSUS CONFERENCE

Massimo Antonelli Mitchell Levy Peter J. D. Andrews Jean Chastre Leonard D. Hudson Constantine Manthous G. Umberto Meduri Rui P. Moreno Christian Putensen Thomas Stewart Antoni Torres

Hemodynamic monitoring in shock and implications for management

International Consensus Conference, Paris, France, 27–28 April 2006

Received: 13 October 2006 Accepted: 5 January 2007

© Springer-Verlag 2007

Should we monitor preload and fluid responsiveness in shock?

How and when should we monitor stroke volume or cardiac output in shock?

What is the evidence for using hemodynamic monitoring to direct therapy in shock?

14. a) We recommend frequent measurement of blood pressure and physical examination variables (including signs of hypoperfusion, urine output and mental status) in patients with a history and clinical findings suggestive of shock.

b) We recommend invasive blood pressure measurement in refractory shock. Level 1; QoE very low (D)

15. We do not recommend the routine use of the PAC for patients in shock. Level 1; QoE high (A)

6. We recommend that preload measurement alone not be used to predict fluid responsiveness. Level 1; QoE moderate (B)

7. We recommend that in shock, low values of commonly used static measures of preload such as CVP, RAP, PAOP (for example less than 4 mmHg) and ventricular volumes, should lead to immediate fluid resuscitation with careful monitoring. Level 1; QoE low (C)

Surviving Sepsis Campaign Guidelines (Rivers, NEJM 2001)

Initial resuscitation

Begin resuscitation immediately in patients with hypotension or elevated serum lactate.

Resuscitation goals:

- Central venous pressure: 8-12 mm Hg
 - Mean arterial pressure \geq 65 mm Hg
 - Urine output \geq 0.5 mL.kg-1.hr-1
 - ◆ Central venous or mixed venous oxygen saturation ≥ 70%

If central venous oxygen saturation or mixed venous oxygen saturation of 70% is not achieved with a central venous pressure of 8-12 mm Hg, then transfuse packed red blood cells to achieve a haematocrit of \geq 30% and/or administer a dobutamine infusion of up to a maximum of 20 µg.kg-1.min-1. Practice parameters for hemodynamic support of sepsis in adult patients in sepsis Task Force of the ACCCM and the SCCM, CCM 2004

"In most patients with septic shock, CO will be optimized at filling pressures between 12 and 15 mm Hg."

Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge*

David Osman, MD; Christophe Ridel, MD; Patrick Ray, MD; Xavier Monnet, MD, PhD; Nadia Anguel, MD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD CCM 2007 35:64-8

The sign responsive as indicate curves (0.5)

d hat of CVP, the ROC

Figure 2. Individual values (*open circles*) and mean \pm sp (*closed circles*) of pre-infusion central venous pressure (*CVP*) (both expressed in millimeters of mercury) in responders (*R*) and nonresponders (*NR*).

> A CVP o predicted v predictive

mm Hg positive pectively. 8. We recommend a fluid challenge to predict fluid responsiveness...with a goal of obtaining a rise in CVP of at least 2 mmHg. A positive response includes measures of improved cardiac function and tissue perfusion.

Level 1; QoE low (C)

50% of oritionly ill potiente are looded with fluids Hemodynamic response to fluid loading

