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Abstract  24 

To assess the risk of acute kidney injury (AKI) attributable to aminoglycosides (AG) in 25 

patients with severe sepsis or septic shock, we performed a retrospective cohort study in one 26 

medical intensive care unit (ICU) in France. Patients admitted for severe sepsis/septic shock 27 

between November 2008 and January 2010 were eligible. A propensity score for AG 28 

administration was built with day 1 (D1) demographic and clinical characteristics. Patients 29 

still on the ICU on D3 were included. Patients with renal failure before D3 or endocarditis 30 

were excluded. The time window for assessment of renal risk was D3-D15, defined according 31 

to the Risk, Injury, Failure, Loss, and End-Stage Renal Disease (RIFLE) classification. The 32 

AKI risk was assessed by means of a propensity-adjusted Cox proportional hazards regression 33 

analysis. Of 317 consecutive patients, 198 received AGs. The SAPS II score and nosocomial 34 

origin of infection favoured the use of AGs whereas a pre-existing renal insufficiency and the 35 

neurological site of infection decreased the propensity for AG treatment. 103 patients with 36 

renal failure before D3 were excluded. AG were given once-daily over 2.6±1.1 days. AKI 37 

occurred in 16.3% of patients in a median time of 6 [5-10] days. After adjustment to the 38 

clinical course and exposure to other nephrotoxic agents between D1 and D3, a propensity-39 

adjusted Cox proportional hazards regression analysis showed no increased risk of AKI in 40 

patients receiving AGs (aRR = 0.75 [0.32-1.76]). In conclusion, in critically septic patients 41 

presenting without early renal failure, an aminoglycoside therapy for less than 3 days was not 42 

associated with an increased risk of AKI. 43 
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Introduction 45 

Aminoglycosides (AGs) have a bactericidal activity, which has been proven to be synergic 46 

with βlactams. If adding an aminoglycoside (AG) to a standard antibiotic treatment did not 47 

translate into a reduction of mortality in NGB sepsis in subgroups of patients with globally 48 

moderate degrees of severity (1), a decrease in mortality was recently reported in a meta-49 

analysis comparing a bitherapy versus a βlactam alone in patients with septic shock (2). In 50 

addition, AGs widen the spectrum of the antibiotic treatment, which should be advantageous 51 

in populations with an increased risk of resistant bacteria, such as intensive care unit (ICU) 52 

patients (3, 4). Empiric antibiotic treatments including AGs could be more appropriate in up 53 

to 15-20% compared with a βlactam alone (5, 6). In the ICU setting, modifications of the 54 

empiric antibiotic treatment or the addition of a new antibiotic occur less frequently after 55 

bitherapy including an AG compared with monotherapy (7). 56 

Unfortunately, nephrotoxicity is an important potential limitation of AGs. There is a 57 

consensus that AG-related nephrotoxicity has decreased over years due to better consideration 58 

of both reduced duration of treatment and once daily administration (8). However, in ICU 59 

patients, higher doses have been recommended (9) as an increased volume of distribution 60 

(Vd) has been described (10). These aggressive doses could be responsible for higher 61 

nephrotoxicity incidence. To date, a decrease in renal function has been observed in 5-14% of 62 

patients receiving AGs according to a wide definition (>33% decrease in creatinine clearance 63 

(Crcl) ± plasma creatinine increase ≥ 0.3mg/dL) or a more restrictive definition (>50% 64 

decrease in Crcl ± plasma creatinine increase ≥ 0.5mg/dL) (11-13). Both definitions may 65 

overestimate AG-associated renal toxicity and the addition of criteria for tubular damage to 66 

the definitions based on plasma creatinine lowers the incidence of AG-related nephrotoxicity 67 

by 2- or 3-fold (13, 14). Conversely, a recent score designed to assess acute kidney injury 68 
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(AKI) in severely septic patients (the RIFLE score (15)) found 24% AKI in patients receiving 69 

AGs (16).  70 

These controversial data suggest that AG-associated AKI might not be solely attributed to 71 

AGs because of the frequent confounding factors associated with AKI (17-19), such as septic 72 

shock per se, other nephrotoxic drugs (20), direct effect of bacterial toxins and comorbidities 73 

such as diabetes or altered baseline renal function. The aim of this study was to assess the 74 

AG-attributed AKI (the real AG nephrotoxicity) in patients with septic shock or severe sepsis.  75 

76 

John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel


John Vogel




 5

Materials and methods 77 

Design and ethical aspects 78 

This was a retrospective, observational study performed in a single 28-bed medical ICU from 79 

November 2008 to January 2010. The study protocol was approved by the Ethical committee 80 

of the Société de Réanimation de Langue Française. Written consent was waived because of 81 

the observational nature of the study.  82 

Inclusion, exclusion criteria and recruitment period 83 

The first part of the study consisted in including all patients admitted for or who developed 84 

septic shock or severe sepsis. Factors associated with the administration of AGs in septic 85 

shock or severe sepsis on day 1 (D1) were studied in this first set of patients.  86 

