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Clinical Implications of Mitochondrial Dysfunction
Stanley Muravchick, M.D., Ph.D.,* Richard J. Levy, M.D.†

Mitochondria produce metabolic energy, serve as biosensors
for oxidative stress, and eventually become effector organelles
for cell death through apoptosis. The extent to which these
manifold mitochondrial functions are altered by previously
unrecognized actions of anesthetic agents seems to explain and
link a wide variety of perioperative phenomena that are cur-
rently of interest to anesthesiologists from both a clinical and a
scientific perspective. In addition, many surgical patients may
be at increased perioperative risk because of inherited or ac-
quired mitochondrial dysfunction leading to increased oxida-
tive stress. This review summarizes the essential aspects of the
bioenergetic process, presents current knowledge regarding
the effects of anesthetics on mitochondrial function and the
extent to which mitochondrial state determines anesthetic re-
quirement and potential anesthetic toxicity, and considers
some of the many implications that our knowledge of mito-
chondrial dysfunction poses for anesthetic management and
perioperative medicine.

MITOCHONDRIA not only generate and modulate bioen-
ergy but also serve as the final effectors for the termina-
tion of cell viability as organisms approach the end of
their lifespan. Therefore, the implications of these pro-
cesses with regard to understanding evolution, disease,
aging, and death are profound. Particularly relevant to
anesthesiologists is the role of mitochondria in determin-
ing the response of the nervous system to anesthetic
agents, in initiating mechanisms of cell injury or protec-
tion after ischemic, hypoxic, or toxic injuries, and their
ability to precipitate critical illness in individuals with
inherited or acquired mitochondrial disorders. These
aspects of mitochondrial biology and pathophysiology
will be briefly summarized in this clinically oriented
review.

The Bioenergetic Process

Mitochondria produce the energy needed for normal
cellular function and metabolic homeostasis by oxidative

phosphorylation,1 a process conducted by a series of five
enzyme complexes located on the inner mitochondrial
membrane (fig. 1). Four of these complexes comprise
the mitochondrial electron transport chain (ETC) and
function as a biochemical “conveyor belt” for electrons.
Oxidative phosphorylation couples the oxidation of re-
duced nicotinamide adenine dinucleotide and flavin ad-
enine dinucleotide, generated by the Krebs cycle and by
the �-oxidation of fatty acids, to the phosphorylation of
adenosine diphosphate (ADP) to adenosine triphosphate
(ATP). Electron donation to complex I (reduced nicotin-
amide adenine dinucleotide–ubiquinone oxidoreduc-
tase) initiates this process. Alternatively, electrons orig-
inating from succinate and from reduced flavin adenine
dinucleotide can be channeled into the ETC through
complex II (succinate–ubiquinone oxidoreductase).
Electrons are transported from complex I or II to com-
plex III (ubiquinone–cytochrome c oxidoreductase) via
a mobile electron carrier, coenzyme Q (ubiquinone),
and subsequently on to complex IV (cytochrome c oxi-
dase) via cytochrome c. Complex IV uses electrons from
cytochrome c to reduce molecular oxygen, the final
acceptor of electrons, to water at that site.

Intrinsically linked to this process of electron transport
is the generation and maintenance of a hydrogen ion
gradient across the inner mitochondrial membrane. The
inner membrane separates the intermembrane space
from the mitochondrial matrix. The gradient is estab-
lished by proton pumps in ETC complexes I, III, and IV.
The F1F0–ATPase (ATP synthase) complex within the
inner membrane uses this proton motive force to phos-
phorylate ADP. This last step in the overall process of
oxidative phosphorylation produces the ATP that serves
as the fundamental “currency” needed for most energy-
requiring biologic transactions. Another membrane-inte-
grated protein, adenine nucleotide translocase, regulates
an “antiport” process that moves ADP and ATP in oppo-
site directions across the inner mitochondrial mem-
brane. Adenine nucleotide translocase delivers ATP to
energy-requiring sites, mostly in the cytosol, and simul-
taneously resupplies the ATP synthase complex with
new substrate.

The hydrogen ion gradient established by the process
of oxidative phosphorylation can also be dissipated by
proton leakage back into the matrix through the inner
membrane that bypasses the ATP synthase complex.
Uncoupling proteins (UCPs) within the inner membrane
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provide this alternate pathway for proton influx. In ef-
fect, UCPs convert some of the electrochemical energy
generated by the ETC into heat rather than into ATP. The
rate of proton leakage through a UCP seems to be influ-
enced by a variety of conditions, including changes in
the magnitude of the hydrogen ion gradient itself, in-
creased catecholamines levels, and variations in fatty
acid concentrations.2 UCP-1, also called thermogenin,
was originally characterized in the mitochondria of
brown fat cells3 and is now known to play a role in
nonshivering thermogenesis in human neonates. Subse-
quently, additional UCP isoforms were identified in a
variety of tissues.4 Although their precise metabolic
functions have yet to be determined, UCPs may play an
important role in adult obesity, diabetes mellitus,5 and
perhaps other conditions where the regulation of oxida-
tive metabolism seems to be disrupted.

Mitochondrial Biogenesis

The mitochondrion, unique among mammalian or-
ganelles, contains multiple copies of a small circular
genome of approximately 16,000 nucleotide base pairs.
This mitochondrial DNA (mtDNA) has been completely
characterized in humans.6 mtDNA encodes for some key

subunits needed for electron transport and oxidative
phosphorylation, although the majority of mitochondrial
proteins needed for normal bioenergetic function are
encoded by nuclear DNA (nDNA)7 and therefore must
be imported into the mitochondrial matrix from the cell
cytosol.8 Complex IV of the ETC, for example, contains
13 subunits, 10 of which are encoded in nDNA. The
expression of the mitochondrial genome itself requires a
single mitochondrial transcription factor that arises from
the nuclear genome.9

Overall, the human mitochondrial genome encodes for
13 peptides (subunits of complexes I, III, and IV and the
ATP synthase complex), 2 ribosomal ribonucleic acids
(RNAs), and 22 transfer RNAs. Nuclear DNA encodes for
at least 1,000 proteins that are needed for mitochondrial
bioenergetic and metabolic functions and for mtDNA
expression and replication.10 Although there may be as
many as 1,000 copies of mtDNA in most cells, acquired
mtDNA point mutations and base pair deletions are ex-
tremely rare and are normally found in only a minute
proportion of total mtDNA11 despite the fact that
mtDNA, unlike nDNA, lacks histone protection and is
surrounded by potentially damaging oxidative influenc-
es.12 This observation supports the hypothesis that there
must be effective molecular repair and disposal mecha-
nisms for damaged mtDNA within mitochondria.13,14

Fig. 1. Schematic representation of the mitochondrial components needed for oxidative phosphorylation. Complexes I–IV, located
within the inner mitochondrial membrane, are oxidase complexes that, along with coenzyme Q (Co Q) and cytochrome c (Cyto C),
comprise the electron transport chain. Dotted lines indicate pathway for electron flow. Complexes I, III, and IV also pump hydrogen
ions (dashed lines) into the intermembrane space and generate the electrochemical gradient that ultimately powers the phosphor-
ylation of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by ATP synthase. Inner membrane–bound uncoupling
protein (UCP) is an alternate return path for hydrogen ions. Adenine nucleotide translocase (ANT) regulates the balance of ATP and
ADP within the mitochondrial matrix. FADH2 � flavin adenine dinucleotide; H2O � water; NAD � nicotinamide adenine dinucle-
otide; NADH � reduced nicotinamide adenine dinucleotide; O2 � oxygen; Pi � inorganic phosphate. Copyright © 2000 American
Diabetes Association. Modified with permission from The American Diabetes Association, from Boss et al.4
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Oxidative Stress

Oxidative phosphorylation is the major intracellular
source of reactive oxygen species (ROS). ROS or “free
radicals” such as superoxide, peroxide, or hydroxyl rad-
icals (O2

�, H2O2, and OH�) are routinely generated as
byproducts of the interaction between free electrons
and oxygen. ROS are an unavoidable consequence of
aerobic metabolism and can be produced anywhere
there is leakage of electrons from the ETC. Although
only a tiny percentage of metabolically consumed oxy-
gen is converted into ROS, these ephemeral but highly
reactive molecules can degrade or destroy mitochondrial
enzyme complexes, membranes, and other structural
components of cell microarchitecture, either by direct
contact or through lipid peroxidation.15 ROS such as
hydroxyl and reactive nitrogen species such as peroxyni-
trite (ONO2