	Patients	Definition of Responders	N	Challenge	Responders
Preisman S (2005)	Cardiac surgery	> 15% SV	18	250 mL colloids	32/70 VLS (46%)
Hofer CK (2005)	Cardiac surgery	> 25% SVI	35	10 mL/kg (IBW) 6% HES	21 (60%)
Swensen CH (2006)	Abdominal surgery	Increase in CO	10	25 mL/kg of Ringer	4 (40%)
Tavernier B (1998)	Sepsis w. circulatory failure	> 15% SVI	15	500-1000 mL HES	21/35 VLS (60%)
Michard F (2000)	Sepsis w. circulatory failure	> 15% CI	40	500 mL HES	16 (40%)
Michard F (2003)	Septic shock	> 15% SVI	27	500 mL HES	32/66 VLS (48%)
Feissel M (2005)	Septic shock	> 15% CI	20	8 ml/kg HES	13/22 VLS (59%)
Monnet X (2005)	Critically ill w. circulatory failure	> 15% increase in ABF (Doppler)	38	500 ml NS	20 (53%)
Vallee F (2005)	Critically ill w. circulatory failure	> 10% increase in SVI	51	4 ml/kg colloid X 2	20 (39%)
Heenan S (2006)	Critically ill w. circulatory failure	> 15% in CO	21	1 L Ringer or 500 mL HES	9 (43%)
Lafanechère A (2006)	Critically ill w. circulatory failure	> 15% increase in ABF (Doppler)	22	PLR and 500 ml NS	10 (45%)
Osman D (2007)	Sepsis	> 15% in CO	96	500 mL HES	65/150 VLS (43%)

Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock.

Michard F, et al. Chest 2003, 124:1900-8

Functional hemodynamic parameters (SPV, PPV, SVV) are the most sensitive parameters for the assessment of fluid responsiveness in mechanically ventilated patients

Responsive

Non-responsive

Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators[†]

S. Preisman*, S. Kogan, H. Berkenstadt and A. Perel[‡]

9. We do not recommend the routine use of dynamic measures of fluid responsiveness (including but not limited to pulse pressure variation, aortic flow changes, systolic pressure variation, respiratory systolic variation test, and collapse of vena cava). Level 1; QoE high (A)

There may be some advantage to these measurements in highly selected patients. Level 1; QoE moderate (B) 10. We do not recommend routine measurement of CO for patients with shock. Level 1; QoE moderate (B)

11. We suggest considering echocardiography or measurement of CO for diagnosis in patients with clinical evidence of ventricular failure and persistent shock despite adequate fluid resuscitation. Level 2 (weak); QoE moderate (B)

עזרה תמיכת החלטה אחות רופא תצוגה גליוןנתונים חולה ראשי

7월 🗛 🗐 🛅 🍳 💵 🥸 🧏 🔞 🗟 😑 🏢 🖃 💧 🎸 📒 🎽 🏵 🎒 🎒 🏷 🥔 🐚 🖻 👬 🕘 🚺

ריקור דף יומי Hemo	odynami Respiration D	דן מאזן נוזלי	קות אומ	מעבדה בדי	נזים בדם	Blood Gas	Lines	APACHE2 Page	
	9/3/05 1140 1200 1:41	1220	1240	1300	1320	1340	1400	► 🕨 🕨	
								Current value 🛛 👻	
HR	90	97	86	84	93	89	92	130	
Rhythm									
SpO2	99%	98%	98%	97%	97%	95%	96%	99%	
CVP								17	
ArtBPS	121	125	101	130	147	135	111	142	
ArtBPD	50	56	49	62	78	74	60	69	
ArtBPM	64	75	64	82	96	92	75	95	
NiBPS									
NiBPD		Cardia	c outpu	it 6.77 L	/min				
NiBPM									
SVV								13%	
PCCO		IS this	s CO ac	lequate	[[[6.77	
TEMPERATURE									
Temperature-site		C		- CO0/					
Temperature	37.2	30	5VU2 I	5 00%)!				
Blood -Temperature			_				16.0	37.5	
RESPIRATORY									
N_I_Device									
NH Flow									
VentModeBennet	PCV	SIMV	SIMV	PCV	SIMV	SIMV	PCV	SIMV	
VentModeE∨ita									
Ventilator									
NO									
FiO2	80%	80%	80%	70%	70%	70%	70%	50%	
PS	15	15	15	15	15	15	15	15	
PS + PEEP									
 Status: Admission Active 	e user: ערן סגל Admis	sion: 09/03/2005	7:50 Admis	sion period:1	Day(s) : 4 H	our(s)		10/03/200	15 11:54

Patient is given dobutamine

Conclusion: CO was high, but not high enough

A man with fever and shortness of breath

ScvO₂ 72% CVP 9 mmHg Lactate 48 PaO₂/FiO₂ 75 (PEEP 10)

3.8

Following Godrenaline...

