Advanced Uses of Pulse Oximetry for Monitoring Mechanically Ventilated Patients

Gerardo Tusman, MD,* Stephan H. Bohm, MD,† and Fernando Suarez-Sipmann, PhD‡§

Pulse oximetry is an undisputable standard of care in clinical monitoring. It combines a spectrometer to detect hypoxemia with a <mark>plethysmograph</mark> for the diagnosis, monitoring, and follow-up of cardiovascular diseases. These pulse oximetry capabilities are extremely useful for assessing the respiratory and circulatory status and for monitoring of mechanically ventilated patients. On the one hand, the key spectrography-derived function of pulse oximetry is to evaluate a patient's gas exchange that results from a particular ventilatory treatment by continuously and noninvasively measuring arterial hemoglobin saturation (Spo2). This information helps to maintain patients above the hypoxemic levels, leading to appropriate ventilator settings and inspired oxygen fractions. However, whenever higher than normal oxygen fractions are used, Spo2 can mask existing oxygenation defects in ventilated patients. This limitation, resulting from the S shape of the oxyhemoglobin saturation curve, can be overcome by reducing the oxygen fraction delivered to the patient in a controlled and stepwise manner. This results in a Spo₂/Fio₂ diagram, which allows a rough characterization of a patient's gas exchange, shunt, and the amount of lung area with a low ventilation/perfusion ratio without the need of blood sampling. On the other hand, the photoplethysmography-derived oximeter function has barely been exploited for the purpose of monitoring hemodynamics in mechanically ventilated patients. The analysis of the photoplethysmography contour provides useful real-time and noninvasive information about the interaction of heart and lungs during positive pressure ventilation. These hemodynamic monitoring capabilities are related to both the assessment of preload dependency-mainly by analyzing the breath-by-breath variation of the photoplethysmographic signals—and the analysis of arte-<mark>rial impedance,</mark> which examines the <mark>changes</mark> in the plethysmographic <mark>amplitude, contour,</mark> and derived indexes. In this article, we present and describe these extended monitoring capabilities and propose a more holistic monitoring concept that takes advantage of these advanced uses of pulse oximetry in the monitoring of ventilated patients. Today's monitors need to be improved if such novel functionalities were to be offered for clinical use. Future developments and clinical evaluations are needed to establish the true potential of these advanced monitoring uses of pulse oximetry. (Anesth Analg 2016;XXX:00–00)

Pulse oximetry—one of the most used monitoring technologies in medicine—consists of an optical spectrometer¹ and plethysmograph.² Most publications on pulse oximetry in the fields of anesthesia, critical care, emergency, and respiratory medicine mainly describe its function as a spectrometer for the measurement of arterial hemoglobin saturation (Spo₂).³⁻⁶ The noninvasive and realtime monitoring of Spo₂ is one of the most important breakthroughs in medicine.⁷ Its reliability and accuracy to reflect real arterial hemoglobin saturation (Sao₂) has been solidly validated.^{1,8-10} This technology allows early diagnosis and treatment of hypoxemia, substantially reducing the incidence and severity of hypoxemic episodes by a factor of **1.5**

Accepted for publication January 25, 2016.

Funding: None.

The authors declare no conflicts of interest.

Reprints will not be available from the authors.

.

to 3 when compared with patients without oximeters.^{11–13} Thus, pulse oximetry has become the standard of care for monitoring patients under mechanical ventilation.¹⁴

Beyond this important function, there are numerous reports highlighting the use of pulse oximeters as a plethysmograph.^{2,15–21} Plethysmographic analysis of the peripheral pulse wave provides relevant hemodynamic information that has been used for the diagnosis and follow-up of chronic cardiovascular diseases. However, this optical feature of oximeters has not been developed further to allow for a real-time monitoring of acute hemodynamic events in critically ill patients.

Nowadays, clinicians are facing an overwhelming amount of readily available information, and, therefore, it is not surprising that many interesting aspects of pulse oximetry remain hidden below the detection level of routine clinical management. This is also, in part, due to the fact that most monitoring devices focus on, and thus only display, information related to oxygen saturation. We believe that the 2 basic functionalities of pulse oximetry, spectrometry and plethysmography, are largely underused in critical care practice. The intention of this special article is to introduce the clinical potential of the wide range of optical features of pulse oximetry and to discuss further uses for the advanced monitoring of patients under mechanical ventilation.

PULSE OXIMETERS AS SPECTROMETER

Pulse oximetry is particularly useful during mechanical ventilation, because its main objective is to support and ensure the

www.anesthesia-analgesia.org 1

From the *Department of Anesthesia, Hospital Privado de Comunidad, Mar del Plata, Buenos Aires, Argentina; †Swisstom AG, Landquart, Switzerland; ‡Department of Surgical Sciences, Section of Anesthesiology and Critical Care, Hedenstierna Laboratory, University Hospital, Uppsala, Sweden; and §Department of Critical Care Medicine, CIBERES, CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain

Address correspondence to Gerardo Tusman, MD, Department of Anesthesia, Hospital Privado de Comunidad, Córdoba 4545, 7600 Mar del Plata, Buenos Aires, Argentina. Address e-mail to gtusman@hotmail.com. Copyright © 2016 International Anesthesia Research Society DOI:10.1213/ANE.000000000000000000283

Copyright © 2016 International Anesthesia Research Society. Unauthorized reproduction of this article is prohibited.

maintenance of an optimal gas exchange.³⁻⁶ The principal use of pulse oximetry in mechanically ventilated patients is the detection of hypoxemia—that is, a decrease in the arterial oxygen content—because hemoglobin is the principal carrier of oxygen in blood. Oximeters do not measure Pao₂, and for this reason, they can diagnose directly neither arterial hypoxia nor hyperoxia, defined as a partial pressure of oxygen in the arterial blood (Pao₂) <60 mm Hg or >120 mm Hg, respectively.²² What oximeters essentially do is "estimate" arterial hypoxia any time Spo₂ falls <90% based on the oxyhemoglobin dissociation curve, the well-described and predictable relationship between hemoglobin saturation and Pao₂.

