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Structure to function: muscle failure in critically ill patients
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Impaired physical function and reduced physical activity are common findings in intensive care
unit (ICU) survivors. More importantly, reduced muscle strength during critical illness is an
independent predictor of survival. Skeletal muscle wasting as a direct consequence of critical
illness has been suggested as the cause. However, data on the physiological processes regulating
muscle mass, and function, in these critically ill patients are limited as this is not only a technically
challenging research area, but also the heterogeneity of the patient group adds complexity to the
interpretation of results. Despite this, clinical and research interest in this area is growing. This
article highlights the issues involved in measurement of muscle function and mass in critically
ill patients and the physiological complexities involved in studying these patients. Although the
data are limited, this article reviews the animal and healthy human data providing a rational
approach to the potential pathophysiological mechanisms involved in muscle mass regulation
in critically ill patients, including the established muscle wasting ‘risk factors’ such as ageing,
immobility and systemic inflammation, all of which are common findings in the general critical
care population.
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Introduction

Impaired physical function is a common finding in
intensive care unit (ICU) survivors (Herridge et al. 2003),
who may be unable to perform their usual activities
of daily living for up to 2 years following hospital
discharge (Cheung et al. 2006). ICU-acquired muscle
weakness has been suggested as a causal factor of such
impairment (Griffiths & Hall, 2009; NICE, 2009). It is
both common, with a reported prevalence of between
25% and 100% depending on the method of assessment
(Coakley et al. 1993; Bolton, 2000; De Jonghe et al.
2002; Latronico et al. 2005), and harmful. Specifically,
ICU-acquired muscle weakness has been shown to be
an independent predictor of delayed weaning from
mechanical ventilation, as a consequence of associated
respiratory muscle weakness (De Jonghe et al. 2007),
and mortality (Niskanen et al. 1996; Ali et al. 2008).
Not surprisingly, research in this field is technically
challenging, and this is reflected in the relative paucity
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of physiological studies and interventional clinical trials.
Furthermore, due to limited availability of electro-
myogram (EMG) and nerve conduction study (NCS)
testing in the ICU and the limited data ascertained from
EMG and NCS in patients unable to co-operate, currently
the diagnosis of ICU-acquired muscle weakness is a clinical
one only achieved in patients with a satisfactory conscious
level, which limits diagnostic certainty. Nevertheless,
interest in this area, including extending our under-
standing of the pathophysiology of the disease processes,
is increasing (Griffiths & Hall, 2009; NICE, 2009). Finally,
objective physiological measurements that both quantify
and stratify patients at risk and the magnitude of muscle
wasting need to be developed.

Patient heterogeneity

Patient heterogeneity is a serious challenge to researchers
working in ICU. In developed countries, the most
common indication for admission to critical care includes
acute respiratory failure, trauma, sepsis and acute
coronary syndromes, although there is significant over-
lap observed. In particular, the generalisability of evidence
from a specific patient population (e.g. trauma or coronary
artery bypass surgery) to the general intensive care
population is difficult given the disparity in disease
processes (Trouillet et al. 1996). Furthermore, critical
illness is the rapid progression of end organ damage and
subsequent multiorgan failure and this often overshadows
the chronic respiratory and cardiac disease, despite these
factors contributing to skeletal muscle wasting (Mancini
et al. 1992; Gosker et al. 2003). Immobilisation promotes
muscle wasting (Tomanek & Lund, 1974; Duchateau &
Hainaut, 1987; Caron et al. 2009), which in humans has
been observed to be the consequence of reduced muscle
protein synthesis (MPS) (Gibson et al. 1987). Whilst
the lack of tracer studies prevents definite conclusions
being drawn on the role of muscle protein breakdown
(MPB), upregulation of muscle atrophy signalling suggests
a simultaneous increase in MPB (Jones et al. 2004).
In clinical observational studies, sepsis and systemic
inflammation are reported to act as powerful catalysts
of muscle weakness (De Jonghe et al. 2002; Sharshar
et al. 2009). Although animal models demonstrate that
inflammation suppresses MPS and increases MPB, such
data in critically ill patients are lacking (Voisin et al. 1996;
Murton et al. 2009). However, diverse aetiological factors
drive similar physiological derangement which can be
quantified in physiological scoring systems and used, with
variable success, to predict ICU outcome (Vincent, 2010).
Perhaps for this reason, muscle biopsies from critically ill
patients demonstrate histopathological similarities across
different disease groups (Gamrin et al. 1996; Helliwell et al.