- Blood pressure increased to 120/65
 CO increased to 6.5 LPM (CI 3.7)
- ScvO₂ incred set to 76% 15
- SaO₂ increased to 98% and FiO₂ decreased
 Urine output increased to 60 ml/h 100

The main reason to measure cardiac output is to identify those patients that have low (or high) CO values that are not evident clinically.

However, a low cardiac output value, like the $ScvO_2$, by itself, will tell you that something is wrong but not what is wrong and what should be done about it (fluids? inotropes?).

Preload & fluid responsiveness

CO

EVLW

Practice parameters for hemodynamic support of sepsis in adult patients: 2004 update Task Force of the ACCCM and the SCCM, CCM Sept 2004

Pulmonary edema may occur as a complication of fluid resuscitation and necessitates monitoring of....

arterial oxygenation.

Intravascular Fluid Administration and Hemodynamic Performance During Open Abdominal Surgery

Svensen CH, Olsson J, Hahn RG. Anesth Analg 2006;103:671-6

In non-responders volume kinetic analysis suggested that 25% of the infused fluid resided in the central fluid space at the end of the infusion and only 3% at the end of the study. The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Comparison of Two Fluid-Management Strategies in Acute Lung Injury

The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network*

CONCLUSIONS

Although there was no significant difference in the primary outcome of 60-day mortality, the conservative strategy of fluid management improved lung function and shortened the duration of mechanical ventilation and intensive care without increasing nonpulmonary-organ failures. These results support the use of a conservative strategy of fluid management in patients with acute lung injury. (ClinicalTrials. gov number, NCT00281268.)

Should we 'dry' all patients that fulfil the ALI/ARDS criteria?

Michard F. et al. Chest 2004;125:1166-7 35% of ARDS patients had EVLW<7 ml/kg.

Patroniti N et al Crit Care Med 2005; 33:2547–54 Some ARDS patients had EVLWI values only slightly increased above normal.

Martin G et al Crit Care. 2005; 9:R74-82. **25% of ARDS patients had normal EVLW.**

Research

Extravascular lung water in patients with severe sepsis: a prospective cohort study

Greg S Martin¹, Stephanie Eaton², Meredith Mealer³ and Marc Moss⁴

Critical Care 2005, 9:R74-R82

More than half of the patients with severe sepsis but without ARDS had increased EVLW, possibly representing subclinical lung injury.

Chronic alcohol abuse was associated with increased EVLW, whereas lower EVLW was associated with survival.

EVLW may improve both risk stratification and management of patients with severe sepsis.

13/10 - LIP 23

18/10 - LIP 12

34 yr female; Very severe respiratory failure; Hemodynamic collapse; On noradrenaline.

BP		CI	2.7 l/min/m ²
HR		ITBVi	578 ml/m²
	80% !!!		

Have we achieved initial resuscitation goals in this patient?

