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Abstract
The use of iodinated radiographic contrast media, to improve the visibility 

of internal organs and structures in X-ray based imaging techniques, can cause 
Acute Renal Failure, commonly called Contrast-induced Nephropathy (CIN). 
The pathogenetic mechanisms responsible for contrast media nephrotoxicity 
have not been completely elucidated; knowing them, however, is very important 
to prevent CIN. All pathogenetic factors that have been suggested by many 
authors are discussed in this review, including haemodynamic changes, 
formation of reactive oxygen species (ROS), role of Nitric Oxide (NO), the 
role of adenosine and endothelin and cytotoxicity of contrast media, and the 
intracellular Ca2+ overload. Clinical conditions favouring the occurrence of CIN 
are also mentioned, including dehydration, salt depletion, reduction of ‘effective’ 
circulating blood volume, pre-existing chronic renal failure, and diabetes mellitus.

Key words: Contrast-Induced acute kidney injury; Contrast-Induced 
nephropathy; Acute renal failure; Radiographic contrast media; Iodinated 
contrast material; Kidney; Tubule; Renal cell; Kinase; Reactive oxidative 
species; Cell death.

calculation [2] or the simple Cockcroft-Gault formula: (140 - number 
years of age) x Kg body weight/ 72 / mg/dL of SCr; in females the 
result is multiplied by 0.85 [3]. This is called the estimated glomerular 
filtration rate (eGFR). Thus, CIN is a decrease of eGFR to 30-60 mL/
min - renal insufficiency or less. In some cases, CIN is a severe ARF 
with oliguria (<400 mL/24 hrs), requiring dialysis. In these patients 
the mortality is high [4].

The clinical features and the management of CIN is the same as 
that for ARF due to other causes [1,5,6].

CIN seems not to occur when renal function is normal. However, 
the clinical necessity for diagnostic procedures using contrast media 
has been increasing especially in patients with cardiovascular diseases, 
whose renal function is frequently impaired, hence leading to a more 
frequent occurrence of CIN in clinical practice.

The pathogenetic mechanisms responsible for contrast media 
nephrotoxicity are not completely known. Many factors have been 
implicated. Hereafter, we will examine all the pathogenetic factors 
that have been suggested by many authors in the literature.

Haemodynamic changes by contrast media
When iodinated radiographic contrast media are injected 

intravenously or intra-arterially, they immediately cause a 
haemodynamic renal biphasic response: there is an early, rapid renal 
vasodilatation with an initial increase in renal blood flow (RBF) 
that is then followed by a more prolonged vasoconstriction with an 
increase in intrarenal vascular resistances and a reduction in total 
RBF (decrease of filtration fraction). The biphasic renal blood flow 
response to contrast media does not occur during volume depletion; 
in volume depletion there is only a severe vasoconstriction [7]. The 
extrarenal vessels show transient vasoconstriction followed by a 
stable decrease in vascular peripheral resistances [8,9] (Figure).

Abbreviations
AKI: Acute Kidney Injury; ARF: Acute Renal Failure; eGFR: 

Estimated Glomerular Filtration Rate; CIN: Contrast-induced 
Nephropathy; SCr; Serum Creatinine; CrCl: Creatinine Clearance; 
RBF: Renal Blood Flow; CT: Computed Tomography; MDRD: 
Modification of Diet in Renal Disease; NO: Nitric Oxide; ROS: 
Reactive Oxygen Species; CRF: Chronic Renal Failure; LOCM: Low-
osmolar Contrast Media; HOCM: High-osmolar Contrast Media; 
IOCM: Iso-osmolar Contrast Media