� formed from the interaction of superoxide
and nitric oxide) react almost instantly with proteins to
generate protein carbonyls16,17 and with polyunsatu-
rated fatty acids in membranes to generate a variety of
lipid peroxidation products including 4-hydroxynonenal
and malondialdehyde.18 These reaction products drasti-
cally reduce the membrane fluidity needed for normal
cell function. With half-lives of minutes to hours,19 per-
oxidation products may impact multiple membrane-
bound systems and precipitate a series of damaging
“chain reaction” peroxidation sequences in adjacent
cells.20

All obligate aerobes have intrinsic defensive systems to
protect against damage by ROS.21 This includes several
forms of superoxide dismutase, catalase, and glutathione
peroxidase. Copper, zinc superoxide dismutase (present
in the cytosol),22 and manganese superoxide dismutase
(found within the mitochondrion)23,24 convert superox-
ide into oxygen and hydrogen peroxide. The bulk of
hydrogen peroxide is quickly broken down by catalases
into water and oxygen,25 although some peroxide in
human cells, particularly neurons, is inactivated either
by glutathione peroxidase26 or by the more recently
described peroxiredoxins,27 a group of thioredoxin-de-
pendent antioxidant peroxidases that reduce peroxyni-
trite and also modulate the role of peroxide as a second
messenger molecule.28

Overall, endogenous antioxidant defense systems pro-
vide effective homeostasis with regard to suppressing
ROS levels within the cell as well as within mitochon-
dria, and there are endogenous “backup” systems to
repair ROS-mediated damage if it occurs.29 In many dis-
ease states, however, and perhaps in normal aging,
mechanisms that prevent or limit ROS-mediated damage
may become inadequate.30 Elevation of ROS beyond
normal levels, regardless of etiology, inevitably produces
oxidative stress. The insidious onset or sustained low
level of oxidative stress can be cytoprotective if it in-
duces or enhances the expression of additional antioxi-

dant or molecular repair systems. In contrast, however,
rapid or overwhelming increases in ROS are fundamen-
tally cytotoxic, primarily through disruption of intracel-
lular calcium regulation or by initiating the destructive
sequence of events known as apoptosis.

Apoptosis

Apoptosis, or programmed cell death, is a genetically
controlled event that has biologic value because it per-
mits prompt and orderly disposal of damaged, infected,
or aging cells, especially in the nervous system,31 and
has survival value for the species because it facilitates
complex organogenesis and tissue development.32 It
may also limit the spread of “rogue” or neoplastic
cells.33,34 It is a biochemical cascade usually mediated by
caspases, a large family of proteolytic enzymes that acti-
vate the nucleases that digest DNA (fig. 2). Each cell
within a multicellular organism seems to possess multi-
ple overlapping mechanisms to accomplish what is, in
effect, “cellular suicide.” Because nDNA fragmentation is
prominent in this process, apoptosis was originally
thought to be solely a function of cell nuclei. Now,
however, the central role of mitochondria in cellular
apoptosis is universally acknowledged.35

The rate-limiting fundamental step in the mitochon-
drial apoptotic pathway is induction of a mitochondrial
permeability transition (MPT),36 an electrochemical
event characterized by transient influx of solutes
through large pores or “megachannels” in the otherwise
essentially impermeable mitochondrial inner membrane.
During MPT-induced permeabilization, collapse of the
transmembrane electrochemical gradient for hydrogen
ions stops the process of oxidative phosphorylation. In
addition, there is efflux of cytochrome c from the inter-
membrane space into the cytosol. There, cytochrome c
combines with apoptotic protease activation factor 1
and dATP to form a complex that oligomerizes, recruits,
and activates procaspase 9. Subsequent procaspase-3 re-
cruitment forms an “apoptosome “and activates caspase
3. This leads to the activation of nucleases that com-
pletes the “intrinsic” or mitochondrial-dependent path-
way. Destruction of nDNA and mtDNA by nucleases is
irreversible and complete within a few hours.

There is also an “extrinsic” pathway that can initiate
caspase activation and apoptosis without mitochondrial
involvement. Apoptosis can be triggered by the binding
of a signaling messenger such as tumor necrosis factor or
similar extrinsic cytokine37 to a cell surface “death re-
ceptor.” It seems that a variety of signal transducers and
activators of transcription may play a role in the suppres-
sion or activation of apoptosis, especially with neoplas-
tic cells.38 In addition, there is at least one apoptotic
cascade that uses apoptosis-inducing factor (AIF), a fla-
voprotein sequestered in the intermembrane region of
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the mitochondrion, to initiate apoptosis without caspase
activation. AIF normally stabilizes mitochondrial mem-
brane permeability and supports oxidative phosphoryla-
tion.39 However, if released through the outer mem-
brane into the cytosol, AIF can produce terminal damage
to nDNA.

The precise regulation of calcium ion flux across mi-
tochondrial membranes is essential both to normal mi-
tochondrial bioenergetic function and to the apoptotic
process.40 Calcium is of special importance because it is
a signaling cation for many preprogrammed cell func-
tions. Calcium concentrations within the cytosol are
normally orders of magnitude less than extracellular cal-
cium concentrations. With their capacity for calcium
uptake, mitochondria may therefore function as a reser-
voir or buffer to stabilize calcium concentrations within
the cytosol at very low levels. It is also possible that tiny
fluctuations in cytosol calcium concentrations are
“sensed” within the mitochondrion, providing a control
system that links changes in cellular energy demand to
the rate of energy production by oxidative phosphory-
lation.41

Pathways for apoptosis involve counterbalancing con-
centrations of antiapoptotic and proapoptotic proteins,

many of which are encoded by the Bcl-2 B-cell leukemia
gene.33,42 Although the precise role and interactions
between the members of this large family of proteins are
still under intense investigation,37 they modulate the
likelihood of an MPT initiating permeabilization and trig-
gering apoptosis, probably through their effects on inner
membrane stability.43 In addition, Bcl-2 family proteins
such as Bid may act as a “bridge” between different
apoptotic pathways, allowing them to share some, but
not all, mediators.44 Oxidative stress or high levels of
ionized calcium within the mitochondrial matrix can
also induce an MPT. During a state of oxidative stress,
there is a synergistic relation between MPT and ROS
formation that produces an upward spiral of mitochon-
drial damage and continuing release of ROS and calcium
into the cytosol.45

It has been difficult to distinguish clearly between
proapoptotic and antiapoptotic factors. For example, at
low intracellular concentrations, nitric oxide is a potent
but reversible inhibitor of cellular respiration and oxy-
gen consumption46 and inhibits mitochondrial-depen-
dent apoptosis. At higher levels, however, or in the
presence of increased intracellular or intramitochondrial
calcium, nitric oxide enhances the apoptogenic effects

Fig. 2. Simplified schematic of major pathways for apoptosis. The intrinsic or mitochondrial pathway requires a cascade of events
beginning with a mitochondrial permeability transition (MPT) that can be triggered by a variety of stimuli, including oxidative stress,
high levels of nitric oxide (NO), acute hypercalcemia, or release of proapoptotic “death proteins.” The intrinsic cascade releases
cytochrome c (Cyto C) from the mitochondrial inner membrane into the cytosol, which triggers caspase activation facilitated by
apoptotic protease activation factor 1 (Apaf-1). Activation of nucleases may also occur without caspase activation when an MPT
releases apoptosis-inducing factor (AIF) from the mitochondrion. Extrinsic pathways for apoptosis have been described that require
activation of cell surface N-methyl-D-aspartate (NMDA) receptors by neurotransmitters such as glutamate or by “death receptors”
triggered by tumor necrosis factor (TNF) or other cytokines. Dotted lines indicate evidence of protective or antiapoptotic properties
for low levels of NO, some Bcl proteins (Bcl-2), and heat shock proteins (HSPs). mtDNA � mitochondrial DNA; nDNA � nuclear DNA.
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of ROS or may even become a “death messenger” capa-
ble of initiating apoptosis.47 It has also recently been
emphasized that caspases, as do cytochrome c and AIF,
play a prominent role in programmed cell death but are
also essential to many vital nonapoptotic cell process-
es.48 Therefore, therapeutic strategies that suppress or
block the effects of putative proapoptotic agents may
produce unintended interruptions of other cell functions
and actually compromise cell viability. Clearly, more
investigation is necessary to define the importance and
role of apoptosis in the maintenance of normal cellular
function and in the pathogenesis of disease.