Improving the Monitoring of <mark>Gas Exchange</mark> Abnormalities with Pulse Oximetry

A known limitation of the dissociation curve is revealed any time supplemental oxygen is administered to a patient, as fully saturated hemoglobin cannot detect arterial hyperoxia due to the flattening of the upper part of the curve. This is important because the presence of hyperoxia by no means implies that gas exchange is normal. Here, we provide a simple example: an acute respiratory distress syndrome patient with an Spo₂ of 97% and a Pao₂ of 190 mm Hg ventilated with pure oxygen presents with arterial hyperoxia while suffering from a significant impairment of gas exchange if Pao₂/FIO₂ is taken into account. Therefore, the oxyhemoglobin curve and the Spo₂ values lose sensitivity and specificity for monitoring gas exchange during oxygen therapy. Ignoring this important fact can lead to gross misinterpretations of the actual status of gas exchange.

Luckily there are ways to overcome the masking effect of oxygen therapy on Spo₂. One ingenious approach has been described by Sapsford and Jones²³ who proposed the use of a Spo₂/FIO₂ diagram. This method noninvasively determines an individual's oxyhemoglobin curve using Spo₂ instead of Sao₂ and replacing Pao₂ by FIO₂ (Fig. 1). First, a decremental FIO₂ titration is performed from 100% to 21%, in 10% steps, marking at each FIO₂ level the corresponding Spo₂ reading

with a dot in the Spo₂/FIO₂ chart. The line connecting these dots creates the modified patient-specific "oxyhemoglobin curve" (Fig. 1A, red line). Thereafter, this individual curve is compared with the theoretical normal one (Fig. 1A, black line). The smart twist introduced by this concept temporarily suppresses the effect of supplemental oxygen to discover the real arterial oxygenation. (Fig. 1)

These authors described this method as a tool for distinguishing shunting from low ventilation/perfusion ratio (V/Q) areas.^{23,24} Any time the curve is shifted downward compared with the normal reference, a shunt condition is present, whereas any right-hand displacement indicates a low V/Q problem (Fig. 1A). However, as expected, most mechanically ventilated patients show both gas exchange defects at the same time: shunt induced by atelectasis and low V/Q zones created by small airway closure.^{25–28}

The FI0₂/Sp0₂ diagram has been tested and validated in several publications. Sapsford and Jones²³ found a good fit between the diagrams constructed in volunteers and in patients with the results obtained by mathematically modeling gas exchange. Later, the same group successfully tested the FI0₂/Sp0₂ diagram in different patient populations and clinical scenarios.^{24,29,30} We emphasize that this method provides an early, fast, and readable available bedside estimate of shunt and low V/Q.

It should be noted that this concept can be used for monitoring ventilatory treatments. For example, in a mechanically ventilated patient with Spo_2 of 92% breathing room air, the effect of a particular change in the ventilator settings on arterial oxygenation can be evaluated within a few breaths. If this new ventilatory pattern results in a positive clinical effect on arterial oxygenation, Spo_2 must increase despite the low Fio_2 .

Recently, we used the same principle to assess the effect of a lung recruitment maneuver in 20 anesthetized morbidly obese patients.³¹ Figure 1B shows the Spo₂/FIO₂ diagram obtained in those patients performed under general anesthesia. Standard lung-protective ventilation resulted in an estimated shunt of about 25% as described by such a

Figure 1. The clinical use of the Spo₂/Fio₂ diagram. A, The Spo₂/Fio₂ diagram detects shunt any time the curve is shifted downward and/or low V/Q areas if the curve is shifted toward the right (arrows). The red line belongs to a COPD patient undergoing anesthesia and mechanical ventilation, whereas the black line represents the normal oxyhemoglobin reference curve. Fine oblique lines indicating estimated shunt values in % are iso-shunt-lines. B. The curve defined by the green circles belongs to 20 morbidly obese patients after anesthesia induction and undergoing a protective ventilation strategy using 8 cm H₂O of PEEP. The estimated shunt was approximately 25%. The curve defined by the green circles belongs to a COPD patient undergoing but at a PEEP of 16 cm H₂O of PEEP. Yalues are presented as mean \pm SD (unpublished data from Tusman et al.³¹). COPD = chronic obstructive pulmonary disease; PEEP = positive end-expiratory pressure; V/Q = ventilation/perfusion ratio.

2 www.anesthesia-analgesia.org ANESTHESIA & ANALGESIA Copyright © 2016 International Anesthesia Research Society. Unauthorized reproduction of this article is prohibited.

Figure 2. Interpretation of the Spo₂/Fio₂ diagram. The Spo₂/Fio₂ diagram defines 3 conditions. Breathing room air values ≥97% represent healthy lungs or conditions of hyperoxia if high Fio₂ is used. Values between 91% and 96% describe an abnormal oxygenation without arterial hypoxia, whereas values ≤90% define hypoxemias and the oxyhemoglobin curve suggests hypoxia (modified from the study by Sapsford and Jones²³). The blue dot at 97% and air represents a normal pulmonary condition with a physiologically low shunt. The red dot at 97% and Fio, 80% appears to be "normal"; however, when Fio, is reduced to 30%, Spo, decreases to 92% revealing an estimated shunt of 25%. Fine oblique lines indicating estimated shunt values in % are iso-shunt-lines.

diagram (green dots). Later on, after lung recruitment and optimal positive end-expiratory pressure (PEEP), the Spo₂/ FIO₂ diagram "normalized" recovering normal shunt values (blue dots).

In summary, the Spo₂/Fio₂ diagram allows a simple, dynamic, and noninvasive characterization of the status of gas exchange that is surely more complete than a "static photograph" given by single Spo₂, Sao₂, or Pao₂ readings obtained at constant Fio₂. Figure 2 summarizes the oxygenation conditions according to the Spo₂ and the applied Fio₂, taking an Spo₂ ≥97% as the normal theoretical value when breathing air.^{23,24,31} This method provides a simple estimate of shunt, requiring neither arterial blood samples nor a pulmonary artery catheter. Unfortunately, this tool has not been adopted in operating rooms and intensive care units despite its intriguing simplicity and clinical relevance (Fig. 2).

Characterizing the Status of Gas Exchange During Mechanical Ventilation

The flow chart in Figure 3 proposes a diagnostic sequence to be used before taking the decision to start invasive or noninvasive mechanical ventilation. This guide is based on the principles suggested by Sapsford and Jones²³ and consists of the following 3 simple steps (Fig. 3).