Adult patients still in the ICU on D3 were eligible for inclusion in the second part of the study 87 

aiming at the determination of the nephrotoxicity risk associated with AG treatment (primary 88 

objective). Patients who had another indication for AG such as endocarditis, even complicated 89 

by severe sepsis, were excluded. Patients with renal failure before D3 (either those under 90 

chronic renal replacement therapy or with acute tubular necrosis needing renal replacement 91 

therapy) were excluded as the distinction between aspecific renal failure and the specific 92 

AGs-associated nephrotoxicity would be impossible in these patients. Patients with D1 renal 93 

clearance of less than 56.25 ml/mn/1.73m2 (I category of the RIFLE score (21)) followed by a 94 

severe decrease until D3 without the need for renal replacement therapy (D1/D3 renal 95 

clearance >1 + D3 renal clearance < 37.5 ml/mn/1.73m2 before D3) were also excluded, since 96 

this decrease cannot either be attributed to AGs. Studied parameters were collected from D1 97 

to the end of study, i.e., D15, day of discharge or day of death when occurring before D15. 98 

Objectives 99 
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The primary objective of this study was the assessment of the AKI risk from D3 to D15, in 100 

patients having received AGs, in comparison with patients who did not receive AGs.  101 

The secondary objectives were the identification of factors associated with the administration 102 

of AGs in severe sepsis or septic shock and the description of AG treatment in a population of 103 

ICU patients with severe sepsis or septic shock.  104 

The AKI was defined by the increase of the RIFLE score (21) from  105 

1) (No risk + creatinine clearance > 56.25 ml/mn/1.73m2 on D3) to (Risk, Injury or 106 

Failure from D3 to D15) 107 

2) Risk category (37.5 ml/mn/1,73m2 <crCl< 56.25 ml/min/1.73m2) to Injury or 108 

Failure. 109 

Creatinine clearance was calculated on a daily basis using daily serum creatinine and the 110 

simple modified modification in diet in renal disease (MDRD) which is supposed to provide 111 

estimation of the glomerular filtration rate (GFR) (15). For each patient included in the 112 

cohort, the charts were reviewed and the following data were recorded: demographic 113 

variables, Simplify Acute Physiology Score II (SAPS II) at the end of D1, Sequential Organ 114 

Failure Assessment (SOFA) at the end of D1 and D3, type, cause and severity of infection 115 

(severe sepsis and septic shock were defined according to the international guidelines (23)), 116 

nephrotoxic drugs and intravenous (iv) iodate contrast used at admission and all along the 117 

stay, other risk factors for nephrotoxicity (i.e. diabetes mellitus, presence of a single 118 

functional kidney, cirrhosis, kidney graft, pre-existing renal failure, rhabdomyolysis (defined 119 

by CPK >500 IU/L)).  120 

The duration of therapy, the dose and serum concentrations of AGs were also recorded.  121 

AG treatment 122 

In the ICU, AGs were always combined with βlactams. Gentamicin (G) was recommended 123 

for treatment of infections due to Gram-positive or community-acquired Gram-negative 124 
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bacteria, whereas amikacin (A) was recommended for treatment of nosocomial-acquired 125 

Gram-negative bacteria infections. Tobramycin was not recommended. Doses and 126 

adjustments were checked daily by senior physicians with expertise in infectious diseases (AB 127 

and DG). The AG loading dose was calculated according to the total body weight (TBW) (20 128 

mg/kg for A and 7 mg/kg for G) (10, 24). This regimen was defined according to an expected 129 

mean Vd of 0.3 to 0.4 L/kg and a target peak concentration of 25-30 mg/L for G and 40-50 130 

mg/L for A. If the observed peak was <20 mg/L for G or <35 mg/l for A, the daily dose was 131 

increased by 1.25-1.3 fold. Inversely if the peak was >35 mg/L for G or >55 mg/l for A, the 132 

daily dose was reduced in the same proportions. If the trough was >2.5 mg/L for G and 5 133 

mg/L for A, the AG injection was delayed until the target trough was obtained. Peak was 134 

assessed 30 minutes after the end of AG infusion and trough just before the following one, 135 

except for the last administration. A maximum of 5 days of AG therapy was recommended. 136 

The area under the curve (AUC) were calculated from the peak and trough of the same 137 

interval by using a one-compartment PK model.  138 

Statistical analysis 139 

The categorical variables were compared using Chi-squared test and continuous variables 140 

were compared using the Student’s t. In order to adjust for confounding factors of AKI that 141 

could have participated in the decision to administrate AG, a propensity score of AG 142 

treatment was built with D1 variables (the day of sepsis and antibiotic initiation). All the 143 

variables supposed to interact with the decision were considered. On D3, once patients 144 

meeting prespecified criteria had been excluded, the time to AKI was examined by Kaplan-145 