Effect of Anesthetics on Mitochondrial
Function

Although the extent to which they alter mitochondrial
function in vivo is not yet understood, it has long been
known that intravenous drugs with anesthetic proper-
ties can depress carbohydrate metabolism, oxygen con-
sumption, and energy production in the nervous sys-
tem.49 Early studies of narcotics demonstrated that they
inhibit oxidation of glucose, lactate, and pyruvate in
neural tissues at clinically relevant concentrations,50 and
seven decades later, it has been proposed that morphine
may actually have a mitochondrial-based mechanism of
clinical action.51 It has also been recently shown that
propofol markedly decreases oxygen consumption and
ATP production in brain synaptososmes52 and reduces
electron flow in cardiac mitochondria.53,54 Propofol in-
hibits complex I of the ETC but may also effect ATPase
and UCPs, uncoupling electron transport from ATP pro-
duction.55,56 The primary effect of barbiturates on oxi-
dative phosphorylation in mitochondria obtained from
brain, heart, and liver also seems to be inhibition of
complex I, and, like propofol, they seem to “uncouple “
metabolic activity from ATP production, further reduc-
ing bioenergetic capacity.57

Inhalational anesthetic agents have similar depressant
effects on mitochondrial respiration, at least in
vitro.58–62 Studies of cardiac mitochondria exposed to
halothane, isoflurane, and sevoflurane suggest that the
most common site of action is, again, inhibition of com-
plex I.63 At concentrations equal to twice minimum
alveolar concentration, complex I activity is reduced by
20% after exposure to halothane and isoflurane and by
10% after exposure to sevoflurane. Oxidative phosphor-
ylation in isolated liver mitochondria is also measurably
depressed after exposure to halothane.64 Concentrations
of 0.5–2% halothane lead to reversible inhibition of com-
plex I that is further exacerbated by the addition of
nitrous oxide,65 although nitrous oxide itself seems to
have little effect on ATP production.66

Local anesthetics also depress bioenergetic capacity
and disrupt oxidative phosphorylation67–70 in a manner

similar to that of the intravenous agents. Given these
observations, it is tempting to speculate that reversible
inhibition of mitochondrial electron transfer and de-
creased energy availability within neural tissues provide
a unitary and simple hypothesis for the mechanism of
anesthesia. However, the effect of any of these drugs on
mitochondrial function or apparent bioenergetics may
be incidental and does not necessarily explain their an-
esthetic actions. In addition, given the demonstrated
ability of cells to “down-regulate” their metabolic activity
under a variety of conditions,71 ATP levels do not pro-
vide a sensitive measure of the energy state of an intact
cell or of its capacity for oxidative phosphorylation. In
fact, much of the available data regarding in vivo ATP
levels in various tissues at clinically relevant concentra-
tions of inhalational agents72–74 suggests that there is no
consistent change. Consequently, the most recent con-
cepts regarding the underlying mechanism of general
anesthesia emphasize the complexity, rather than the
simplicity, of anesthetic effects and the high probability
that there are multiple effect sites for anesthetics, prob-
ably involving transmembrane receptor protein struc-
tures.75

Similarly, propofol-induced depression of myocardial
bioenergetics at low clinical concentrations is not suffi-
cient to account for observed alterations of contractile
function.76 Although earlier work proposed that im-
paired bioenergetics might be a primary factor in anes-
thetic-induced depression of myocardial function,77 the
depression seen with inhalational agents seems to be
due to the consequences of impaired calcium utilization
on excitation–contraction coupling rather than to inad-
equate myocardial energy availability.78 Although anes-
thetics therefore probably do not exert their obvious
clinical effects through limitation of ATP availability,
they may interfere with ATP utilization, produce oxida-
tive stress, or impair mitochondrial function in some
other manner.

In isolated individual neurons, 5 min of exposure to
lidocaine at clinically relevant concentrations initiates an
MPT and complete loss of mitochondrial membrane elec-
trochemical potential.79 Subsequently, there is release of
mitochondrial cytochrome c into the cytoplasm and ac-
tivation of caspases. This suggests that even simple ex-
posure of nerve cells to local anesthetics may be suffi-
cient to trigger apoptotic pathways. The myocardial
toxicity of bupivacaine seems to be similarly mediated
by a mechanism involving mitochondrial bioenerget-
ics.80 It has been proposed that anesthetics impair the
ability of the mitochondrion to function as a “biosensor”
for oxidative stress, disrupting the normal balance be-
tween ROS and endogenous antioxidants or antiapop-
totic molecules.81

Whatever their relative importance to the production
of the anesthetic state, the effects of anesthetics on
mitochondria described above largely occur on the inner
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membrane of mitochondria. Therefore, they seem to
reflect the physicochemical actions of anesthetics82,83

on the lipid or protein components of mitochondrial
membranes.84,85 In general, it seems a reasonable work-
ing hypothesis that drugs with anesthetic properties
influence bioenergetic activity through disruption of mi-
tochondrial membrane structure,86 either by diffuse, or
perhaps by highly specific, effects at lipid or protein
sites.87 A strong correlation between their anesthetic
potency and affinity for cytochrome c oxidase (ETC
complex IV) suggests that it may be a discrete target site
for local anesthetics.88 The consistent relation between
inhibition of complex IV and the octanol–water partition
coefficient of local anesthetics89 also suggests that li-
pophilic interactions may produce reversible, short-term
distortion or perturbation of essential ETC components.
Reversible depression of oxidative phosphorylation in
mammals has recently been shown to be initiated by
molecules as simple as hydrogen sulfide.90

Mitochondria and the Response to
Anesthetics

Manipulation of the nuclear genome of nematodes has
shown a direct link between the composition of mito-
chondrial proteins and anesthetic requirement.91,92 A
defect in a subunit of complex I of the ETC is associated
with depressed mitochondrial bioenergetics and hyper-
sensitivity to volatile anesthetics.93,94 In addition, there
seems to be a clear, albeit empirical, correlation be-
tween increasing age and declining anesthetic require-
ment in humans from mid-adulthood through senes-
cence,95 a time period during which bioenergetics also
seem to be progressively depressed.96 Finally, and most
recently documented, is the increased sensitivity to in-
halational anesthesia seen in children who have de-
pressed mitochondrial bioenergetics due to inherited
mitochondrial cytopathies.97 These observations hint at
a fundamental but still undefined relation between anes-
thetic requirement and mitochondrial function within
the nervous system.

N-methyl-D-aspartate antagonism or �-aminobutyric
acid receptor stimulation can initiate neuronal apopto-
sis, at least in immature brain tissue.98 This seems to
provide a physiologic mechanism to facilitate brain de-
velopment or to cull redundant or failing neurons and
provide neuroplasticity. The process may become patho-
logic when immature or minimally stressed neurons are
exposed to drugs such as anesthetic agents, which gen-
erally have N-methyl-D-aspartate antagonist or �-ami-
nobutyric acid mimetic properties. In fact, widespread
nonphysiologic apoptosis and neurodegeneration have
been observed in laboratory rodent fetal brains after
short-term anesthetic exposure99 as well as in adult brain
after prolonged exposure to nitrous oxide.100 Even in

mature brain, the transition of immature cells into more
highly differentiated neurons with the complex synaptic
structure needed for learning could be compromised by
routine anesthetic exposure. This hypothesis is sup-
ported by recent investigations demonstrating that cog-
nitive deficits persist in aged, but not in young adult,
laboratory rodents after routine inhalational anesthe-
sia.101,102 Exposure to anesthetic agents also measurably
depresses mitochondrial bioenergetics in peripheral T
lymphocytes, possibly contributing to impairment of
perioperative immune competence.103

Some preliminary clinical data could also be inter-
preted to support the hypothesis that anesthetics have
intrinsic potential neurotoxicity. In elderly surgical pa-
tients, for example, deeper levels of inhalational anes-
thesia are associated with more severe early postopera-
tive cognitive impairment as well as with a significantly
decreased probability of postoperative survival.104,105