First, baseline Spo₂ during spontaneous breathing of air in the supine position is determined. This step will assess the patient's oxygenation status according to Figure 2. This is an important step because the aging process, smoking, obesity, or pulmonary diseases will all lower baseline Spo₂ and can confound clinicians during and after ventilator treatment. For example, in an elderly patient breathing air, an Spo₂ of 93% could erroneously be considered abnormal after surgery if the anesthesiologist omitted to take a reference value, which, in this case, would have been 93%. In this respect, a preoperative baseline Spo₂ ≤96% breathing air in the supine position has recently been shown to be a strong predictor of an increased risk to develop postoperative pulmonary complications.³²

Second, the Spo₂ response to an increase in Fio₂ to 1 immediately after intubation also provides relevant information. The question then becomes as follows: Is the patient's hemoglobin able to saturate to its maximum or not? If full saturation is not reached at Fio₂ 1, an oxygenation problem should be suspected, as shown in Figures 1 and 2. Third, the reduction of FIO_2 from pure oxygen to room air either stepwise following the SpO_2/FIO_2 diagram or abruptly in 1 step ("air test") while observing the effect on SpO_2 will identify patients with a shunt problem. This can help decide which specific treatments such as PEEP, recruitment maneuvers, bronchodilators, etc. to apply. Finally, any time, clinicians suspect a deterioration of gas exchange during the course of a ventilatory treatment, and the decremental FIO_2 maneuver can be repeated for diagnostic and clinical decision-making purposes.

ADVANCED USES OF THE PULSE OXIMETER AS A PLETHYSMOGRAPH

The origin and meaning of the photoplethysmography (PPG) waveform has not been well understood for many decades. The ventricular-vascular interaction has provided the theoretical basis for a better understanding and interpretation of the PPG waveform.^{33–35} It represents the volume of blood versus time curve measured in a tissue during 1 cardiac cycle.^{36–41} This <u>flow wave</u>has a <mark>systolic-forward</mark> and a diastolic-backward component, similar to pulse pressure and Doppler waveforms^{33–35,40–42} (Fig. 4). Changes in aortic wall elasticity and vascular tone alter PPG, arterial pulse pressure, and Doppler waveform morphology in a predictable and similar manner.^{33,40–42} These facts support the notion that all waves represent the same vascular phenomenon, confirming that PPG has the potential to characterize the status of the vascular system in a simple and noninvasive manner (Fig. 4).

Role of PPG for Monitoring Mechanical Ventilation

Most of the areas of research around PPG have dealt with the prevention, diagnosis, follow-up, and ambulatory treatment of chronic cardiovascular diseases.^{17–21} Although clinicians involved in the care of mechanically ventilated patients use oximeters all the time, the clinical application of PPG for hemodynamic monitoring is only minimally used, if at all.

The link between PPG and mechanical ventilation has its foundation in the physiologic principles governing cardiopulmonary interactions. Hemodynamic impairment during mechanical ventilation is most frequently related to the volemic status and to fast changes in vascular tone.

www.anesthesia-analgesia.org 3

Hypo- and hypervolemia as well as hypotension due to prolonged vasodilation are associated with high morbidity and mortality.⁴³⁻⁴⁵ Therefore, it is of great clinical relevance to be able to determine the volemia state and vascular tone of the patient to choose the right therapeutic intervention. However, this has been a difficult undertaking at the bed-side of mechanically ventilated patients, even with standard invasive monitoring methods. Due to its noninvasiveness, PPG may play a potential role as first-line monitoring of these 2 important hemodynamic parameters. The reader is asked to follow the explanations and descriptions given in Tables 1 and 2 while reading through the next 2 sections.

PPG for Monitoring Preload Dependency

The assessment of fluid responsiveness (i.e., the identification of preload-dependent patients in whom IV fluids will increase cardiac index) constitutes the basis of many goaldirected fluid therapy protocols aimed at both optimizing volemia and avoiding fluid overload in mechanically ventilated patients. Table 1 shows the PPG-derived parameters related to the assessment of preload dependency based on the changes in the morphology of the PPG waveform.⁴⁶

As PPG shares the <mark>same physiologic principles with arte-</mark> rial pulse pressure, it has been suggested that variations in the

Figure 3. <u>Algorithm</u> to determine <u>arterial oxygen-</u> ation using Spo₂ during mechanical ventilation. The algorithm addresses oxygenation problems caused by V/Q mismatch—the most <u>common</u> cause of hypoxemia assuming no hypoventilation, Fio₂ <21%, or <u>diffusion</u> problems. V/Q = ventilation/perfusion ratio.

PPG waveform during mechanical breaths correspond to the delta up and down, as described for the pulse pressure waveform. Partridge47 was the first to describe in 1987 shifts in PPG baseline in synchrony with breathing. Murray and Foster⁴⁸ described the same phenomenon. Shamir et al.49 studied the role of PPG waveform variations in anesthetized patients after removing 10% of blood volume and after replacing it by colloids. The authors found a good correlation between changes in <mark>PPG</mark> and <mark>arterial systolic</mark> pulse pressure <mark>variation</mark> (*r* = 0.85; *P* = 0.0009). Natalini et al.⁵⁰ showed that the ventilation-induced pulse variations of both arterial and PPG waveforms were similar. Taking these data into account, a PPG variation of 9% was the <mark>threshold</mark> value for <mark>predicting fluid <u>responsiveness</u>,</mark> which <mark>corresponded t</mark>o a <mark>pulse pressure variation of <u>>13%</u></mark> (sensitivity 100%, specificity 75%, and area under the receiver operating characteristic curve 0.90). Cannesson et al.⁵¹ also obtained a good correlation and agreement between the arterial pulse pressure variation and the PPG signals in mechanically ventilated patients ($r^2 = 0.83$, P < 0.001). The same authors demonstrated that a change of >13% in the plethysmographic waveform amplitude can predict fluid responsiveness with a <mark>sensitivity of 80%</mark> and a <mark>specificity of 90%</mark> during general anesthesia.⁵² This group also validated the plethysmographic variability index for clinical use^{53,54} (Table 1).