Meier and propensity-adjusted Cox proportional hazards regression analyses. The dependant 146 

binary variable was the AKI occurrence and AG treatment was the primary independent 147 

variable. Most of the other independent variables having been already considered in the 148 

propensity score, only new nephrotoxic treatments (after D1 and until either AKI or the end of 149 
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the study, i.e. D15 or before if death or discharge), and the evolution of sepsis by delta SOFA 150 

(D3-D1) were added to this model. Adjusted relative risks were computed for variables in the 151 

final model. A p value of 0.05 was considered significant. All calculations were computed 152 

using SAS version 9.3 (SAS corporation, Cary, NC).  153 

154 
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Results 155 

Day 1 results and propensity score  156 

Between November 2008 and January 2010, 317 adult patients were consecutively included 157 

in the study. AGs had been administered to 198 patients. Septic shock was present in 227 158 

(71.6%) whereas 90 (28.4%) had a severe sepsis (table 1). In table 2 are described the 159 

variables constituting the propensity score for AG treatment. The most significant factors 160 

associated with AG administration were the SAPS II score and the nosocomial origin of 161 

infection which both favoured the decision to use AG treatment. In turn, a pre-existing renal 162 

insufficiency and the neurological site of infection both decreased the propensity for AG 163 

treatment. The distribution of the propensity score for receiving AG according to the true AG 164 

administration shows that a number of patients had an intermediate score (data not shown). 165 

Once adjusted for the propensity score, no difference between patients receiving or not AGs 166 

was observed anymore (data not shown).  167 

Day 3 results  168 

Between D1 and D3, 103 patients among 317 were excluded, among whom 72 for either 169 

initial severe AKI (n=58) or renal replacement therapy (n=14) (AGs were administered in two 170 

thirds of these patients (n=48)). The remaining population of 214 patients had a mean length 171 

of ICU and hospital stay of respectively 16±16 and 38±60 days. Twenty-one died before D15 172 

(10%). Among these 214 patients, 150 received AGs. The mean duration of AG therapy was 173 

2.6±1.1 days. Amikacin was prescribed in 74% and gentamicin in 26%. Results of drug 174 

monitoring including trough and peak determinations are shown in table 3. The area under the 175 

curve (AUC) of gentamicin was 200±114 mg.h/L and 537±590 mg.h/L for amikacin. Figure 1 176 

represents the distribution of the propensity score, according to whether AGs were given or 177 

not, in the 214 patients. AKI occurred in 35 patients (16.3%) with a median delay of 6 [5-10] 178 

days. The results of the multivariate analysis of risk factors for acute renal failure are shown 179 
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in table 3. The SOFA score improved from D1 to D3 in 154 patients (72%) whereas it 180 

decreased in 60 (28%). At least one additional nephrotoxic agent had been administered in 181 

133 patients (62%) in the period from D1 to the index date. Variables associated with the 182 

occurrence of AKI risk in the multivariate Cox model are shown in table 4. After adjustment 183 

to delta SOFA, exposure to additional nephrotoxic agents (D1-index date), and propensity 184 

score for AG treatment, the administration of AGs was not associated with a significant risk 185 

of AKI (table 4). 186 

Ninety one patients (28.7%) died before D28 among the entire D1 population and the 187 

variables independently associated with the occurrence of death in the multivariate Cox model 188 

were age and gender whereas AG treatment was not significantly associated with D28 189 

mortality (table 5).  190 

191 
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Discussion 192 

The main finding of our study is that aminoglycosides are not associated with an increase in 193 

AKI in patients admitted to ICU for severe sepsis or septic shock without early renal failure 194 

after adjustement on the clinical evolution of patients in the first three ICU days (delta SOFA 195 

D3-D1 and exposure to nephrotoxic agents) and, most importantly, on the propensity score to 196 

receive AGs.  197 

The propensity score was based on the risk factors for AG nephrotoxicity listed in two meta-198 

analyzes (25, 26) to which we added specific characteristics of sepsis. The patient severity 199 

(SAPS II score, OR = 1.02 [1.00-1.04]) was a major determinant in the decision to use AGs, 200 

reflecting the prescribers' confidence in the bactericidal and synergistic action of AGs (27). 201 

Another factor positively influencing AG treatment was the nosocomial origin of infection 202 

(OR = 2.10 [1.22-3.63]). This could be expected since hospital infections are commonly 203 

caused by multiresistant bacteria (28). Conversely, the neurological origin of sepsis 204 

discouraged the initiation of AGs (OR = 0.14 [0.03-0.76]), which is in accordance with their 205 

pharmacokinetic characteristics, no more than 10 percents of the total intravenous dose 206 

penetrating cerebrospinal fluid (29). Patients with preexisting renal failure (OR = 0.37 [0.14-207 