Introduction
The intravenous or intra-arterial injection of iodinated 

radiographic contrast media is performed to improve the visibility 
of internal organs and structures in X-ray based imaging techniques, 
such as radiography and computed tomography. This procedure, 
however, may cause impairment of renal function. We define 
Contrast-induced Nephropathy (CIN) or contrast-induced Acute 
Kidney Injury (AKI) as an Acute Renal Failure (ARF) occurring 24 
to 72 hours after the intravascular injection of radiographic contrast 
media that cannot be explained by other causes. It is usually a 
nonoliguric, asymptomatic and transient decline in renal function. 
The impairment of renal function is mirrored by an increase of 
serum creatinine (SCr) by 0.5 mg/dl (or more) or by a 25% (or more) 
increase in SCr from baseline. SCr reaches the peak value on the third 
to fifth day and returns to baseline within 10–14 days. But the values 
of SCr vary with age, muscle mass and sex. Thus, it is always better 
to consider the creatinine clearance (CrCl) as derived from SCr, 24-
hour urine volume and urinary concentration of creatinine [1]. But 
measurement of CrCl is cumbersome, impractical and inaccurate. It 
is better to calculate CrCl from SCr, age, body weight, and gender 
using either the MDRD (Modification of Diet in Renal Disease) 
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The fall in total RBF will cause per se a decrease in the glomerular 
filtration rate (GFR). But these haemodynamic changes will cause 
a renal ischaemia, which is particularly severe in the renal medulla 
because of its peculiar structure. Under normal physiological 
conditions, in fact, oxygen delivery to the outer renal medulla is 
poor because of its distance from the descending vasa recta; in 
contrast with the limited regional oxygen supply, there is a high local 
oxygen consumption due to the important tubular reabsorption in 
S3 segments of proximal renal tubules of the outer medulla and in 
the medullary thick ascending limbs of Henle’s loop. Prostaglandins, 
nitric oxide (NO), and adenosine continuously adjust medullary 
tubular transport activity to the limited available oxygen supply, by 
enhancing the regional blood flow and down regulating the tubular 
transport [10]. Defects in one or more of these protective mechanisms 
will cause medullary hypoxia. The haemodynamic changes induced 
by contrast media will make medullary hypoxia quite severe (Figure).

The effects of radiographic contrast media on vessels have been 
studied in vitro by Sendeski et al [11] to evaluate whether the contrast 
media modify outer medullary descending vasa recta vasoreactivity 
and NO production. Specimens of outer medullary descending vasa 
recta were isolated from rats and microperfused intraluminally with a 
buffered solution containing the nonionic, isosmolar (approximately 
290mOsm/kg) contrast medium iodixanol (Visipaque). The authors 
used an iodine concentration of 23 mg/mL to simulate the dosage 
utilized in examinations in humans. They demonstrated that 
iodixanol directly constricts the descending vasa recta (causing a 52% 
reduction of their luminal diameter) by reducing NO, and significantly 
increases the vasoconstrictor response to angiotensin II. The result 
was a severe local hypoxia. Their conclusion was that iodixanol, in 
doses typically used in clinical practice for coronary interventions, 
constricts medullary descending vasa recta, intensifies angiotensin II 
induced vasoconstriction, and reduces the bioavailability of NO.

As mentioned, the ascending limb of Henle’s loop is located 
in the renal medulla; in this tubular segment, even in normal 
conditions, there is a high O2 demand due to its active ion transport. 
Since radiographic contrast media induce an osmotic diuresis and 
consequently an increase in tubular reabsorption in the Henle’s loop, 
the consequent increased energy need and the high O2 consumption 
of the ascending limb will worsen the already hypoxic environment in 
the renal medulla [1, 12] (Figure).