This suggests that in individuals with limited nervous
system reserve or impaired tolerance for oxidative stress,
prolonged exposure, or higher anesthetic concentra-
tions could be, in effect, neurotoxic.106 Anesthetic ex-
posure may increase mitochondrial ROS sufficiently in
some individuals to damage cells through a lipid peroxi-
dation pathway.107 Therefore, it is possible that both the
desired clinical effects of anesthetics as well as their
potential to injure neurons may reflect their interaction
with mitochondria, although there is obviously need for
caution before extrapolating from laboratory observa-
tions to clinical practice.108

Implications for Perioperative Medicine

The scope of human disease attributable to inherited,
acutely acquired, or insidious impairment of mitochon-
drial function is clearly far greater than had been previ-
ously believed.109,110 Given the universal role of mito-
chondrial bioenergetics in sustaining the normal
function of cells in every tissue and organ, mitochondrial
cytopathy or short-term mitochondrial dysfunction can
potentially produce virtually any symptom, in any organ
system, at any stage of life. Many presumably unique
“diseases” may actually be expressions of progressive
organ system dysfunction due to disordered oxidative
metabolism or disruption of other aspects of mitochon-
drial function. In fact, with more than a hundred mtDNA
mutations implicated in human disease,111 mitochon-
drial dysfunction is emerging as a primary focus for
investigations into the etiology of sepsis, neurodegenera-
tive disorders, diabetes, cardiovascular disease, and var-
ious forms of hepatic and metabolic derangement.112

Anesthesiologists are therefore in a unique position to
observe and to explore the relevance of congenital and
acquired cytopathies to perioperative patient care.
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Patients with Mitochondrial Cytopathy

The terms mitochondrial myopathy, inherited mito-
chondrial encephalomyopathy, and mitochondrial cyto-
pathy are generally equivalent. Clinically, they encom-
pass a wide variety of neurologic syndromes, most
described only within the past three decades, that are
due to errors in the synthesis of mitochondrial proteins
caused by defects in nDNA, mtDNA, or mitochondrial
transfer RNA (appendix 1). Symptoms generally reflect
inadequate oxidative phosphorylation, usually first ap-
parent in skeletal muscle or in the retina or other parts of
the nervous system with high energy require-
ments.113,114 In addition, inherited or acquired respira-
tory chain enzymatic deficiencies degrade the efficiency
of oxidative phosphorylation and can result in excessive
levels of ROS.115 Subclinical hepatic and renal involve-
ment is common, but the diagnosis of a mitochondrial-
based respiratory chain deficiency is often not consid-
ered unless associated with evidence of skeletal muscle
weakness or encephalopathy.

The phenotypic variability of inherited mitochondrial
cytopathies reflects the uneven distribution of mutant
mtDNA to different tissues during the early phases of
embryogenesis.116 Consequently, even when a defined
mtDNA mutation is involved, patients with mitochon-
drial disorders may present with a wide variety of symp-
toms, many of them extremely vague or subtle. Mito-
chondrial cytopathy should be included in the
differential diagnosis whenever persistent clinical signs
and symptoms include muscle pain in conjunction with
weakness or fatigue117 or if there is diffuse involvement
of several organ systems that does not conform to an
established pattern of conventional disease.114

Because mitochondrial cytopathies involve enzymatic
defects that lead to organ dysfunction through impaired
oxidative phosphorylation, lactic acidosis and abnormal-
ities in glucose metabolism are common sequelae. The
diagnostic algorithm for suspected mitochondrial cyto-
pathy investigations therefore should include screening
for measurement of serum and spinal fluid lactate and
increased lactate/pyruvate as well as ketone body molar
ratios. For pediatric patients, the diagnostic process in-
cludes both blood and urine testing, although normal
lactate and glucose values do not necessarily rule out the
diagnosis of mitochondrial disease. When the index of
suspicion for mitochondrial cytopathy is very high in
children or in adults, skeletal muscle biopsy can confirm
the diagnosis if it reveals the characteristic ragged-red
fibers on trichrome stain, which are caused by accumu-
lations of defective mitochondria beneath the sarcolem-
mal membrane, excess glycogen granules, and cyto-
chrome c oxidase (complex IV) deficient cells.118

Biopsy of muscle or skin can also provide material for
mtDNA analysis and facilitate genetic counseling. Syn-
dromes caused by inherited mtDNA point deletions or

insertions such as Leber hereditary optic neuropathy or
NARP (neuropathy, ataxia, retinitis pigmentosa) can be
detected by a polymerase chain reaction blood test and
are generally maternally inherited.119 Similarly, mito-
chondrial encephalopathy with lactic acidosis and
stroke-like episodes, myoclonus epilepsy and ragged-red
fibers, and maternally inherited disorder with adult-onset
myopathy and cardiomyopathy, each of which is the
consequence of a single transfer RNA missense muta-
tion, also follow maternal inheritance patterns.120 How-
ever, Pearson121 and Kearns-Sayre122 syndromes, both
produced by a single mtDNA base pair deletion or inser-
tion, have sporadic inheritance patterns.123 Large-scale
mtDNA deletions are usually acquired, not inherited,
defects.124

Mutations of nDNA that produce unstable mtDNA can
produce mitochondrial cytopathy syndromes that are
clinically indistinguishable from those associated with
classic mtDNA mutations.125,126 One example is an in-
herited defect in the nuclear gene that encodes for the
mitochondrial transcription factor, producing an inevita-
bly fatal mtDNA deficiency syndrome of infancy.127

mtDNA depletion syndrome is a severe disease of child-
hood characterized by liver failure and neurologic abnor-
malities due to tissue-specific loss of functional mtDNA.
This syndrome is thought to be caused by a putative
nuclear gene that controls mtDNA replication or stabili-
ty.128 Similarly, children with mitochondrial neurogas-
trointestinal encephalomyopathy may have multiple
mtDNA deletions and/or mtDNA depletion that results
from an nDNA mutation.129 Regardless of etiology, how-
ever, mitochondrial cytopathies of infancy invariably
compromise the developing nervous system and are
therefore diagnosed early because symptoms are severe
and progress rapidly. Nonspecific neurologic signs in-
clude lethargy, irritability, hyperactivity, and poor feed-
ing.

Other variants of inherited cytopathy present later in
childhood or even in the young and middle adult years.
In these syndromes, subclinical decreases in cardiac,
skeletal muscle, and nervous system functional reserve
probably begin long before the appearance of overt
signs or symptoms. Therefore, preoperative assessment
of organ system functional reserve such as maximal ox-
ygen uptake is more useful than routine preoperative
“screening” tests in defining the extent to which declin-
ing mitochondrial energy production has produced clin-
ical compromise. Patients may ultimately be diagnosed
during the evaluation of unexplained muscle weakness,
ventilatory failure,130 or even upper airway obstruc-
tion.131 Deterioration is gradual but progressive and in-
evitably leads to incapacitation. Some mtDNA mutations
accumulate over time in a single tissue type (e.g., skeletal
muscle) where clinical deterioration during adulthood
correlates with an increasing fraction of mutant
mtDNA.132 In fact, in patients with skeletal muscle
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mtDNA mutations, the “mutation load” determines the
extent of metabolic impairment and therefore the de-
gree of exercise intolerance as indicated clinically by a
reduced rate of muscle oxygen extraction in the face of
exaggerated cardiopulmonary responses.133 Measure-
ment of venous oxygen partial pressure during forearm
exercise may therefore be of value, at least in adults, to
assess the severity of aerobic compromise due to mito-
chondrial dysfunction.134 Nevertheless, the true inci-
dence of these later-onset syndromes is unclear because
of their insidious onset and the diversity of organ sys-
tems involved.135,136

Perioperative Management

For both childhood- and adult-onset cytopathies, the
general principles of perioperative medical management
are comprehensive interdisciplinary consultation and
the expectation of a need for supportive care to avoid
metabolic acidosis or ventilatory and circulatory insuffi-
ciency. Informing these patients and their families that
they are at increased risk of adverse outcome is an
important part of the preoperative evaluation. Many neu-
rologists recommend nutritional supplementation with
vitamins or other purported antioxidants as well as treat-
ment with various cofactors needed for oxidative metab-
olism (appendix 2), although, except for coenzyme
Q,137 there is a paucity of data supporting their thera-
peutic value. Patients with mitochondrial cytopathy are
usually conditioned not to fast for long durations and to
eat small, frequent meals, a routine that conflicts with
typical perioperative fasting guidelines. To avoid meta-
bolic crisis, therefore, especially in children, an intrave-
nous infusion of glucose should be initiated preopera-
tively. Choice of fluids may also be important
intraoperatively, most anesthesiologists choosing to
avoid the lactate load intrinsic to Ringer’s solution. Mon-
itoring and controlling blood glucose, body temperature,
and acid–base values within normal limits is crucial
perioperatively, and as with any anesthetic, electrocar-
diogram, blood pressure, pulse oximetry, temperature,
and exhaled gas concentrations should be continuously
monitored. In addition, arterial catheterization should be
considered to facilitate frequent sampling for blood glu-
cose, arterial blood gases, and serum lactate levels.