1998), suggesting at least some commonality in an under-
lying process.

Identification of ICU-acquired muscle weakness

Electromyogram and nerve conduction studies. Muscle
weakness can result from motor neurone dysfunction, or
from the direct impact of critical illness on muscle itself.
Pure, severe neuropathy is unusual (Bednarik et al. 2003).
Neuropathy in critically ill patients was first described
in 1984 (Bolton et al. 1984) with electrophysiological
abnormalities of muscle and nerve inexcitability observed
in ICU patients within the first 2–5 days. Although
EMG and NCS observations in critically ill patients have
been previously described, these vary from reduction
in compound muscle action potential and sensory
nerve action potential to normal or near normal nerve
conduction velocities. Furthermore, an absence of a
decremental response to repetitive nerve stimulation is
not uncommon (Coakley et al. 1993; Bolton, 2000;
Tennila et al. 2000). However, routine EMG and NCS
cannot distinguish between neuropathy and myopathy in
unconscious patients and significant technical skills are
required for collecting and interpreting the data (Latronico
et al. 1996; De Jonghe et al. 2002). In addition, studies have
reported a universal rate of EMG and NCS abnormalities
in ICU patients, not necessarily related to the severity
of muscle function loss, indicating that these electro-
physiological studies have limited sensitivity to stratify
patients who could benefit from treatment (Coakley et al.
1993; Berek et al. 1996). These issues, combined with the
difficulty in nomenclature in this field, highlight the need
for clarity in reporting of neuromuscular changes observed
in ICU patients. Specifically, ICU-acquired weakness is
based on a functional measure of strength, whereas the
diagnosis of critical illness neuromyopathy is determined
by electrophysiological measurement.

Assessing muscle function and cross-sectional area in the
ICU. There are intrinsic difficulties in assessing muscle
function in the ICU setting in patients with cognitive
impairment. However, it is possible to make objective
measurements of function through determination of
the force generated by an isolated muscle group using
electrically or magnetically evoked contractions (Edwards
et al. 1977; Polkey et al. 1996; Harris et al. 2000).
From these studies, weakness has been characterised in
the diaphragm, quadriceps and adductor pollicis (Harris
& Moxham, 1998; Harris et al. 2000; Watson et al.
2001). Repetitive magnetic stimulation allows quadriceps
endurance to be assessed in a non-volitional manner in
chronic disease states, although this technique has yet
to be applied to patients during and after critical illness
(Swallow et al. 2007). Such approaches have shown that
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Table 1. The Medical Research Council (MRC) sum score (Kleyweg
et al. 1991)

The Medical Research Council sum score

Shoulder abductors Hip flexors
Elbow flexors Knee extensors
Wrist extensors Foot dorsiflexors

Scoring: 0–5 for each group. The diagnosis of ICU-acquired
muscle weakness is made if the score is ≤48

subjects with chronic disease, such as chronic obstructive
pulmonary disease, have a reduced ability to sustain a
force over time compared to healthy controls (Swallow
et al. 2007). Despite the detailed and objective nature of
these tests, these techniques are challenging to perform
in an ICU setting and therefore have limited widespread
clinical applicability. The most widely used clinical tool is
manual muscle testing (MMT) using the Medical Research
Council (MRC) muscle strength sum score (Kleyweg
et al. 1991; De Jonghe et al. 2002; Table 1). However,
the ability to perform this test is limited by a number
of factors such that the patients are required to be awake,
co-operative and motivated, all of which are influenced
by sedation, delirium and disease severity. Despite these
caveats, the prevalence of ICU-acquired muscle weakness,
as defined by an MRC sum score less than 48, has
been shown to be present in 25% of patients after only
1 week of mechanical ventilation (De Jonghe et al. 2002,
2007). Furthermore, proximal weakness appears to have a
greater prevalence than distal weakness, discordant to the
traditional diagnosis of ICU-acquired muscle weakness
(De Jonghe et al. 2007). Finally, hand-grip dynamometry
has been shown to be a surrogate marker of generalised
ICU-acquired muscle weakness (Ali et al. 2008), but suffers
from the same limitation as all MMT.