ראשי חולה גליון נתונים תצוגה רופא אחות תמיכת החלטה עזרה

🖣 🕣 👬 🗢 🐚 🍠 💭 🖉 🐨 🎽 🧧 🎸 🍐 🖃 🏢 🖹 🔜 🦉 🏷 🖉 🤍 💭 🗒 🛤 😤

עמוד 2/2	פעולות	PICCO	PA וולי	ופות בדיקות נו	יות רמות תר	פולים תרבי	ין נשימתי סיי	רף דיאליזה אומז	וזנה וגרף גו	n SOFA	Score
	19/1/05 1900	2100	2300	20/1/05 1 00	300	500	700	900 9:21	> >>		
									▼ 1	ערך נוכח	
PCCOI		2.229	2.182	2.400	2.394	2.682	2.706	3.029]		
ITBVI	689	578					525				
EVLW	1228	1288					909				
EVLWI	18.9	19.8					14.0				
Picco SVRI		570.6	417.6	411.8	376.5	352.9	352.9	382.4			
Picco_SV		47.18	40.52	44.62	42.38	46.9	46.53	54.66			-
Picco SVI		27.8	23.8	26.2	24.9	27.6	27.4	32.2			
Common IV Medication											
Actrapid		2		4		6 6 4	2	4	0 iu		<u> </u>
Dobutrex (Dobutamine)		6.4							⁶ 0 mg		
Dormicum),5						0 mg		
Heparin			500						0 iu		
Hydrocortisone		300				300			0 mg		
MgSo4			4						0 g		•
-EVLWI		1	1			1		1			
+ PCCOI								L			
— SpO2 19			╲╎┸╌╗┉┸┽┪				71/11	· <u> - / · · · · · · · · · · · · · · · · · ·</u>	+2.900		
18					and the second				2.892		
		11 11					¥ I		-2.790		
17	+		V ²						-2.688		
		LA 🖌 🗡							-2.5		
-					\mathbf{X}				-2.4		
15	+	······							-2.380		
14									-2.278		
•	I	מים : 12 שעוו	האספרז:20 י	2:35	17/01/2005:115	יוינגסטוו אשנ	מש פעיל: דוד ל	שיחרור משתו	סטטוס	8:50 10/02	/2005

The PiCClin Study Part II: Change of therapeutic plan following advanced cardiopulmonary monitoring in critically ill patients.

In the absence of further hemodynamic information, what would be your therapeutic decision?

Fluid	Red blood	Inotropic	Vaso-	Diuretic	Dialysis/	Other
loading	colle	agent	constrictor		filtration	
loaung	CEIIS	ayem	CONSTITUT		muation	

The PiCClin Study Part II: Change of therapeutic plan following advanced cardiopulmonary monitoring in critically ill patients.

	Original therapeutic plan			
	Pursued	Changed		
Fluids (n=255)	68.2%	31.8%		
Inotropes (n=257)	76.6%	23.3%		
Vasoconstrictors (n=255)	76.5%	23.5%		
Diuretics (n=254)	85.0%	15.0%		

By monitoring this combination of parameters the Pifernocity ham control of the information ould necessary for hemodynamic management of critically ill pathet, epteasus implement of critically ill pathet, epteasus implement of critically therapeutic conflicts (e.g., heart vs. lungs). But not simpler! The ScvO₂ and parameters of microcirculatory function may offer additic Thank you!

Advanced hemodynamic monitoring should be applied to all patients that may be in low flow state and that may present significant therapeutic conflicts (e.g., heart vs. lungs)

The major problems with the interpretation of ScvO₂

> Like the CO, a low SvO_2 tells you that something is wrong, but not what is wrong and what should be done about it (fluids? inotropes?).

> When the SvO_2 is normal or high - one cannot assume that all is well (e.g., CO normal) since in septic patients the $ScvO_2$ may be elevated due to an abnormally low O_2 extraction.

Last but not least.....

Even with the 'best' parameters it is not always easy to make the right decision.

- A 31 year old patient with Down's syndrome is admitted to the ICU with severe pneumonia.
- s/p Closure VSD for CHF (age 6)
- The patient is an athlete and has just participated in a competitive swim in the San Francisco Bay.
- A few days later she started to have fever cough, white sputum, sore throat, and shortness of breath and was taken to the ER.

• In the ER the patient was alert and oriented. She was short of breath and had very significant hypoxemia with an oxygen saturation of 60% (!) on room air.

She was started on antibiotics and admitted to the ICU.

In the ICU

- > Stable hemodynamics with $ScvO_2$ 72 % and normal heart ECHO.
- > Noradrenaline 0.02 mcg/kg/min due to SBP < 100.
- Decreased urine output < 700 cc/24 hr. Urine electrolytes consistent with a pre-renal state.
- Positive fluid balance 12 L at Day 5 and 19 L at Day 7.
- No improvement in respiratory status over the first 7 days (entered into surfactant study).
- Peep increased to 18 to maintain oxygenation.