Other unique concerns regarding the design of an
anesthetic plan for these patients include the pharmaco-
dynamic implications of mitochondrial cytopathy such
as decreased anesthetic requirement97 and susceptibility
to prolonged drug-induced nervous system depression
because of impaired neuronal bioenergetics, as well as
intrinsic skeletal muscle hypotonia and cardiomyopa-
thy138 with increased risk of sudden death from conduc-
tion abnormalities.139 Bulbar muscle weakness may pre-
dispose to aspiration of gastric contents, suggesting the

need for “full stomach” precautions. Skeletal muscle
weakness may compromise postoperative ventilation,
especially after upper abdominal or thoracic surgery.140

Subclinical erosion of hepatorenal reserve may alter clin-
ical pharmacokinetics for intravenous drugs and predis-
pose to delayed recovery from anesthetic agents, muscle
relaxants, and opioids.141

Susceptibility to malignant hyperthermia or myasthenia-
like sensitivity to neuromuscular blockade are issues typi-
cally considered for patients with the more familiar mus-
cular dystrophies and neurogenic myopathies. There is a
case report that describes increased sensitivity to nondepo-
larizing blockade in a patient with mitochondrial myop-
athy,142 but this observation has not been confirmed for
most forms of inherited mitochondrial cytopathy.143,144

Although there is understandable caution, especially in
children, regarding the use of halogenated inhalational an-
esthetics,145 only the very rare mitochondrial myopathies
with “multicore” or “minicore” histology seem to warrant
concerns of an increased risk of malignant hyperther-
mia.146 Therefore, at least at the present time, there is
inadequate data to support the recommendation of some
authors that the anesthetic plan for patients with mitochon-
drial disease should routinely include malignant hyperther-
mia precautions.147,148

The residual effects of nondepolarizing agents in these
patients, who commonly have compromised hepatic and
renal function, may further exacerbate their intrinsic mus-
cle weakness and increase the risk of ventilatory failure
postoperatively. In addition, anesthetic techniques requir-
ing spontaneous ventilation may predispose to intraopera-
tive metabolic exhaustion and airway obstruction and
therefore should probably be avoided. Tracheal intubation
with positive-pressure ventilation will prevent intraopera-
tive ventilatory failure, but the anesthesiologist must decide
whether the patient should be extubated immediately after
surgery or remain intubated and receive prolonged recov-
ery in an intensive care unit.149

Although individual patients with inherited mitochon-
drial encephalomyopathies have been exposed to many
different general anesthetic regimens without apparent
adverse consequences,150–153 it remains unclear
whether there is a “safe” or “best” anesthetic plan for
these patients. There are few reports that describe the
anesthetic treatment of adult-onset or acquired mito-
chondrial encephalomyopathy154 and only one, for ex-
ample, dealing with NARP syndrome.155 Clinical reports
often suggest only that patients with mitochondrial dis-
orders “do well” with regional anesthetics despite the
facts that these agents, like those used for general anes-
thesia, are known to disrupt mitochondrial function and
bioenergetics. Specialized textbooks offer some further
detail regarding preoperative assessment and anesthetic
management of patients with mitochondrial cytopa-
thies.156
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Elderly Surgical Patients

Age-related decline in organ system functional reserve is
subtle but progressive during the middle adult years. It
eventually becomes clearly apparent, even in the most fit
older subjects, during the later years of geriatric senes-
cence. Because functional reserve provides the “safety mar-
gin” needed to meet the additional cellular and bioener-
getic demands imposed by trauma or disease and by
surgery, healing, and convalescence, inadequate reserve
contributes substantially to perioperative morbidity and
mortality in older surgical patients.95 Significant limitations
in the availability of energy derived from oxidative phos-
phorylation would impact normal physiologic function and
the capacity for physical activity and also compromise the
energy supply needed for maintenance of normal tissue
structure and cell microarchitecture.157 It is now generally
appreciated that disruption of oxidative phosphorylation is
intrinsically involved in the age-related decline of organ
function and functional reserve,158,159 although the precise
mechanism remains elusive.160

Many observations are consistent with the hypothesis
that failing bioenergetic capacity is central to, if not the
cause of, human aging. Acquired mtDNA mutations ac-
cumulate at a rate that is a thousandfold greater than that
of acquired nDNA mutations.161 This may reflect greater
exposure of mtDNA to mutagenic factors, more effective
endogenous nDNA repair mechanisms, or the diploid
nature of nDNA itself. Whatever the cause, the preva-
lence of mutagenic mtDNA lesions increases exponen-
tially during late adulthood and senescence,162,163 pri-
marily in brain,164 skeletal muscle,165,166 and
heart,167,168 where defects accumulate more extensively
than in rapidly dividing tissues.169 It is less clear whether
increased ROS levels in the cytosol of a cell can damage

nDNA and disrupt synthesis of bioenergetic proteins
encoded in the nuclear genome.170 The age-related in-
crease in mtDNA defects is also coincident with decre-
ments of cytochrome c oxidase activity,171 although the
overall decline in skeletal muscle bioenergetic capacity
seen in older adults is largely due to reduced general
physical activity and not simply to loss of functional
mtDNA.172,173

However, any loss of functional mtDNA may itself in-
crease oxidative stress174,175 and further predispose to ox-
idative damage of the polypeptides of the respiratory com-
plex.176 Coincident age-related decline in the effectiveness
of ROS scavenging177,178 or age-related compromise of en-
dogenous mtDNA repair systems such as the base excision
repair pathway may further accelerate the adverse conse-
quences of accumulated oxidative stress.179,180 Data sup-
porting the possibility of a self-perpetuating cycle of im-
paired or inefficient mitochondrial bioenergetics and a
coincident increase in ROS has recently been presented in
insect studies.181 Dysfunction of ETC complex I, which is a
rate-limiting component of aerobic respiration, affects the
entire process of oxidative phosphorylation, further de-
creasing the efficiency of electron transfer and increasing
levels of ROS, especially superoxide. A similar process
could occur in the aging mammalian cell (fig. 3). Given the
high energy requirements of neural tissue, it is likely that
neuronal bioenergetics, in particular, decline significantly
with increasing age and may eventually provide biomarkers
for physiologic aging.182

Study of the genetic factors determining human lon-
gevity suggest that inheritable factors determine approx-
imately one quarter of the observed variability in life
expectancy,183 and the importance of mtDNA in this
relation is becoming clearer.184 At least in subprimates,

Fig. 3. Reactive oxygen species (ROS) are
continually generated as byproducts of
oxidative metabolism. A self-perpetuat-
ing, physiologic “cycle of aging” has been
proposed96,180 in which oxidative stress
within mitochondria slowly degrades the
components needed for energy produc-
tion and self-repair of damage done by
ROS. The resulting decrease in bioener-
getic capacity could eventually compro-
mise organ system functional reserve
and predispose to increased probability
of adverse perioperative outcome.
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there are recent data that seem to support the concept
that genetic alterations that increase susceptibility to
damage by oxidative stress are primarily responsible for
increased frailty185 and reduced lifespan.186 For exam-
ple, genetically altered mice that express a proof-reading
deficient version of mtDNA polymerase develop into a
young adult mouse phenotype with a threefold to five-
fold increase in mtDNA point mutations and increased
mtDNA deletions.187 In these mice, the increased num-
ber of somatic mtDNA mutations is also associated with
phenotypic stigmata of aging such as reduced subcuta-
neous fat, hair loss, and osteoporosis during young adult-
hood. It is not yet clear whether this mutant phenotype
simply mimics aging rather than prematurely expressing
genuine manifestations of physiologic aging, but these
mice also have a significantly reduced lifespan.