4 www.anesthesia-analgesia.org

ANESTHESIA & ANALGESIA

Another parameter related to the diagnosis of hypovo-<mark>lemia</mark> is the <mark>left ventricular ejection time (LVET)</mark> or the <mark>time</mark> <mark>between </mark>the onset of the <mark>systolic upstroke</mark> and the <mark>dicrotic</mark> notch. LVET measured by PPG was highly correlated

Figure 4. The photoplethysmographic (PPG) waveform. The PPG is formed by a large forward systolic wave (blue) and a small backward diastolic wave (red). It is determined by (1) the pulsatile or alternant component (AC) of the light absorption of the arterial blood, (2) the continuous component (DC) due to the absorption of light within the examined tissues plus the venous blood volume, which varies slowly but which is not represented in the PPG. The time delay between peaks (ΔT) is related to the stiffness of the arterial tree. The ratio of the amplitudes of the <u>B</u> and <u>A waves</u> and the ratio between the AC and the DC components are related to systemic vascular resistance and local perfusion.

with the one determined by Doppler from the aortic flow (r = 0.89, P < 0.05).⁵⁵ Using PPG to calculate LVET, Geeraerts et al.⁵⁶ demonstrated that LVET decreased proportionally to a simulated hypovolemic condition in healthy volunteers. They found that central LVET measured by a straingauge transducer in the carotid artery was similar to the LVET measured by PPG in the periphery. Middleton et al.⁵⁷ obtained similar results in an elegant model of hypovolemia in volunteers donating blood. Shortening of PPG-derived LVET and prolongation of pulse transit time were observed in 81% and 91% of 43 subjects, respectively.

The preejection period, that is, the time interval between the <u>R wave</u> on the electrocardiogram (ECG) and the beginning of the upstroke of the radial artery pulse pressure, has been shown to be another useful parameter for predicting fluid responsiveness in mechanically ventilated patients.⁵⁸ Feissel et al.⁵⁹ demonstrated, in septic ventilated patients, a good correlation between the variation in the preejection period measured by PPG and cardiac index after a fluid challenge ($r^2 = 0.70$, P < 0.001). This parameter accurately identified responders defined as a change in cardiac index >15% (area under the curve 0.94) (Table 1).

PPG for Monitoring Left Ventricle Impedance

Pulse wave velocity and vascular tone are factors greatly affecting left ventricular outflow impedance,33 which changes dynamically during the course of ventilatory treatment. Any time the vascular tree becomes stiffer due to vasoconstriction, the faster pulse wave returns to the LV early in systole, thereby increasing outflow impedance. The opposite situation is observed during vasodilation.²⁰ Such interaction between the left ventricle and the vasculature

Table 1. Pl	notoplethysmogra	aphic-Derived Para	<u>imeter</u>	<u>s</u> Related to Preload Assessr	nent
PPG-derived parameters		Formula	Ref.	Clinical meaning	Clinical use
Parameters related to preload dependency	Plethysmographic waveform <mark>shape</mark>	-	46	Changes in PPG wave features such as height, width, slopes, and AUC are related to the volemic state.	Analysis of changes in the PPG contour has the potential to further increase the sensitivity and specificity of PPG for the diagnosis of preload dependency.
	Plethysmographic waveform amplitude index (POP)	POP = [(POPmax - POPmin) (POPmax + POPmin)/2]	49–52	Delta up and down as described for the pulse pressure signal during mechanical are also found in the PPG signal. POPmax and POPmin were defined as maximum and minimum pulse oximetry plethysmograph waveform amplitude, respectively.	Respiratory variations in the amplitude of the pulse oximetry waveform (POP) are related to respiratory variations in pulse pressure. Both indices are sensitive to changes in preload.
	PVI	PVI = (PImax - PImin) PImax × 100%	53,54	As above	As above
	<u>LVET</u>	_	55–57	Time between the onset of the upstroke to the catacrotic incision. This parameter comes from the analysis of the aortic blood flow profile, which is strongly related to LV filling and stroke volume (volemia-dependent variable).	PPG-derived LVET was correlated with Doppler measurements. It decreases proportional to the lack of intravascular fluid.
	PEP	$\begin{split} \Delta PEP &= [(PEP_E - PEP_I) \\ (PEP_E + PEP_I)/2] \end{split}$	58,59	Time interval between the R wave of the ECG and the upstroke of the PPG. Delta PEP is measured during expiration ($_{E}$) and inspiration ($_{I}$)	The respiratory changes in the preejection period are a dynamic index to predict increases in cardiac output after IV fluid infusion.

AUC = area under the curve; ECG = electrocardiogram; LV = left ventricular; LVET = left ventricular ejection time; PEP = preejection period; PI = perfusion index; POP = pulse oximetry amplitude index; PPG = photoplethysmography; PVI = plethysmographic variability index.

XXX 2016 • Volume XXX • Number XXX Copyright © 2016 International Anesthesia Research Society. Unauthorized reproduction of this article is prohibited.

www.anesthesia-analgesia.org 5

Table 2. Photoplethysmographic-Derived Parameters Related to Systemic Vascular Impedance						
PPG-derived parameters	Formula	Ref.	Clinical meaning	Clinical use		
Parameters related to SI systemic vascular impedance	$SI = h/\Delta T_{PPG}$	60,61	Time between peaks of forward and backward waves (Δ T) along the vascular tree (proportional to patient's height = h) is related to the vascular system's elasticity (Fig. 3).	This index, which is related to the chronological age, is highly predictive of outcome in patients with cardiovascular diseases.		
Al	AI = (b − c − d − e)/a	63,64	Index derived from second derivative reflecting the stiffness of the vascular tree.	Useful in some patients when the shape of the PPG and the position of the notch are not clearly discernable. These ratios were related to the aging process, aortic stiffness, and arterial pressure.		
PPG <mark>amplitud</mark> i	2 —	48,65–70	Vasodilation increases PPG amplitude while vasoconstriction decreases it.	A simple change in the height of the PPG helps diagnose changes in vascular tone. The autoscale function of device must be disabled to be able to observe the real changes in PPG amplitude.		
RI	RI = B/A × 100	20,73–74	Ratio_between the heights_of the backward_and the forward_waves, which reflecting systemic vascular resistance (Fig. 3).	This index was used by several authors to detect and quantify the effect of vasodilators on the vascular tone.		
<u>Peripheral P</u>	PI = <mark>AC/DC</mark>	71,72	Relationship between the pulsatile (alternant = AC) and the nonpulsatile (continuous = DC) components of red light absorption (Fig. 3). This is an index closely related to the amount of local perfusion.	A cutoff value of 1.4 detected abnormal perfusion due to vasoconstriction. This index is helpful when the dicrotic notch is not easily identified in the PPG.		