As muscle mass determines function (Seymour
et al. 2009), a recent focus has been on investigating
techniques to accurately and reproducibly measure
muscle cross-sectional area. Early assessment of loss
of muscle mass could identify those at greatest risk
of ICU-acquired muscle weakness and its related
functional impairment, allowing the early deployment of
treatment, and possibly preventative, strategies. Whilst
anthropometric measurements, such as mid-arm and
mid-thigh circumference are simple and reproducible,
they rely on a balanced state of hydration and are not well
correlated with whole lean body mass in the critically ill.
These measurements are therefore unreliable as a marker
for acute muscle loss (Campbell et al. 1995). Alternatively
B-mode ultrasonographic measurements of rectus femoris
cross-sectional area (RFCSA) is as accurate as magnetic
resonance imaging in the assessment of muscle mass
changes, with the added benefits of portability, ease of
use and lower cost (Arbeille et al. 2009). Pilot data suggest

that this may be a useful clinical tool for early tracking
and detection of muscle loss in critically ill patients, and
therefore ICU-acquired muscle weakness (Gruther et al.
2008; Seymour et al. 2009). However, this technique is
limited as muscle wasting can be expected to occur in the
absence of a reduction of RFCSA, in particular in critically ill
patients who are given significant fluid loading to support
failing organs, with the significant fluid shifts resulting in
both intracellular and extracellular fluid accumulation.
Although tracking muscle loss using RFCSA could be
validated by determining its relationship with muscle fibre
cross-sectional area, the muscle alkaline-soluble protein
(ASP) to deoxyribonucleic acid (DNA) ratio could also be
used to validate RFCSA. In addition to the normal range for
the ASP:DNA ratio being established, this measurement
is unaffected by water content (Soop et al. 1989; Forsberg
et al. 1991). However, our concerns about the total muscle
water content may be overemphasised as it has been shown
in a longitudinal study in critically ill patients that water
content does not change over a period of 7 days (Gamrin
et al. 1997), although in critically ill patients there is
an increase in extracellular water (Gamrin et al. 1996;
Gatzen et al. 1992) accompanied by progressive cellular
dehydration (Haussinger et al. 1996).

Determinants of muscle mass

Muscle turnover. In healthy subjects muscle catabolism
is balanced by anabolism, although this balance may be
altered in critical illness (Rennie, 1985) and following
resistance exercise (Tipton et al. 2003). Changes in the
dynamic balance between MPS and MPB result in a
net change in protein turnover (Millward, 1980). This
balance is influenced by a variety of factors prevalent in
the critically ill such as age (de Boer et al. 2007; Kumar
et al. 2009), immobility (Gibson et al. 1987; Ferrando
et al. 1996; Glover et al. 2008), inflammation (Biolo et al.
2002; Vesali et al. 2005, 2009), feeding (Bohe et al. 2003;
de Boer et al. 2007; Tipton et al. 2007; Moore et al.
2009), insulin (Louard et al. 1992; Fryburg et al. 1995;
Greenhaff et al. 2008) and drugs (Gibson et al. 1991;
Hammarqvist et al. 1994; McNurlan et al. 1996). The
impact of these factors are synergistic. Muscle is consumed
during critical illness, providing a pool of amino acids that
can be used in hepatic gluconeogenesis as well as in the
synthesis of other important factors, such as acute phase
proteins and enzymes (Gimson, 1987). Whilst it has been
hypothesised that critically ill patients exhibit anabolic
resistance (Rennie, 2009), and that the dominant process
for a loss in muscle mass is a fall in MPS, studies supporting
this view are limited and may have limitations with
poor standardisation of time points for MPS assessment
compounded by the use of flooding isotope techniques,
which can themselves stimulate MPS (Essen et al. 1998;
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Fredriksson et al. 2008). Tracer studies describing MPB
in the critically ill are lacking. Whilst indirect evidence
exists that the MPB rate in critically ill patients is likely
to be increased (Lecker et al. 2004; Klaude et al. 2007),
a definitive statement on the altered balance of MPS and
MPB in critically ill patients is not possible.