The extent to which aging and perhaps age-related
pathophysiology may reflect impaired mitochondrial
bioenergetics and accumulated oxidative stress is only
now becoming fully apparent.188 Tangential support for
this concept comes from observations that reduced cal-
orie intake increases lifespan in some laboratory animals,
presumably by reducing accumulated oxidative dam-
age18 or by decreasing the rate, or increasing the effi-
ciency, of oxidative phosphorylation,189 although life
extension through caloric restriction is not a consistent
observation.190 An effective antiaging therapy based on
antioxidant effects has yet to be demonstrated,191,192

and genetically manipulated overexpression of superox-
ide dismutase and catalase actually reduces, rather than
prolongs, lifespan in transgenic Drosophila.193 It has
also not yet been shown that genetic manipulation of
intrinsic mtDNA repair and replication mechanisms will
produce animals with decreased mtDNA mutation rates
and increased longevity, although there is evidence of
less mitochondrial oxidative stress in long-lived than in
short-lived mammalian species.194 Some investigators
simply remain unconvinced that there is compelling
proof of a significant decline in electron transport or
oxidative phosphorylation during normal aging.195

Patients with Neurodegenerative Disorders

Because the nervous system has adequate functional
redundancy and structural plasticity, aging does not
seem to degrade day-to-day neurologic or cognitive func-
tion. In addition, the degenerative effects of prolonged
oxidative stress in neurons may be ameliorated by effec-
tive scavenging of ROS,196 accelerated mtDNA repair,
increased production of Bcl-2 protein or other apoptosis-
inhibiting substances, generation of neurotrophic fac-
tors, and mobilization of neural stem cells to replace
damaged neurons.197 Nevertheless, inadequate mito-
chondrial energy production and cumulative oxidative
stress leading to apoptosis may also explain many of the

stigmata of age-related neurodegeneration and some neu-
rologic diseases.198–201

Presbyacusis, the hearing loss that inevitably occurs in
old age, has been shown to be a consequence of the
progressive deterioration of cochlear mtDNA.202 Inter-
estingly, a specific mtDNA point mutation has been
shown definitively to predispose patients to sensorineu-
ral hearing loss after aminoglycoside antibiotic expo-
sure.203 In general, mtDNA mutations are thought to
contribute to or predispose patients to the development
of many common neurodegenerative disorders, although
they rarely display the same inheritance characteristics
as classic inherited mitochondrial cytopathies described
previously. Parkinsonism, caused by selective inhibition
of complex I of the ETC, critically compromises energy
availability and leads to apoptosis and death of the do-
paminergic cells in the substantia nigra.204 Although a
greater fraction of mtDNA is defective in parkinsonian
patients than in age-matched controls, there does not
seem to be a consistent mtDNA mutation. This suggests
that defects in nDNA that lead to dysfunctional complex
I bioenergetics, rather than mtDNA mutations, may hold
the key to explaining this disorder. Similarly, patients
with Alzheimer dementia exhibit higher-than-normal
rates of mtDNA mutation, but mtDNA defects are neither
consistent nor invariable findings.205 Friedrich ataxia is a
consequence of ROS-mediated damage to the respiratory
chain initiated by an nDNA mutation that eventually
compromises mitochondrial iron homeostasis.111 Ther-
apy with antioxidants and coenzyme Q may improve
mitochondrial function in patients with Friedrich ataxia
and slow the progression of symptoms.137

Neuronal excitotoxicity is a major cause of neuronal
death. Excitotoxicity represents a state of greatly in-
creased neuronal electrical and metabolic activity that
produces oxidative stress. Even when many neurons are
initially destroyed by primary necrosis after traumatic
brain injury, excitotoxicity contributes to the additional
neuronal damage that follows such an event.206 During
an excitotoxic event, the intrinsic neuronal mechanisms
that scavenge ROS and repair ROS-induced damage are
quickly overwhelmed.207 High levels of excitatory neu-
rotransmitters such as glutamate also interact with cell-
surface N-methyl-D-aspartate receptors (fig. 2) to gener-
ate excess calcium within mitochondria. Loss of calcium
homeostasis induces an MPT, collapsing the hydrogen
ion gradient and releasing of cytochrome c and other
proapoptotic proteins from mitochondria into the cy-
tosol. The culmination of this sequence is apoptosis and
neuronal death.

Recent work suggests that genetic mutations predis-
posing patients to Alzheimer dementia also make neu-
rons susceptible to excitotoxic apoptosis after exposure
to certain inhalational anesthetics. Isoflurane, for exam-
ple, has been shown to induce cytotoxicity in primary
cortical neurons under these circumstances.208 The pro-
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posed mechanism, again, is an influx of ionized calcium
from the endoplasmic reticulum into the cytosol, but
another potential trigger of neuronal apoptosis is zinc.
Elemental zinc is highly concentrated in neurons. Zinc
release from damaged cells, even in nanomolar quanti-
ties, during traumatic or ischemic brain injury or in
Alzheimer dementia or parkinsonism, can cause apopto-
sis in neighboring neurons and increase the extent of
neurologic damage.209

Similarly, the high levels of ROS that define oxidative
stress may also produce secondary neuronal damage
beyond the area of initial injury after traumatic brain
injury. Endogenous nitric oxide can combine with su-
peroxide to form lipid-destructive peroxynitrite. Lipid
peroxidation by peroxynitrite can damage mitochondria
and the cellular microarchitecture directly, leading to
apoptosis and cell death.210 In addition, oxidized li-
poproteins can be taken up by neighboring neurons,
generating a penumbra, or expanded zone, of neuronal
injury.20 Limiting oxidative stress by maintaining nor-
moxia during cardiopulmonary resuscitation, as opposed
to imposing hyperoxia, has, in fact, been shown to cause
less brain lipid peroxidation and improve neurologic
outcome, at least in the laboratory.211 Increased nitric
oxide and peroxynitrite with glutamate-mediated activa-
tion of nitric oxide synthase has been proposed as a
mechanism for neurodegenerative disorders as well.212

Older individuals have been shown to be at increased
risk of damage from membrane peroxidation under con-
ditions of oxidative or nitrosative stress,213 perhaps ex-
plaining, at least in part, the relation between acquired
neurodegenerative disorders and age.214

Caspase-mediated apoptosis is a complex biochemical
cascade that requires ATP. Fatally compromised cells,
especially those that have undergone a bioenergetic ca-
tastrophe, may not be able to produce ATP in amounts
adequate to support apoptosis. These neurons may in-
stead undergo passive, or primary, necrosis.215 Unlike
apoptosis, where cell loss is contained and tissue injury
relatively controlled, necrosis of neurons leads to mito-
chondrial swelling, cell lysis, and fragmentation and the
diffuse release of proinflammatory substances that in-
voke a vigorous immune response.216 The interaction
between the aging immune system and necrotic neurons
may explain the amyloid deposits seen in Alzheimer
dementia.217 The progressive age-related decline in the
specificity of the immune system218 and failure to clearly
distinguish between “self” and “nonself” may therefore
play an important role not only in infection, neoplasm,
and autoimmune disorders but also in age-related neuro-
degenerative disease. Complex interactions between
neuronal mitochondrial dysfunction and the mecha-
nisms that control necrosis and apoptosis are now also
suspected in playing a key role in amyotrophic lateral
sclerosis, hepatolenticular degeneration, and perhaps
many other neurodegenerative phenomena.219

Patients with Cardiovascular Disease

Cardiac mitochondria are essential to myocardial en-
ergy production and myocyte homeostasis and also im-
pact cardiac myocyte viability through their role as oxi-
dative biosensors. Cardiac myocytes, skeletal muscle
fibers, and other long-lived postmitotic cells show dra-
matic age-related alterations in the morphology of their
mitochondria, with a generalized loss of mitochondrial
volume and numbers.220 There seems to be an increase
in oxidative stress in aging cardiac myocytes, especially
with coincident atherosclerotic disease,221 and antioxi-
dants such as coenzyme Q may provide some protection
against oxidative stress in senescence.222 In fact, many
drugs used to treat myocardial ischemia seem to exert
their cardioprotective effects via their actions on cardiac
mitochondrial function.223 Angiotensin-converting en-
zyme inhibitors have been shown to contribute to en-
hancement of antioxidant defenses. Some of the benefi-
cial effects associated with inhibition of the renin–
angiotensin system may therefore be due to the ability of
enalapril and losartan to attenuate oxidative damage to
mitochondria.224 Angiotensin-converting enzyme inhibi-
tors may also facilitate vascular remodeling.225