Arakawa et al [13] have suggested that adenosine plays an 
important role in contrast-induced deterioration of renal function. 
They demonstrated that in dogs with normal renal function, the 
non-ionic contrast medium iohexol (Omnipaque 300) elicits renal 
vasodilatation by activating mainly the adenosine A2 receptors with 
an increase in RBF, whereas in dogs with impaired renal function 
iohexol induces both A2 and A1 activation, the former associated with 
the initial renal vasodilatation, the latter responsible for the sustained 
vasoconstriction with aggravation of renal hemodynamics [13]. 
They proposed that adenosine receptor antagonists (theophylline, 
aminophylline) could have protective effects against contrast media 
under such conditions. In fact, they observed, in dogs with renal 
insufficiency, that the contrast medium-induced renal deterioration 
was prevented both by a non-selective antagonist theophylline and 
by a selective A1 receptor antagonist KW-3902. Unfortunately, the 
use of the non-selective adenosine receptor antagonist’s theophylline 
or aminophylline in humans has given controversial results: some 
authors, in fact, have observed beneficial effects [14-19] others have 
denied any beneficial results [20,21]. Arakawa et al [13] concluded 
that the contrast-induced vasoconstriction is mediated by adenosine 
A1 receptors, whereas the activation of adenosine A2 receptors is 
responsible for the contrast-induced renal vasodilatation.

The intrarenal production of the vasodilators NO and 
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Figure : The complex mechanisms by which radiographic contrast media cause Acute Renal Failure (CIN).
Various clinical conditions, such as salt depletion, chronic renal failure (CRF), diabetes mellitus and hypercholesterolemia may aggravate the pathogenetic factors 
responsible for Contrast-induced ARF.
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prostaglandins is responsible for the maintenance of perfusion and 
oxygen supply in the renal medulla; therefore, reductions in the 
availability of these mediators, as induced by contrast media, will 
cause medullary hypoxia.

The formation of reactive oxygen species (ROS) and the 
crucial role of the fall of NO

Medullary hypoxia may lead to the formation of reactive oxygen 
species (ROS) [22,23] that may exert direct tubular and vascular 
endothelial injury and might further intensify renal parenchymal 
hypoxia by virtue of endothelial dysfunction and dysregulation of 
tubular transport [24,25] (Figure).

The decrease in NO is believed to be due to its reaction with 
ROS in particular superoxide [26,27]. This reaction may lead to the 
formation of the more powerful oxidant peroxynitrite [28] that may 
be more detrimental to the endothelial cells. As shown in the Figure, 
the dotted arrows indicate the reaction of the ROS (superoxide 
anions: O2

.-) with NO that not only causes a reduction in NO levels, 
but also leads to the formation of peroxynitrite anion (ONOO-), a 
potent oxidant that causes cell injury.

Even under physiological conditions, tubular transport is 
associated with ROS formation, mostly in the renal medullary thick 
ascending limb of Henle’s loop, where the dense mitochondrial 
population represents a major source for generation of superoxide 
anions (O2

−), and hydroxyl radicals (OH−) by NAD(P)H-oxidase 
[24,27]. The administration of radiographic contrast media augments 
ROS production and renal oxidative stress which, in turn, mediate the 
damage to cell membranes leading to cellular apoptosis and necrosis, 
particularly in medullary thick ascending limbs and in S3 segments of 
proximal renal tubules of the outer medulla [27].

Patients with chronic renal failure (CRF) have defective 
antioxidant systems [29] and increased oxidative stress associated 
with inflammation and endothelial dysfunction [30]. This may 
explain why pre-existing renal failure certainly represents the most 
common condition predisposing to the development of CIN.

Thus, animal and human studies have clearly demonstrated 
that ROS generation is enhanced following contrast administration, 
suggesting their important role in the pathogenesis of CIN [27].

Myers et al [31] have carried out in vivo experiments in 
rats, demonstrating that the decrease in cortical and medullary 
microvascular blood flow induced by contrast media is partly 
accounted for by the downregulation of endogenous renal cortical 
and medullary NO synthesis. Sendeski et al [11] have demonstrated 
that the superoxide dismutase mimetic Tempol reduced iodixanol-
induced vasoconstriction, thereby supporting the role of ROS 
generated during contrast media administration in medullary 
descending vasa recta vasoconstriction. More recently Pisani et al. 
[32] have demonstrated that a recombinant manganese superoxide 
dismutase administered in vivo to rats undergoing diatrizoate 
treatment was able to reduce renal oxidative stress, thereby preventing 
the reduction of GFR and the renal histologic damage that follows 
contrast media administration.