AC = alternant component; AI = aging index; DC = continuous component; PI = perfusion index; PPG = photoplethysmography; RI = reflection index; SI = stiffness index.

can be monitored by PPG-derived parameters as described in Table 2.

On the one hand, <u>pulse wave velocity</u> is represented by the <u>time</u> between <u>peak-to-peak forward</u> and <u>backward</u> waves that can be clearly determined by the PPG-derived stiffness index^{60,61} (Fig. 4). The stiffness index depends on the presence and detection of the dicrotic notch, which is not well defined or even absent in some patients. In those latter cases, the dicrotic notch may yet be identifiable in the first and second derivatives of the PPG wave. Although this index was initially created for the study of the aging process,⁶⁰⁻⁶² we believe that this concept can be easily applied also in ventilated patients for the beat-by-beat evaluation of LV impedance. The same is true for the indices derived from the second derivative such as the aging index described by Takazawa et al.⁶³ and Imanaga et al.⁶⁴

On the other hand, the <u>PPG contour</u> provides valuable online qualitative information about the vascular tone, which, in clinical practice, is rarely assessed simply by observing the PPG amplitude.⁴⁸ Vasodilation increases the amplitude of the PPG, as observed during hyperthermia or vasodilator infusion, whereas vasoconstriction decreases PPG amplitude as described during tracheal intubation, painful stimuli, or hypothermia.65-68 Other features of the PPG waveform have also been related to the changes in vascular impedance. Awad et al.69 found that the PPG width was directly proportional to systemic vascular resistance and its best indicator among other PPG features in anesthetized patients. Lee et al.,⁷⁰ using a multivariate approach instead of a single PPG-dependent variable, could accurately discriminate a low systemic vascular resistance with a sensitivity of 85% and specificity of 86%.

There are PPG-derived indices, such as the reflection index and the peripheral perfusion index, that are indirectly related to the vascular impedance. The <u>reflection index</u> represents the <u>degree of wave reflection</u> based on the <u>ratio of</u> the <u>heights</u> of the <u>backward</u> and the <u>forward wave</u>. Th<u>e</u> <u>perfusion index</u> is calculated from the <u>pulsatile</u> (alternant) and <u>nonpulsatile</u> (continuous) <u>components</u> of light absorption. The clinical value of these indices has been clearly demonstrated in different kinds of patients and clinical scenarios⁷¹⁻⁷⁴ (Table 2).

The position of the "dicrotic notch," or the incision between forward and backward waves, has been extensively studied in hypertension, diabetes mellitus, and atherosclerosis,^{75–77} and it has been established that, with <u>vasocon-</u> striction, the <u>notch</u> position moves <u>toward the left</u> into the systolic wave. Based on this, Dawber et al.⁷⁷ classified the PPG into 4 categories for the diagnosis of arterial hypertension. However, this classification is incomplete because it includes only vasoconstriction but not vasodilation. As can be expected, arterial <u>vasodilation</u> also has a clear effect on the <u>PPG contour</u>, which is characterized by a <u>decrease in the</u> <u>height</u> of the <u>backward wave.^{65,78,79}</u>

Because of the predictable nature of its changes, PPG contour analysis could be used to describe and classify the changes in vascular impedance in mechanically ventilated patients. Figure 5 presents a proposal for such a classification that includes all the described features of PPG that have been used to assess vascular impedance. Such classification, based on the PPG shape, will allow clinicians to perform a realtime and noninvasive diagnosis, treatment, and assessment of vasoconstriction and vasodilation in mechanically ventilated patients at the bedside. Even though many publications

6 www.anesthesia-analgesia.org

ANESTHESIA & ANALGESIA

Vascular tone	Vasocontriction		Normal	Vasodilation		
	severe	moderate	Normai	slight	moderate	severe
PPG waveform shape	\wedge	\bigwedge	\bigwedge	\mathcal{M}	<u> </u>	$\left \int_{\mathcal{M}} \right $
Amplitude	$\downarrow\downarrow\downarrow\downarrow$	$\downarrow\downarrow$	=	1	^	111
Notch position	111	^	=	¥	$\downarrow\downarrow$	$\downarrow\downarrow\downarrow\downarrow$
RI	111	^	=	Ļ	$\downarrow\downarrow$	$\downarrow\downarrow\downarrow\downarrow$
PI	$\downarrow\downarrow\downarrow\downarrow$	$\downarrow\downarrow$	=	1	^	111
SI	$\downarrow\downarrow\downarrow\downarrow$	$\downarrow\downarrow$	=	1	^	111

Figure 5. <u>Proposed classification of vascular tone</u> based on the photoplethysmographic (PPG) <u>contour</u>. Arrows indicate the direction and the number of arrows indicate the magnitude of change. = indicates reference value. PI = perfusion index; RI = reflection index; SI = stiffness index.

strongly support the principles on which this proposed classification is based, its definitive interpretation and validity must be tested and confirmed in future studies (Fig. 5).

In summary, PPG contour analysis provides useful, realtime, and noninvasive information about cardiopulmonary interactions during mechanical ventilation. Its monitoring capabilities are beyond the known concept of preload dependency. Particularly, the assessment of the vascular impedance is clinically relevant because this information remains hidden to most clinicians, thereby limiting diagnostic options and treatment decisions. For example, changes in vascular tone decrease both the sensitivity and specificity of pulse pressure variation to reliably <u>diagnose preload dependency.^{80–82} This</u> means that vasoconstriction and vasodilation could falsely suggest a normovolemic state when the patient is in fact hypovolemic and a hypovolemic state when the patient is in fact normovolemic. Vasodilation is a known and common finding in mechanically ventilated patients,⁸³ and a failure to recognize this condition subjects patients to the known negative consequences of an *iatrogenic positive fluid balance*.

Limitations and Drawbacks of Pulse Oximetry

In general, pulse oximeters are robust, safe, accurate, reliable, and easy to operate and require no calibration. However, clinicians must be aware about the limitations of this technology and the common drawbacks of most non-invasive measurements. The performance of the advanced pulse oximetry–derived functions described in this article will depend not only on patient-related factors (such as local temperature and blood flow) but also on the specific technical capabilities of pulse oximeters used (such as time response, noises, margin of error, etc.).