Chronic hypoxia produces a loss of mitochondrial
bioenergetic capacity in the left ventricular myocardium
despite increases in myocardial mass.226 Accumulating
evidence also suggests that ROS play an important role in
the development and progression of other forms of heart
failure227 as well as in acute contractile dysfunction after
myocardial infarction.228 In addition to their direct det-
rimental effects on cellular metabolic function, ROS have
been implicated in the development of agonist-induced
cardiac hypertrophy, cardiac myocyte apoptosis, and the
subsequent remodeling of the failing myocardium. These
restorative alterations are driven by metabolically sensi-
tive gene expression, and in this way, ROS may act as
potent intracellular second messengers.228 Therefore,
the effects of increasing myocardial ROS seem to be
either beneficial or harmful, depending on site, source,
and amount of ROS produced, and the overall metabolic
status of the myocyte.

Oxidative stress seems to contribute to the pathology
of vascular disease in stroke, hypertension, and diabe-
tes.229 Observations that mitochondrial function is dis-
turbed in the skeletal muscle of patients with occlusive
vascular disease230 further supports the concept that
mitochondrial processes are involved in the etiology of
vascular diseases. Nuclear magnetic resonance spectros-
copy has shown a 40% reduction of in vivo muscle
glucose metabolism in insulin-resistant older adults,231

although it is not yet established that this is part of the
fundamental pathophysiology of diabetic vascular pa-
thology. This form of insulin resistance may actually
reflect an inherited mitochondrial defect altering fatty
acid metabolism.232 Taken together, however, these ob-

829MITOCHONDRIAL DYSFUNCTION

Anesthesiology, V 105, No 4, Oct 2006



servations regarding the etiology and treatment of car-
diovascular disease suggest that the role of mitochon-
drial dysfunction will assume progressively greater
importance as the molecular mechanisms involved in
ischemic cardiovascular disease are more completely
understood.

Patients with Sepsis

Sepsis, the systemic inflammatory response syndrome,
and multiple organ dysfunction syndrome are the lead-
ing causes of morbidity and mortality in critically ill
surgical patients. Acute-onset cardiovascular, hepatic,
and renal insufficiency and failure are common features
of these syndromes. Inadequate delivery of oxygen to
the mitochondria of affected tissues is a possible expla-
nation for tissue or organ dysfunction under these cir-
cumstances, but measures that increase cardiac output
or tissue perfusion in septic patients have not been of
value in improving outcome.233 It is now clear that
impaired bioenergetic capacity plays an important role
in explaining the diffuse and persistent cellular and or-
gan dysfunction that occurs under these circumstances.
The concept of “cytopathic hypoxia” proposes that, dur-
ing sepsis, many cells become unable to use readily
available molecular oxygen to produce ATP,234 explain-
ing inconsistencies in reported data regarding cellular
ATP levels during sepsis. Even with impaired bioener-
getic capacity, ATP levels would remain relatively un-
changed if there is a parallel reduction both in ATP
supply and ATP demand in a hypoxic environment.

There is experimental support for the concept of mi-
tochondrial-based cytopathic hypoxia as a primary factor
in sepsis. Data from cardiac myocytes confirm that the
mitochondria can act as a modulating biosensor for ox-
idative phosphorylation, which can send poorly per-
fused or hypoxic tissues into what is, in effect, a hiber-
nation-like state.235 The mechanism remains unclear, but
it could include uncoupling of ATP production from
aerobic metabolism or inhibition of any or all of the five
protein–enzyme complexes required for oxidative phos-
phorylation.236 It may also reflect changes in ETC en-
zyme kinetics. Abnormalities in pH, temperature, or in-
hibitor-induced conformational changes in enzyme
structure could also disrupt oxidative metabolism and
explain the appearance of cytopathic hypoxia during
sepsis. Myocardial cytochrome oxidase is reversibly in-
hibited early in sepsis but seems to become irreversibly
inactivated during the later phase of sepsis.237 Possible
mediators of mitochondrial enzyme inhibition during
sepsis include ROS, nitric oxide, peroxynitrite, and car-
bon monoxide. High levels of nitric oxide reversibly
inhibit complex IV.238

Impaired functioning of any of the enzymes within the
ETC is itself associated with decreased cardiac cyto-

chrome oxidase subunit IV and complex II protein lev-
els.239 Recent evidence suggests that sepsis induces re-
duced expression of both of the genes that encode for
glycolytic proteins and those needed for the protein
components of the ETC.240 The synthesis of messenger
RNA could be disrupted by abnormalities of either nu-
clear or mitochondrial transcription, because the sub-
units of the five respiratory chain enzymes arise from
both nDNA and mtDNA. Similarly, errors in protein syn-
thesis due to faulty messenger RNA translation would
compromise the electron transport chain and disrupt
ATP production. In fact, the messenger RNA that en-
codes for cytochrome oxidase subunit I is decreased
within myocardial cells as well as in macrophages during
both sepsis and sepsis-related disorders.241 Sepsis is also
associated with increased expression of endogenous
protective antiapoptotic proteins known as heat shock
proteins (HSPs).242,243 HSP synthesis can be induced by
hypoxia, ROS, endotoxins, or cytokines, all of which are
common in sepsis. HSPs may either reconfigure or iso-
late electron transport chain proteins that have been
damaged by the mechanisms described above.244 Failure
to adequately express HSPs during sepsis or shock may
be directly related to propagation of tissue injury and
poor outcome,245 although a recent clinical study sug-
gests that glutamine-enhanced parenteral nutrition can
restore HSPs to protective levels.246

Preconditioning and Organ Protection

Hormesis refers to a state of low-level chronic stress
that presumably induces the expression of protective
genes that increase host survival during physiologic ex-
tremes. Although the general phenomenon of stress-
induced expression of genes that facilitate ROS scaveng-
ing and mtDNA repair is well established,197 hormesis
may be more easily initiated in some species or tissues
than in others. Cold stress has been shown to prolong
lifespan in Caenorhabditis elegans,247 and heat stress
significantly increases longevity of the fruit fly.248 Brief
periods of sublethal ischemia generates low-level oxida-
tive stress that induces an adaptive form of metabolic
self-protection, limiting the necrosis and tissue injury
that would normally follow a subsequent ischemic in-
jury. Hormesis seems to involve modulation of intracel-
lular ion flux249 to minimize the probability of initiating
the MPT that can trigger apoptosis (see second para-
graph under “Apoptosis”). This phenomenon, ischemic
preconditioning (IPC), seems to be initiated largely by
the receptor-triggered activation of multiple protein ki-
nases.250

It is now also established that exposure to volatile
anesthetics can generate a state of hormesis in mamma-
lian tissues that mimics IPC and shares many triggers or
modulators with IPC.251 Even at subclinical concentra-
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tions, previous exposure to halothane, isoflurane,
sevoflurane, or desflurane252,253 has been shown to pro-
vide prolonged neuroprotection. Anesthetic precondi-
tioning (APC) has also been demonstrated in the myo-
cardium, where previous exposure to isoflurane,
desflurane, and sevoflurane confers protection in vivo
against a subsequent ischemic injury.254–256 Although
the mechanisms may very somewhat, mitochondrial
bioenergetics seem to be significantly affected by all
these agents.257 After isoflurane exposure, excess ROS
are generated at complex III of the ETC and seem to
trigger APC.258 Sevoflurane, on the other hand, attenu-
ates complex I but also leads to increased ROS produc-
tion.259 Therefore, endogenous oxidative stress seems to
be a trigger for APC, a concept supported by the obser-
vation that molecular species that scavenge ROS block
the APC effect.260 Nitrous oxide does not produce APC,
but neither does it block nor alter the APC phenomenon
associated with the potent inhalational agents.261