Even though the patient had low ITBV aggressive diuresis was started with daily negative fluid balance of 1-2.5 L.

CO supported with dobutamine and later dopamine (due to bradycardia).

PEEP gradually reduced with decrease in EVLW and improved oxygenation.

ITBVi levels – unchanged!!

18/10 - LIP 12

Patient was successfully extubated!

23rd October 2006

The clinical interpretation of any monitored parameter

1. Necessitates a thorough understanding of the nature of the parameter itself.

2. Has to take into consideration all possible confounding factors.

Conclusions (2)

By monitoring a combination of parameters that include the CO, preload, fluid responsiveness and EVLW, the PiCCO monitor offers most of the information necessary for hemodynamic management.

The ScvO₂ and parameters of microcirculatory function offer additional important information.

What about outcome?

Unfortunately, it is difficult to separate between the effects of hemodynamic monitoring per se and the therapeutic philosophy, patient population, other therapeutic interventions and many other confounding factors.

The EBM police tends to target what is done, not what is not....

It is therefore much easier to do nothing and wait for the ultimate RCT....

The one that will tell us once and for all what to do at any circumstance at any time.... "The hottest places in hell are reserved for those who, in times of great crisis, do nothing".

- Dante

Thank you!

Reliability of SvO₂ as an indicator of the oxygen extraction ratio (O₂ER) demonstrated by a large patient data set.

Keech J, Reed RL. J Trauma 2003 54:236-41

When oxygen extraction is low, ScvO₂ is high!!!

Identifying low cardiac output by itself is very important but not enough to guide therapy What is the best way to measure cardiac output ? Who Cares, Anyway ? Caruso LJ et al. *Chest*. 2002:122:771-4

"Instead of asking which monitor is best for measuring CO, we might query why, in any event, CO is important to measure."

Prediction of hemodynamics in ICU and ED patients by clinical evaluation alone is inaccurate and unreliable.

Clinical evaluation compared to pulmonary artery catheterization in the hemodynamic assessment of critically ill patients Eisenberg PR et al, Crit Care Med 1984; 12: 349

Assessing hemodynamic status in critically ill patients: Do physicians use clinical information optimally? Connors AF et al. J Crit Care 1987; 2: 174

Therapeutic impact of PAC in the ICU Steingrub et al, Chest 1991; 99: 1451

PAC in critically ill patients: A prospective analysis of outcome changes associated with catheter-prompted changes in therapy Mimoz O et al. Crit Care Med 1994; 22: 573

Hemodynamic and pulmonary fluid status in the trauma patient: are we slipping? Veale WN Jr et al, Am Surg. 2005; 71: 621

Hemodynamic assessment in managing the critically ill: is physician confidence warranted?

Dawson NV et al. Med Decis Making 1993 ; 13: 258-66

Physicians were generally confident of their estimates, but there was no relation between confidence and accuracy.

Experienced physicians were no more accurate than less experienced ones, although they were significantly more confident.

Physicians should not use their levels of confidence in their subjective estimates of cardiac function in deciding whether to base therapy on these estimates. It seems that the many negative reports in recent years on the inadequacy of advanced methods of hemodynamic monitoring (mainly the PAC) have led to many instances of insufficient monitoring of critically ill patients.

I call this the "Back to Nature" movement....

Heart Rate

Contractility

The PiCClin Study - a multi-center European study

B. Change of therapeutic plan following advanced cardiopulmonary monitoring in critically ill patients.

In the absence of further hemodynamic information, what would be your therapeutic decision?