Intracellular signalling pathways control MPS and
MPB, although the exact relationship between different
signalling pathways and MPS and MPB remains unclear
(Greenhaff et al. 2008). In healthy subjects, the catabolic
signals are balanced by anabolic signals, although the
relative roles of each in the critically ill patient are poorly
understood (Greenhaff et al. 2008; Murton et al. 2008).
Despite this, the ubiquitin-proteasome pathway (UPP),
which is the pathway suggested to control MPB, has been
implicated in a range of physiological states and clinical
conditions, albeit in rodent models, many of which affect
patients with critical illness (Lecker et al. 1999, 2004).
MPB in both systemic disease and disuse is regulated by
muscle-specific ubiquitin ligases or atrogenes (Jackman
& Kandarian, 2004; Kandarian & Jackman, 2006), with
accelerated catabolism reported in inflammatory and
immobilisation states (Tiao et al. 1997; Lecker et al. 1999,
2004; Bodine et al. 2001a; Leger et al. 2009). The main
so-called ‘atrophy genes’, encoding atrogin-1, also known
as muscle atrophy F-box protein (MAFbx) and muscle
ring-finger-1 (MuRF-1), are activated by forkhead (FoxO)
transcription factors 1 (FoxO-1) and 3 (FoxO-3) (Sandri
et al. 2006; Sacheck et al. 2007). These atrogenes are

rendered inactive by phosphorylation of Akt, a down-
stream target of insulin-like growth factor 1 (IGF-1) and
insulin, which inhibits the de-phosphorylation of FoxO.
Animal models of sepsis have shown inhibition of Akt with
activation of FoxO and subsequent increase in MAFbx and
MuRF-1. However, it should be noted that these atrogenes
have also been shown to be regulated independently of the
Akt/FoxO axis (Leger et al. 2006; Doucet et al. 2007) and
affected by glucocorticoids (Waddell et al. 2008) as well as
by nuclear factor κB (NF-κB) (Cai et al. 2004) indicating
that there are other influences on the relationship between
the atrogenes and forkhead transcription factors. In
addition to activation of the UPP, and highly relevant
to the clinical problem of insulin resistance in critically
ill patients, the Akt/FoxO signalling pathway, via FoxO
mediated pyruvate dehydrogenase kinase, inhibits muscle
carbohydrate metabolism (Crossland et al. 2008). This
inhibition of Akt and activation of FoxO in these animal
sepsis models have been shown to be associated with
increased levels of tumour necrosis factor-α, which can
be modified by low dose corticosteroids (Crossland et al.
2010). IGF-1, which can be activated by repeated muscle
contraction, can block transcriptional up regulation of
atrogenes (Stitt et al. 2004). However, this is obviously an
oversimplification of a complex process, particularly given
evidence which has shown that blocking the IGF-I receptor
does not impair hypertrophy of muscle in response to
mechanical overload or indeed activation of the PI3/AKT
pathway (Bodine et al. 2001a,b). Furthermore, the IGF-1

Figure 1. Schematic representation of the factors regulating muscle mass and function in critically ill
patients
MPS, muscle protein synthesis; MPB, muscle protein breakdown
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receptor is ubiquitous and could result in systemic effects
rather than being limited to skeletal muscle, making it
a poor target for therapeutic intervention. It must be
highlighted that the majority of these data are from animal
studies and the few human data, albeit in normal healthy
humans, have not demonstrated a direct relationship
between anabolic signalling and MPS (Greenhaff et al.
2008; Murton et al. 2008). Clarification of the final
common signalling pathways regulating MPS and MPB
in patients during critical illness is important and could
provide potential therapeutic targets for novel molecules.

Factors influencing muscle turnover in critically
ill patients

Our current understanding of muscle turnover, in regards
to adaptation during critical illness, is poorly described.
Increasing age affects the response of MPS and MPB to
specific stimuli, including resistance training (Kumar et al.
2009). Other factors are reported to affect muscle mass in
animal models (Sacheck et al. 2007), which may have little
relevance to human disease. Some factors are likely to
have universal effects on healthy subjects and critically ill
patients.