Although the full mechanism of APC is not yet fully
understood, it may, like IPC, involve multiple G protein–
coupled receptor triggers that activate protein ki-
nases.262 APC and IPC also seem to have many other
common essential steps, including modulation of ATP-
sensitive potassium channels. ATP-sensitive potassium
channels are essential for normal endovascular function
and responsiveness to vasodilators, and they have also
been shown to be important biosensors for excitotoxic-
ity.263 They seem to limit ischemic injury both in neu-
rons264 and in cardiac muscle.265 Opening of myocardial
mitochondrial ATP-sensitive potassium channels may
also be an intrinsic step in APC after exposure to inha-
lational anesthetics266 or, as recently demonstrated, in
response to �-opioid receptor agonists.267

Genomic analysis suggests that IPC and APC each re-
flect a unique pattern of induced gene expression for the
synthesis of proapoptotic and antiapoptotic proteins.268

APC, if not IPC, may involve inducible nitric oxide syn-
thase in neurons,252 whereas a delayed form of APC seen
in the myocardium requires induction of endothelial
nitric oxide synthase.269 It remains unclear how many
patterns of protective gene expression are possible, but
isoflurane pretreatment may also protect cardiac myo-
cytes against apoptosis by increasing the expression of
the antiapoptotic protein Bcl-2.270 In addition, it may be
possible to use the protective effect of inhalational an-
esthetics even after severe oxidative stress has occurred.
A recent study demonstrated a significant “postcondi-
tioning” effect for isoflurane in cardiac muscle, largely
through the inhibition of MPTs during the reperfusion of
injured cells.271 Using inhalational anesthetics or G pro-
tein–coupled receptor agonists to protect organs that
have been, or may subsequently be, exposed to an isch-
emic or hypoxic event is an attractive prophylactic and
therapeutic option.272 However, the practicality and the

clinical effectiveness of APC still remain to be estab-
lished.273

In mammals, brief, sublethal periods of ischemia and
hypoxia also induce the expression of HSPs and block
the AIF-mediated apoptotic pathway. Adenovirus-medi-
ated gene therapy has been shown to increase HSP
expression and reduce mortality from experimentally
induced, sepsis-related pulmonary injury.274 The prophy-
lactic use of artificial liposomes and nonviral transfection
to deliver HSP or to provide either the DNA or messen-
ger RNA275 needed to enhance the synthesis of HSP in
neurons or cardiac myocytes is another promising con-
cept that may provide organ protection perioperatively
without the need for anesthetic exposure.276 Transfec-
tion can quickly increase HSP in patients at risk for
ischemic or traumatic brain injury, perhaps through an
effect on the ATP-sensitive potassium channels in the
cerebral vasculature.277 Other approaches to minimizing
cellular injury during periods of oxidative stress or
postinjury reperfusion include enhancement of endoge-
nous expression of cytoprotective antioxidants.278 Res-
veratrol, found in grape skin and in red wine, demon-
strably reduces the ischemic damage associated with
myocardial and brain reperfusion injury.279 At least some
of the cytoprotective effect of this substance is due to
increased expression of heme oxygenase (HO), the en-
zyme that accelerates destruction of heme, a pro-oxidant
that accumulates rapidly after ischemia and oxidative
stress.280 HO-deficient diabetic mice have an increased
risk of ischemic injury compared with wild-type diabetic
mice, suggesting that reduced expression of HO in re-
sponse to oxidative stress may play a role in the etiology
of diabetes-related sequelae.281

Heme oxygenase pathways may be essential to several
other forms of cellular adaptation to stress. Inhalational
anesthetic exposure in hepatocytes induces expression
of an HO isoform through a pathway that, like APC in
heart and brain, involves protein kinases.282 Increased
endothelial HO activity due to up-regulation during oxi-
dative stress is further potentiated by the interaction of
thiols with nitric oxide,283 which suggests that HO gene
expression may also protect against nitric oxide–related,
or nitrosative, stress.284 Carbon monoxide, generated by
HO as a heme breakdown product, may also act as a
signaling mediator of hypoxic stress. It has been shown
to provide protection from anoxic injury in nematodes
by inducing a state of suspended animation.285 Transi-
tional metal carbonyls which expedite the intracellular
release of carbon monoxide could therefore have thera-
peutic value as cardioprotective agents.286

Intramitochondrial glutathione, normally approximately
15% of total cellular glutathione pool, is another endoge-
nous antioxidant that seems to protect against ROS dam-
age, and depletion of mitochondrial glutathione has been
linked to apoptosis.287 Similarly, melatonin is a significant
scavenger of ROS and an antioxidant.288 If administration
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of exogenous melatonin can decrease tissue damage and
dysfunction related to oxidative stress,289 it may be useful if
given prophylactically for ischemic or reperfusion injury or
to minimize the potential neurotoxicity of anesthetic expo-
sure in patients with decreased neural reserve. Given re-
cent interest and investigation into the role of anesthetic
agents in causing postoperative cognitive dysfunction in
older adults,290,291 the clinical observation that melatonin
reduces postoperative delirium in this surgical patient
group292 is particularly intriguing with regard to potential
prevention of anesthesia-related cognitive impairment.

Summary and Future Directions

Advancements in our understanding of the role of the
mitochondrion in generating and responding to oxida-
tive stress have supplemented awareness of its pivotal
function as a cell energy source. The central role of the
mitochondrion as the final mediator of cell death makes
it particularly important to evolving concepts of hypoxic
tissue injury and protection as well as to our understand-
ing of senescence and degenerative disease. These man-
ifold mitochondrial functions generate many possible
hypotheses that seem to link a wide range of phenomena
that are of interest to anesthesiologists from both a
clinical and a scientific perspective (fig. 4).

At the present time, it seems that all anesthetic agents
are associated with measurable effects on some aspect of
mitochondrial function, although causal relations are dif-
ficult to establish, and the primary effect of these drugs
does not seem to reflect simple depression of bioener-
getic activity. Much work remains to be done, but pre-
viously unrecognized effects of anesthetics on mitochon-
drial bioenergetics and apoptotic pathways suggest that
they may have both cytoprotective and potentially neu-
rotoxic actions, depending on clinical context. It is now
also increasingly apparent that there are many sub-
groups of the surgical patient population that should be

considered to be at increased risk perioperatively be-
cause of mitochondrial dysfunction, whether it is inher-
ited, acquired, or a consequence of comorbid disease.

Future investigation might appropriately focus on the
mitochondrion as the site of anesthetic action and me-
diator of anesthetic pharmacodynamics, as well as the
likely source of potential anesthetic neurotoxicity. Other
obvious areas in need of continuing investigation include
establishing more precise guidelines for the periopera-
tive treatment of surgical patients with inherited or ac-
quired mitochondrial cytopathies, in all their many and
varied manifestations, defining the full spectrum of mi-
tochondrial pathways that contribute to tissue injury,
and use of anesthetics to provide perioperative organ
protection.
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Appendix 1: Clinical Characteristics of
Inherited Mitochondrial Cytopathy
For large-scale mtDNA deletions: ataxia, peripheral neuropathy, muscle

weakness, ophthalmoplegia, ptosis, pigmentary retinopathy, hypo-
parathyroidism, cardiomyopathy, cardiac conduction defects, sen-
sorineural hearing loss, Fanconi syndrome, lactic acidosis, ragged-
red fibers on muscle biopsy

For single mtDNA point mutation with mRNA abnormality: seizures,
ataxia, psychomotor regression, dystonia, muscle weakness, pigmen-
tary retinopathy, optic atrophy, cardiomyopathy, lactic acidosis,
sensorineural hearing loss

For multiple mtDNA point mutations with mRNA abnormality: dystonia,
optic atrophy, cardiac conduction defects

Appendix 2: Common Therapeutic
Treatments and Supplements Used by
Patients with Inherited Mitochondrial
Cytopathy and Neurodegenerative Disorders
�-Carotene
L-carnitine
Acetyl-L-carnitine
Riboflavin (vitamin B2)
Nicotinamide (vitamin B3)
Vitamin K
Vitamin E
Vitamin C
Thiamine (vitamin B1)
Coenzyme Q
Selenium, magnesium
Calcium, phosphorous
Biotin
Succinate
Creatine
Citrates
Prednisone
Folic acid
Lipoic acid
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