Possible therapeutic options:

Fluid	Red blood	Inotropic	Vaso-	Diuretic	Dialysis/	Other
loading	cells	agent	constrictor		filtration	

Original therapeutic plan <u>pursued</u>

	Administered	Not administered
Fluids planned	109 (42.7%)	53 (20.8%)
Fluids not planned	28 (11.0%)	65 (25.5%)
Inotropes planned	33 (12.8%)	46 (17.9%)
Inotropes not planned	14 (5.4%)	164 (63.8%)
Vasoconstrictors planned	50 (19.6%)	36 (14.1%)
Vasoconstrictors not planned	24 (9.4%)	143 (56.9%)
Diuretics planned	19 (7.5%)	20 (7.9%)
Diuretics not planned	18 (7.1%)	197 (77.6%)

Original therapeutic plan <u>changed</u>

	Administered	Not administered
Fluids planned	109 (42.7%)	53 (20.8%)
Fluids not planned	28 (11.0%)	65 (25.5%)
Inotropes planned	33 (12.8%)	46 (17.9%)
Inotropes not planned	14 (5.4%)	164 (63.8%)
Vasoconstrictors planned	50 (19.6%)	36 (14.1%)
Vasoconstrictors not planned	24 (9.4%)	143 (56.9%)
Diuretics planned	19 (7.5%)	20 (7.9%)
Diuretics not planned	18 (7.1%)	197 (77.6%)

	Original therapeutic plan		
	Pursued	Changed	
Fluids (n=255)	68.2%	31.8%	
Inotropes (n=257)	76.6%	23.3%	
Vasoconstrictors (n=255)	76.5%	23.5%	
Diuretics (n=254)	85.0%	15.0%	

Conclusions (part II):

The measurement of advanced cardiopulmonary parameters caused both specialists and residents to make considerable changes in therapeutic decisions that were made based on clinical judgment and conventional monitoring alone. Practice parameters for hemodynamic support of sepsis in adult patients in sepsis

Task Force of the ACCCM and the SCCM, CCM 2004

"In most patients with septic shock, CO will be optimized at filling pressures between 12 and 15 mm Hg."

- 20 year old man after a motor vehicle accident.
- Neurological injury without improvement over the next 2-3 days.

WAggressige/diffessisteresisteresit?

- ➤ CO = 12-15 L/min
- > SVR = 400-500
- ITBVI = 1200 ml/m² (800-1000)
- **EVLW = 19-23 ml/kg** (4-7)

High !!! Low !!! High !!! High !!!
3. In the absence of hypotension, when shock is suggested by history and physical examination, we recommend that a marker of inadequate perfusion be measured (decreased ScvO2, SvO2, increased blood lactate, increased base deficit, perfusion-related low pH).

Level 1; QoE moderate (B)

Early goal-directed therapy

16. We recommend instituting goal-directed therapy without delay, in patients presenting with septic shock, particularly where ScvO2 is below 70%. Level 1; QoE moderate (B)

Surviving Sepsis Campaign Guidelines (Rivers, NEJM 2001)

Initial resuscitation

Begin resuscitation immediately in patients with hypotension or elevated serum lactate. Resuscitation goals:

◆ Central venous pressure: 8-12 mm Hg

- Mean arterial pressure \geq 65 mm Hg
- Urine output \geq 0.5 mL.kg-1.hr-1
- ◆ Central venous or mixed venous oxygen saturation ≥ 70%

If central venous oxygen saturation or mixed venous oxygen saturation of 70% is not achieved with a central venous pressure of 8-12 mm Hg, then transfuse packed red blood cells to achieve a haematocrit of \geq 30% and/or administer a dobutamine infusion of up to a maximum of 20 µg.kg-1.min-1. A 40 year old woman with a large pancreatic tumor. Two days following a long Whipple operation, the patient complains of shortness of breath, with SaO2 of 85% with an O_2 mask.

<u>Vital signs</u>: HR 130 bpm, BP 140/65 mmHg, CVP 15 cmH₂O, Urine output adequate.

Patient is ventilated with PCV, $FiO_2 80\%$, PEEP 14 cmH₂O, SaO₂ 98%.