Age. Sarcopaenia, muscle loss associated with ageing,
has been shown to occur at a rate of approximately
0.5–2% per annum, although resistance exercise training
has been shown to preserve muscle mass (Baumgartner
et al. 1998; Raguso et al. 2006). Interestingly, basal muscle
protein turnover rate has not been shown to change with
advancing age (Volpi et al. 2001). Despite this, a blunted
synthetic response has been observed such that training
produces less of an anabolic response in older subjects
(Kumar et al. 2009) with sex differences in MPS apparent
in both the post-absorptive and fed states (Smith et al.
2008). An increasing proportion of the critically ill patient
population are elderly and at high risk of developing
muscle wasting during critical illness as a consequence of
this blunted MPS response. This is particularly important
as frail older sarcopaenic patients who start from a
compromised position with a lower muscle mass have
a further reduction in muscle mass. Thus, rehabilitation
resistance training in this patient group may be even more
important, but from previous data is harder to achieve and
demonstrate benefit to the muscle.

Immobilisation and bed rest. Mechanical ventilation has
traditionally been associated with sedation and bed rest,
although this has recently been challenged as a universal
paradigm (Schweickert et al. 2009; Strom et al. 2010). It
is established that immobility has a detrimental effect to
muscle, both quantitatively and qualitatively. Relatively
short periods of immobilisation decrease MPS, and it has

been postulated, from the calculation of the degree of
involvement of MPS, that there is limited effect on MPB,
although the latter has never been directly measured by
tracer studies (de Boer et al. 2007). However, gene markers
of atrophy have been shown to be upregulated in a 2 week
immobilisation study, suggesting a simultaneous increase
in MPB and reduction in MPS during immobilisation
(Jones et al. 2004). Furthermore, this altered balance
is relatively resistant to programmes in which high
dose amino acid feeding is employed (Glover et al.
2008). This is in contrast to animal work, where MPB
is the dominant process (Sacheck et al. 2007; Caron
et al. 2009). Furthermore, immobilisation has significant
effects on peripheral muscle aerobic capacity (Kortebein
et al. 2008), contractility (Duchateau & Hainaut, 1987),
insulin resistance (Hamburg et al. 2007) and muscle
architecture (Tomanek & Lund, 1974). Microvascular
dysfunction occurring in severe sepsis is associated with
immobilisation and may have an additive effect on
reducing MPS (Hamburg et al. 2007; Rennie, 2009).

Systemic inflammation. Sepsis and systemic
inflammation are common in critically ill patients,
with sepsis reported as the third leading cause of death
in the United States (Bone et al. 1992; Daniels, 2009).
Variation in circulating concentrations of amino acids
have been demonstrated in the early stages of sepsis, in
addition to decreased MPS (Vesali et al. 2005, 2009). The
exact role of altered MPB in the critically ill is unclear,
with conflicting data from studies (Biolo et al. 2002;
Vesali et al. 2009). Endotoxin administration to healthy
volunteers, as a model for systemic sepsis, demonstrated
a decrease in MPS with an adaptive decrease in MPB
(Vesali et al. 2009). In contrast, protein turnover studies
performed in 19 patients with severe burn injuries showed
an 83% increase in MPB (Biolo et al. 2002), although
it is appreciated that patients with burn injury and
extensive soft tissue loss are not necessarily representative
of patients managed in general intensive care.

Defeating muscle failure in critically ill patients

Currently, our knowledge of muscle loss and wasting
in critically ill patients is limited (Fig. 1). We have
extrapolated animal and healthy human data to identify
areas of interest with a focus on determining the
relationship between muscle protein signalling and muscle
protein turnover. This approach has the potential to
identify targets for future drug therapies and other
strategies such as neuromuscular electrical stimulation
and early physical rehabilitation therapy. We need to
validate simple non-invasive tools, such as ultrasound,
to track muscle loss and identify those patients at

C© 2010 The Authors. Journal compilation C© 2010 The Physiological Society

) by guest on May 29, 2012jp.physoc.orgDownloaded from J Physiol (

http://jp.physoc.org/


4646 Z. Puthucheary and others J Physiol 588.23

risk. Encouragingly, data are emerging which suggest
that rehabilitation strategies such as neuromuscular
electrical stimulation (Gerovasili et al. 2009) can preserve
muscle mass. However, the underlying pathophysiological
mechanisms which control muscle protein turnover
remain to be elucidated in this patient population.
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