Cytotoxicity of contrast media
Iodinated radiographic contrast media also possess direct 

cytotoxic properties, as observed on both endothelial and renal 
tubular cells that lead to apoptosis and cell death. The endothelial 
cells are the first to come in contact with intravascular injection of 
contrast agents. Endothelial damage, including nuclear protrusion, 
cell shrinkage, fenestration of the endothelial layer and formation of 
microvilli (‘blebbing’) on the cell membrane, and cellular apoptosis 
have been observed by scanning electron microscopy [33]. Thus, the 
decrease in NO in the vasa recta is due not only to increased ROS 
production, but also to the damaged endothelial cells (including 
apoptosis) [26].

The damaged endothelial cell may also release endothelin that 
causes vasoconstriction. Heyman et al [34] have in fact demonstrated 
that the i.v. administration of contrast media in rats induced an 
increase in plasma concentration of endothelin; furthermore, contrast 
media stimulated endothelin release from cultured bovine endothelial 
cells. These results suggest a direct effect of ionic and nonionic 
contrast agents on vascular endothelium to release endothelin.

In addition to endothelial damage, iodinated radiographic 
contrast media cause damage also to the epithelial tubular cells [35]. 
The contrast media are filtered by glomeruli and are concentrated 
in the renal tubules, thereby exposing the renal tubular cells to even 
worse direct damage. Direct tubular epithelial cell toxicity by contrast 
media has been observed in studies of isolated tubule segments 
and cultured cells substantiated by disruption of cell integrity and 
apoptosis [36,37].

The biochemical changes underlying the epithelial damage have 
been extended to study changes in major intracellular signalling 
pathways involved in cell survival, death and inflammation [23,38-
45] in vitro in cultured renal tubular cells [46]. Recent studies have 
clarified these aspects in primary human tubular cells as well as in 
HK-2 cells exposed to different contrast media. Andreucci et al 
[44] demonstrated a decreased cell viability, secondary to a reduced 
activation of Akt and of ERK 1/2, both kinases known to play a pivotal 
role in cell survival/proliferation, which was substantially alleviated 
by transfecting the HK-2 cells with a constitutively active form of Akt. 
The same authors have demonstrated, in HK-2 cells, that contrast 
media affect the activation/deactivation of transcription factors, like 
FoxO3a and STAT3, that control the genes involved in apoptosis and 
cell proliferation [38,42].

In vivo animal studies as well as in vitro studies suggest that 
iodinated contrast media can directly induce caspase-mediated 
apoptosis of renal tubular cells [47]. Contrast-induced apoptosis may 
also be due to the activation of shock proteins and the concurrent 
inhibition of cytoprotective enzymes and prostaglandins [48,49].

The tubular cell damage may be aggravated by factors such as renal 
hypoperfusion and hypoxia, by properties of contrast media, such as 
ionic strength, high osmolarity and/or viscosity, and by clinically 
unfavourable conditions, such as pre-existing renal impairment 
particularly if secondary to diabetes [1,12].

Intracellular Ca2+ overload
Under physiological conditions, the Na+/Ca2+ exchanger (NCX) 

can pump the Ca2+ outside the renal tubular epithelial cells using the 
Na+ concentration gradient across the cell membrane to keep a low 
intracellular Ca2+ level. In pathological conditions, such as CIN, NCX 
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can reversely extrude Na+ for Ca2+ influx and result in intracellular 
Ca2+ overload. Intracellular Ca2+ overload is considered to be a key 
factor in ischemic cell injury and CIN [50,51].

The osmotic diuresis caused by the contrast media
Radiographic contrast media have different osmolalities (Table). 