Shelley⁸⁴ clearly described the desirable characteristics of oximeters to perform a correct pulse oximetry analysis. Newer pulse oximeters should provide at least the following functions: the ability to <u>disable</u> the <u>autogain</u> and <u>autocenter functions</u>, to <u>eliminate</u> certain <u>signal filtering</u>, to <u>change</u> the <u>time scale</u>, to improve the time resolution, and to show red-infrared data and the continuous component of PPG. The access to real and unfiltered raw data could enable new clinical applications and/or improve the standard ones.

Let us illustrate the above with an example. Some commercial oximeters have a time response of Spo₂ between 8 to 12 seconds. An improved time resolution allowing a beatby-beat calculation of Spo₂ would increase the accuracy and reliability of the Spo₂/Fio₂ diagram because it will provide more data points per unit of time. A better diagram will allow a better analysis. Using standard oximeters, a step change in Fio₂ of 10% will result in no >5 to 8 Spo₂ values per minute in a patient with a heart rate of 80, but in 80 data points if a beat-by-beat calculation of Spo₂ was available.

The sensitivity and specificity of a particular pulse oximeter or one of its features will depend on many technical factors. Manufacturers know these technical factors and the limitations of their devices. Therefore, it is time for them to change the way they analyze and interpret raw data, but, more importantly, they should change the way they present clinically relevant information to the users. Such highly appreciated technical improvements will increase the clinical impact of both current and future pulse oximeters.

Furthermore, as with any noninvasive technology, the performance of oximeter-dependent calculations will be below the accuracy of standard invasive techniques. The main advantage of pulse oximetry resides in its simplicity and availability as a first-line monitoring system not only for mechanically ventilated patients. One of the next steps will be to investigate in more depth the accuracy and reliability of these unusual capabilities of current pulse oximeters.

CONCLUSIONS

Pulse oximetry is an indispensable monitoring modality in respiratory medicine, because it provides real-time, continuous, and noninvasive information on arterial oxygenation. However, the optical spectrometric and plethysmographic capabilities of pulse oximetry are largely underused in the monitoring of patients undergoing mechanical ventilation. The extended clinical applications proposed here are related to the diagnosis of hidden oxygenation deficits using the Spo₂/Fio₂ diagram and to the detection of preload

dependencies and the monitoring of changes in arterial vascular impedance. Such advanced uses of pulse oximetry will necessarily be less precise than standard invasive techniques but will constitute a valuable first-line monitoring approach for most mechanically ventilated patient in whom more invasive monitoring means are not indicated.

The future challenge will be to identify and better characterize these pulse oximetry functionalities and to further develop them for use in the acute care setting. Many of these potential uses have been described, and this accumulated knowledge should be incorporated into our pulse oximetry devices, providing more holistic and intelligent solutions for the assessment and treatment of oxygenation and hemodynamic problems during positive pressure ventilation.

DISCLOSURES

Name: Gerardo Tusman, MD.

Contribution: This author helped prepare the manuscript.

Attestation: Gerardo Tusman is the main and archival author of this manuscript.

Name: Stephan H. Bohm, MD.

Contribution: This author helped design the concept and prepare the manuscript.

Attestation: Stephan H. Bohm has discussed and reviewed the original manuscript.

Name: Fernando Suarez-Sipmann, PhD.

Contribution: This author helped design the concept and prepare the manuscript.

Attestation: Fernando Suarez-Sipmann has discussed and reviewed the original manuscript.

This manuscript was handled by: Maxime Cannesson, MD, PhD.

REFERENCES

- Yoshiya I, Shimada Y, Tanaka K. Spectrophotometric monitoring of arterial oxygen saturation in the fingertip. Med Biol Eng Comput 1980;18:27–32
- 2. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 2007;28:R1–39
- Alexander CM, Teller LE, Gross JB. Principles of pulse oximetry: theoretical and practical considerations. Anesth Analg 1989;68:368–76
- 4. Schnapp LM, Cohen NH. Pulse oximetry. Uses and abuses. Chest 1990;98:1244–50
- Mendelson Y. Pulse oximetry: theory and applications for noninvasive monitoring. Clin Chem 1992;38:1601–7
- 6. Kyriacou PA. Pulse oximetry in the oesophagus. Physiol Meas 2006;27:R1–35
- 7. Severinghaus JW. Takuo Aoyagi: discovery of pulse oximetry. Anesth Analg 2007;105:S1–4
- 8. Yelderman M, New W Jr. Evaluation of pulse oximetry. Anesthesiology 1983;59:349–52
- Mihm FG, Halperin BD. Noninvasive detection of profound arterial desaturations using a pulse oximetry device. Anesthesiology 1985;62:85–7
- Rebuck AS, Chapman KR, D'Urzo A. The accuracy and response characteristics of a simplified ear oximeter. Chest 1983;83:860–4
- 11. Moller JT, Jensen PF, Johannessen NW, Espersen K. Hypoxaemia is reduced by pulse oximetry monitoring in the operating theatre and in the recovery room. Br J Anaesth 1992;68:146–50
- 12. Canet J, Ricos M, Vidal F. Postanesthetic hypoxemia and oxygen administration. Anesthesiology 1991;74:1161–2
- Pedersen T, Hovhannisyan K, Moller AM. Pulse oximetry for perioperative monitoring. Cochrane Database Syst Rev 2009;4:CD002013
- Eichhorn JH, Cooper JB, Cullen DJ, Maier WR, Philip JH, Seeman RG. Standards for patient monitoring during anesthesia at Harvard Medical School. JAMA 1986;256:1017–20