Mixed venous oxygen saturation in critically ill septic shock patients. The role of defined events

Krafft P et al, Chest 1993; 103:900-6

The SvO₂ of septic shock patients is mainly normal or even supra-normal.

$$O_2 ER \cong 1 - S_{\overline{v}}O_2$$

Fluid resuscitation in severe sepsis and septic shock: An evidencebased review

Jean-Louis Vincent, MD, PhD, FCCM; Herwig Gerlach, MD, PhD

(Crit Care Med 2004; 32[Suppl.]:S451–S454)

> The normal SvO2 is 70-75% in critically ill patients, but it can be elevated in septic patients due to maldistribution of blood flow.

Therefore, a normal or high SvO2 does not necessarily indicate adequate tissue oxygenation. A 31 year old patient with Down's syndrome is admitted to the ICU with severe pneumonia.

Stable hemodynamics with $ScvO_2$ 72 % and normal ECHO.

Noradrenaline 0.02 mcg/kg/min due to SBP < 100.

Positive fluid balance 12 L at Day 5 and 19 L at Day 7.

High EVLW, PEEP of 20 to maintain oxygenation.

Even though the patient had low ITBV, aggressive diuresis was started with daily negative fluid balance of 1-2.5 L.

CO supported with dobutamine and later dopamine (due to bradycardia).

18/10 - LIP 12

Sepsis

Most patients with severe sepsis exhibit a significant degree of myocardial depression, which is characterized by reversible flattening of the Frank-Starling curve, reduced inotropic responsiveness to catecholamines, and biventricular dilation and depression of the ejection fraction (EF). *Kumar A, et al Chest 2004;126;860*

Nevertheless, many septic patients benefit from the administration of large fluid loads.

Hemorrhage

Rapid correction of hypovolemia is a key element in the treatment of hemorrhagic shock.

Nevertheless, correction of experimental hemorrhagic shock by retransfusion is associated with a global deterioration in LV function and a sharp decrease in LVEF. This phenomenon may be due to elevation of afterload and/or myocardial depression. Preisman S, et al. BJA 2002;88:716

Preliminary statements

Co-morbidities often complicate the hemodynamic status.

Critically ill patients often present us with therapeutic conflicts (e.g., hemodynamic instability and ARDS).

A man with fever and shortness of breath

Lactate 48 (moderately elevated) ScvO₂ 72% CVP 9 mmHg

• CO	3.8
• ITBVI	950
• EVLWI	15
• SVR	1100

Static parameters of preload cannot accurately predict fluid responsiveness

Hemodynamic response to fluid loading

	Patients	Definition of Responders	N	Challenge	Responders
Preisman S (2005)	Cardiac surgery	> 15% SV	18	250 mL colloids	32/70 VLS (46%)
Hofer CK (2005)	Cardiac surgery	> 25% SVI	35	10 mL/kg (IBW) 6% HES	21 (60%)
Swensen CH (2006)	Abdominal surgery	Increase in CO	10	25 mL/kg of Ringer	4 (40%)
Tavernier B (1998)	Sepsis w. circulatory failure	> 15% SVI	15	500-1000 mL HES	21/35 VLS (60%)
Michard F (2000)	Sepsis w. circulatory failure	> 15% CI	40	500 mL HES	16 (40%)
Michard F (2003)	Septic shock	> 15% SVI	27	500 mL HES	32/66 VLS (48%)
Feissel M (2005)	Septic shock	> 15% CI	20	8 ml/kg HES	13/22 VLS (59%)
Monnet X (2005)	Critically ill w. circulatory failure	> 15% increase in ABF (Doppler)	38	500 ml NS	20 (53%)
Vallee F (2005)	Critically ill w. circulatory failure	> 10% increase in SVI	51	4 ml/kg colloid X 2	20 (39%)
Heenan S (2006)	Critically ill w. circulatory failure	> 15% in CO	21	1 L Ringer or 500 mL HES	9 (43%)
Lafanechère A (2006)	Critically ill w. circulatory failure	> 15% increase in ABF (Doppler)	22	PLR and 500 ml NS	10 (45%)
Osman D (2007)	Sepsis	> 15% in CO	96	500 mL HES	65/150 VLS (43%)