Thus, ionic High-Osmolar Contrast Media (HOCM, e.g. diatrizoate) 
have an osmolality of 1500 to 1800 mOsm/kg, i.e. 5–8 times the 
osmolality of plasma; non-ionic Low-Osmolar Contrast Media 
(LOCM e.g. iohexol) have an osmolality of 600 to 850 mOsm/kg, i.e. 
2–3 times the osmolality of plasma; non-ionic Iso-Osmolar Contrast 
Media (IOCM e.g. iodixanol) have an osmolality of approximately 
290 mOsm/kg, i.e. same osmolality as plasma [12,52].

It has been observed that the use of LOCM rather than HOCM 
is beneficial in the prevention of CIN in patients with pre-existing 
CRF [53-56]. Furthermore, iodixanol (IOCM) seems less nephrotoxic 
than iohexol (LOCM), at least in patients subjected to intra-arterial 
administration of the drug and having renal insufficiency [57,58]. 
However, recent studies and meta-analyses have found no significant 
difference in the rates of CIN between IOCM and LOCM [57-62].

In addition to the osmolality of iodinated contrast media, their 
viscosity is very important. The low osmolality achieved with the 
IOCM has come at the price of considerably increased viscosity; at 
comparable iodine concentrations and x-ray attenuation, the non-
ionic dimeric IOCM have about twice the viscosity of non-ionic 
monomeric LOCM [63-65].

Since most of the water filtered by the glomerulus is reabsorbed 
along the renal tubule, the concentration of the contrast medium 
increases considerably within the tubular lumen. The result will be 
a progressive increase in tubular fluid osmolality and, due to the 
exponential concentration-viscosity relationship, an overproportional 
increase in tubular fluid viscosity as well as in the urine viscosity 
[12,63]. Since the fluid flow rate through a tube increases with the 

pressure gradient and decreases with the flow resistance and since the 
resistance increases proportionally to fluid viscosity, the increased 
viscosity caused by a contrast medium increases the intratubular 
pressure [63]. Thus, the osmotic diuresis caused by the contrast 
media raises the intratubular pressure with a condition of tubular 
obstruction that contributes to the tubular epithelial damage [12].

Clinical conditions favouring the occurrence of CIN
Some of the mentioned pathogenetic factors may be aggravated 

by various clinical conditions. Thus, dehydration, particularly in the 
elderly due to impaired sensation of thirst [66], and salt depletion 
following abnormal gastrointestinal, renal or dermal fluid losses 
associated with insufficient salt intake and reduction of ‘effective’ 
circulating blood volume aggravate renal vasoconstriction thereby 
predisposing to ARF [67]. The ‘effective’ circulating blood volume 
may be defined as the relative fullness of the arterial tree as determined 
by cardiac output, peripheral vascular resistance and total blood 
volume [5]. A reduction of ‘effective’ circulating blood volume may 
be due to congestive heart failure, compromised left ventricle systolic 
performance, prolonged hypotension or liver cirrhosis or nephrotic 
syndrome. Under such circumstances renal vasoconstriction is 
accentuated thereby making renal ischemia more severe [12].

Patients with pre-existing CRF have increased oxidative stress 
[29, 30], thereby predisposing to the development of CIN (Figure).

The biologically active endothelins, produced by proteolysis of 
the precursor prepro-endothelins under the action of endothelin-
converting enzyme, are increased in circulating blood of diabetics 
[68]. In diabetic patients there is also a hypersensitivity of renal 
vessels to adenosine [69]. These factors may justify the predisposition 
of diabetics to the development of CIN [12] (Figure).

The renal hemodynamic changes induced by radiocontrast 
media are due to alteration of vasodilator and vasoconstrictor 
influences, mediated by local nitric oxide, prostaglandin, adenosine 
and endothelin systems within the kidney [70]. Evidence exists 
indicating that hypercholesterolemia impairs endothelium-
dependent vasorelaxation [71-74]. It has been demonstrated that 
hypercholesterolemia makes the kidney vulnerable to iodinated 
contrast media by inducing disorders in intrarenal prostaglandins and 
renal nitric oxide system [74,75] (Figure) leading to the suggestion for 
use of statins as a protective measure against CIN [76-81].
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