- 15. Reisner A, Shaltis PA, McCombie D, Asada HH. Utility of the photoplethysmogram in circulatory monitoring. Anesthesiology 2008;108:950–8
- Guillot B. Techniques used to evaluate the cutaneous microcirculation: application of photoplethysmography to the assessment of a phlebotropic agent in the treatment of leg ulcers. Angiology 1994;45:542–8
- Fronek A. Photoplethysmography in the diagnosis of venous disease. Dermatol Surg 1995;21:64–6
- Ando J, Kawarada A, Shibata M, Yamakoshi K, Kamiya A. Pressure-volume relationships of finger arteries in healthy subjects and patients with coronary atherosclerosis measured non-invasively by photoelectric plethysmography. Jpn Circ J 1991;55:567–75
- Bortolotto LA, Blacher J, Kondo T, Takazawa K, Safar ME. Assessment of vascular aging and atherosclerosis in hypertensive subjects: second derivative of photoplethysmogram versus pulse wave velocity. Am J Hypertens 2000;13:165–71
- Chowienczyk PJ, Kelly RP, MacCallum H, Millasseau SC, Andersson TL, Gosling RG, Ritter JM, Anggård EE. Photoplethysmographic assessment of pulse wave reflection: blunted response to endothelium-dependent beta2-adrenergic vasodilation in type II diabetes mellitus. J Am Coll Cardiol 1999;34:2007–14
- Nasimi SG, Mearns AJ, Harness JB, Heath I. Quantitative measurement of sympathetic neuropathy in patients with diabetes mellitus. J Biomed Eng 1991;13:203–8
- Wandrup JH. Quantifying pulmonary oxygen transfer deficits in critically ill patients. Acta Anaesthesiol Scand Suppl 1995;107:37–44
- Sapsford DJ, Jones JG. The PIO₂ vs. SpO₂ diagram: a noninvasive measure of pulmonary oxygen exchange. Eur J Anaesthesiol 1995;12:375–86
- Jones JG, Jones SE. Discriminating between the effect of shunt and reduced VA/Q on arterial oxygen saturation is particularly useful in clinical practice. J Clin Monit Comput 2000;16:337–50
- Kjaergaard S, Rees S, Malczynski J, Nielsen JA, Thorgaard P, Toft E, Andreassen S. Non-invasive estimation of shunt and ventilation-perfusion mismatch. Intensive Care Med 2003;29:727–34
- Hedenstierna G, Tokics L, Strandberg A, Lundquist H, Brismar B. Correlation of gas exchange impairment to development of atelectasis during anaesthesia and muscle paralysis. Acta Anaesthesiol Scand 1986;30:183–91
- 27. Magnusson L, Spahn DR. New concepts of atelectasis during general anaesthesia. Br J Anaesth 2003;91:61–72
- Gattinoni L, Caironi P, Pelosi P, Goodman LR. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 2001;164:1701–11
- Smith HL, Jones JG. Non-invasive assessment of shunt and ventilation/perfusion ratio in neonates with pulmonary failure. Arch Dis Child Fetal Neonatal Ed 2001;85:F127–32
- de Gray L, Rush EM, Jones JG. A noninvasive method for evaluating the effect of thoracotomy on shunt and ventilation perfusion inequality. Anaesthesia 1997;52:630–5
- Tusman G, Groisman I, Fiolo FE, Scandurra A, Arca JM, Krumrick G, Bohm SH, Sipmann FS. Noninvasive monitoring of lung recruitment maneuvers in morbidly obese patients: the role of pulse oximetry and volumetric capnography. Anesth Analg 2014;118:137–44
- Canet J, Gallart L, Gomar C, Paluzie G, Vallès J, Castillo J, Sabaté S, Mazo V, Briones Z, Sanchis J; ARISCAT Group. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology 2010;113:1338–50
- O'Rourke MF, Yaginuma T, Avolio AP. Physiological and pathophysiological implications of ventricular/vascular coupling. Ann Biomed Eng 1984;12:119–34
- Nichols WW, O'Rourke MF. McDonald's Blood Flow in Arteries. Theoretical, Experimental and Clinical Principles. London: Edward Arnold, 1999
- 35. O'Rourke MF. Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J Appl Physiol 1967;23:139–49
- Korpas D, Hálek J, Dolezal L. Parameters describing the pulse wave. Physiol Res 2009;58:473–9

8 www.anesthesia-analgesia.org

ANESTHESIA & ANALGESIA

- de Trafford J, Lafferty K. What does photoplethysmography measure? Med Biol Eng Comput 1984;22:479–80
- Sherebrin MH, Sherebrin RZ. Frequency analysis of the peripheral pulse wave detected in the finger with a photoplethysmograph. IEEE Trans Biomed Eng 1990;37:313–7
- Lawson D, Norley I, Korbon G, Loeb R, Ellis J. Blood flow limits and pulse oximeter signal detection. Anesthesiology 1987;67:599–603
- Wisely NA, Cook LB. Arterial flow waveforms from pulse oximetry compared with measured Doppler flow waveforms apparatus. Anaesthesia 2001;56:556–61
- Millasseau SC, Guigui FG, Kelly RP, Prasad K, Cockcroft JR, Ritter JM, Chowienczyk PJ. Noninvasive assessment of the digital volume pulse. Comparison with the peripheral pressure pulse. Hypertension 2000;36:952–6
- 42. Almond NE, Jones DP, Cooke ED. Noninvasive measurement of the human peripheral circulation: relationship between laser Doppler flowmeter and photoplethysmograph signals from the finger. Angiology 1988;39:819–29
- Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368–77
- 44. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL: Comparison of two fluid management strategies in acute lung injury. N Engl J Med 2006; 354:2564–75
- 45. Monk TG, Bronsert MR, Henderson WG, Mangione MP, Sum-Ping ST, Bentt DR, Nguyen JD, Richman JS, Meguid RA, Hammermeister KE. Association between intraoperative hypotension and hypertension and 30-day postoperative mortality in noncardiac surgery. Anesthesiology 2015;123:307–19
- 46. Alian AA, Galante NJ, Stachenfeld NS, Silverman DG, Shelley KH. Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers. Part 1: time domain analysis. J Clin Monit Comput 2011;25:377–85
- Partridge BL. Use of pulse oximetry as a noninvasive indicator of intravascular volume status. J Clin Monit 1987;3:263–8
- Murray WB, Foster PA. The peripheral pulse wave: information overlooked. J Clin Monit 1996;12:365–77
- Shamir M, Eidelman LA, Floman Y, Kaplan L, Pizov R. Pulse oximetry plethysmographic waveform during changes in blood volume. Br J Anaesth 1999;82:178–81
- Natalini G, Rosano A, Taranto M, Faggian B, Vittorielli E, Bernardini A. Arterial versus plethysmographic dynamic indices to test responsiveness for testing fluid administration in hypotensive patients: a clinical trial. Anesth Analg 2006;103:1478–84
- 51. Cannesson M, Besnard C, Durand PG, Bohé J, Jacques D. Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients. Crit Care 2005;9:R562–8
- Cannesson M, Attof Y, Rosamel P, Desebbe O, Joseph P, Metton O, Bastien O, Lehot JJ. Respiratory variations in pulse oximetry plethysmographic waveform amplitude to predict fluid responsiveness in the operating room. Anesthesiology 2007;106:1105–11
- 53. Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O, Lehot JJ. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth 2008;101:200–6
- 54. Cannesson M, Delannoy B, Morand A, Rosamel P, Attof Y, Bastien O, Lehot JJ. Does the Pleth variability index indicate the respiratory-induced variation in the plethysmogram and arterial pressure waveforms? Anesth Analg 2008;106:1189–94
- 55. Chan GS, Middleton PM, Celler BG, Wang L, Lovell NH. Automatic detection of left ventricular ejection time from a finger photoplethysmographic pulse oximetry waveform: comparison with Doppler aortic measurement. Physiol Meas 2007;28:439–52

- Geeraerts T, Albaladejo P, Declère AD, Duranteau J, Sales JP, Benhamou D. Decrease in left ventricular ejection time on digital arterial waveform during simulated hypovolemia in normal humans. J Trauma 2004;56:845–9
- 57. Middleton PM, Chan GS, O'Lone E, Steel E, Carroll R, Celler BG, Lovell NH. Changes in left ventricular ejection time and pulse transit time derived from finger photoplethysmogram and electrocardiogram during moderate haemorrhage. Clin Physiol Funct Imaging 2009;29:163–9
- Bendjelid K, Suter PM, Romand JA. The respiratory change in preejection period: a new method to predict fluid responsiveness. J Appl Physiol (1985) 2004;96:337–42
- Feissel M, Badie J, Merlani PG, Faller JP, Bendjelid K. Preejection period variations predict the fluid responsiveness of septic ventilated patients. Crit Care Med 2005;33:2534–9
- Arnett DK, Evans GW, Riley WA. Arterial stiffness: a new cardiovascular risk factor? Am J Epidemiol 1994;140:669–82
- Millasseau SC, Kelly RP, Ritter JM, Chowienczyk PJ. Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clin Sci (Lond) 2002;103:371–7
- 62. Allen J, Murray A. Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites. Physiol Meas 2003;24:297–307
- 63. Takazawa K, Tanaka N, Fujita M, Matsuoka O, Saiki T, Aikawa M, Tamura S, Ibukiyama C. Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform. Hypertension 1998;32:365–70
- 64. Imanaga I, Hara H, Koyanagi S, Tanaka K. Correlation between wave components of the second derivative of plethysmogram and arterial distensibility. Jpn Heart J 1998;39:775–84
- 65. Lund F. Digital pulse plethysmography (DPG) in studies of the hemodynamic response to nitrates—a survey of recording methods and principles of analysis. Acta Pharmacol Toxicol (Copenh) 1986;59(Suppl 6):79–96
- Ezri T, Steinmetz A, Geva D, Szmuk P. Skin vasomotor reflex as a measure of depth of anesthesia. Anesthesiology 1998;89:1281–2
- 67. Zhang XY, Zhang YT. The effect of local mild cold exposure on pulse transit time. Physiol Meas 2006;27:649–60
- Awad AA, Ghobashy MA, Ouda W, Stout RG, Silverman DG, Shelley KH. Different responses of ear and finger pulse oximeter wave form to cold pressor test. Anesth Analg 2001;92:1483–6
- Awad AA, Haddadin AS, Tantawy H, Badr TM, Stout RG, Silverman DG, Shelley KH. The relationship between the photoplethysmographic waveform and systemic vascular resistance. J Clin Monit Comput 2007;21:365–72
- Lee QY, Chan GS, Redmond SJ, Middleton PM, Steel E, Malouf P, Critoph C, Flynn G, O'Lone E, Lovell NH. Multivariate classification of systemic vascular resistance using photoplethysmography. Physiol Meas 2011;32:1117–32
- Lima AP, Beelen P, Bakker J. Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit Care Med 2002;30:1210–3
- De Felice C, Latini G, Vacca P, Kopotic RJ. The pulse oximeter perfusion index as a predictor for high illness severity in neonates. Eur J Pediatr 2002;161:561–2
- 73. Yousef Q, Reaz MBI, Ali MAM. The analysis of PPG morphology: investigating the effects of aging on arterial compliance. Measurement Sci Rev 2012;12:266–71
- Rubins U, Grube J, Kukulis I. Photoplethysmography analysis of artery properties in patients with cardiovascular diseases. In 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, 16–20 June 2008. Springer, 319–322
- Dillon JB, Hertzman AB. The form of the volume pulse in the finger pad in health, arteriosclerosis, and hypertension. Am Heart J 1941; 21:172–190
- 76. Lax H, Feinberg AW, Cohen BM. Studies of the arterial pulse wave. I. The normal pulse wave and its modification in the presence of human arteriosclerosis. J Chronic Dis 1956;3:618–31
- Dawber TR, Thomas HE Jr, McNamara PM. Characteristics of the dicrotic notch of the arterial pulse wave in coronary heart disease. Angiology 1973;24:244–55

XXX 2016 • Volume XXX • Number XXX

www.anesthesia-analgesia.org

9

- Morikawa Y. Characteristic pulse wave caused by organic nitrates. Nature 1967;213:841–2
- 79. Stengele E, Winkler F, Trenk D, Jähnchen E, Petersen J, Roskamm H. Digital pulse plethysmography as a non-invasive method for predicting drug-induced changes in left ventricular preload. Eur J Clin Pharmacol 1996;50:279–82
- Nouira S, Elatrous S, Dimassi S, Besbes L, Boukef R, Mohamed B, Abroug F. Effects of norepinephrine on static and dynamic preload indicators in experimental hemorrhagic shock. Crit Care Med 2005;33:2339–43
- 81. Westphal GA, Gonçalves AR, Bedin A, Steglich RB, Silva E, Poli-de-Figueiredo LF. Vasodilation increases pulse pressure

variation, mimicking hypovolemic status in rabbits. Clinics (Sao Paulo) 2010;65:189–94

- Hadian M, Severyn DA, Pinsky MR. The effects of vasoactive drugs on pulse pressure and stroke volume variation in postoperative ventilated patients. J Crit Care 2011; 26: 328.e1–328.e8
- 83. Akata T. General anesthetics and vascular smooth muscle: direct actions of general anesthetics on cellular mechanisms regulating vascular tone. Anesthesiology 2007;106:365–91
- Shelley KH. Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate. Anesth Analg 2007;105:S31–6