1.00]) were less prone to be treated by AGs probably due to a benefit-risk approach in this 208 

subset of patients. 209 

The overall incidence of AKI in our study was 16% (35/214) which should be considered as 210 

low compared to the data of a recent Italian study reporting a 40% incidence of acute renal 211 

failure in 279 septic ICU patients (30). This might be explained by our decision to exclude 212 

patients with AKI occurring before D3. Adding these excluded patients (n=72) would have 213 

led to a comparable overall risk of AKI (37%; 107/286). Many studies have attempted to 214 

determine the specific renal risk of AGs and the risk prevalence of AKI is highly variable. 215 

The vast majority of published studies suffer from the absence of combination of validated 216 
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acute renal failure criteria and sufficient severity of patients to allow the extrapolation of 217 

results to critically ill patients. The Acute Dialysis Quality Initiative group developed the 218 

RIFLE classification accounting for a broad range of acute impairment of kidney function 219 

through consensus of experts (15). It has been validated in ICU patients and can detect AKI 220 

with high sensitivity and specificity (15, 21). A recent retrospective study using these criteria 221 

has shown a 24% AG nephrotoxicity, but only 12% of patients experiencing AKI had severe 222 

sepsis (16). A strength of our study was to use a validated AKI classification in an exclusively 223 

ICU population. We also carefully avoided other methodological flaws. Patients with Injury, 224 

Failure or Loss of RIFLE score before D3 were excluded in order to increase the specificity of 225 

AGs-associated acute renal failure. Indeed, AG-associated nephrotoxicity is known to occur 226 

at the end of the AG treatment or later, i.e. from D3 to D15. This time window was chosen 227 

based on a previously reported mean delay between AG treatment and nephrotoxicity of 228 

8.8±3.4 days (22). 229 

Moreover, AKI in severe sepsis or septic shock population is a complex issue. While septic 230 

shock remains the leading cause of AKI in this population (32), the pressure on renal function 231 

is increased by many other factors such as nephrotoxic drugs (20), direct effect of bacterial 232 

toxins, vascular nephritis etc.. (33). To better assess the causal link between the 233 

administration of AGs and the AKI occurrence, we performed a quasi-randomized study in 234 

which all variables supposed to interact with AKI occurrence were considered in a propensity 235 

adjusted Cox proportional hazards regression. It would therefore make sense to abandon the 236 

assessment of AG nephrotoxicity by the rate of acute renal failure occurring after the 237 

administration of AG and to prefer a better methodological assessment of AG-associated AKI 238 

(19). 239 

No AG-associated AKI risk was found in this study (adjusted OR 0.75 95%CI [0.32-1.76]), 240 

and there might even be a slight trend towards a reduced renal risk in AG patients, 241 
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considering the study population did not include patients with early acute renal failure. This 242 

might be related to both pharmacological and physiological mechanisms. Recent 243 

pharmacological concepts of AGs administration such as the once-daily dose schedule for 244 

AGs administration which result in a decrease of AG-associated AKI (9) have been respected 245 

in the present study as shown by the use of once daily doses of gentamicin and amikacin 246 

during a short course achieving a correct rate of target obtention (Table 3). A physiological 247 

mechanism has also been suggested by several authors (34-36). Lipcsey et al. compared four 248 

groups of pigs (endotoxinemia + tobramycin, endotoxinemia + saline, saline + tobramycin, 249 

saline alone) and suggested that sepsis-induced hypoperfusion was predominant over specific 250 

AG toxicity on the AKI occurrence (35). More recently, Langenberg et al. compared 3 groups 251 

of sheep (E. coli infusion, E. coli infusion followed by gentamicin IV, control group) and 252 

showed a lower rate of NO synthase and hypoxia-inducible factor in the gentamicin group 253 

compared to the septic group. This provides evidence that AGs might stop endothelial and 254 

cellular signals at the origin of sepsis-related AKI (36).  255 

There are some limitations to this study. This was a retrospective cohort study conducted at a 256 

single ICU, possibly limiting its extrapolation. Particularly, even if the AG administration was 257 

consistent with the standards of care at the time of the study (100% once daily dose, 61% of 258 

Cpeak target attainment, short duration) (37), recent recommendations have emphasized the 259 

use of higher doses of amikacin (25-30 mg/kg) potentially changing the AG-associated AKI 260 

risk (38). The general characteristics of the population are also representative of medical ICU 261 

septic patients (SAPS II 59±20, 72% septic shock, mean duration of ICU stay of 14±16 days). 262 

In critically ill patients, assessing glomerular filtration rate by mean of serum creatinine can 263 

be questioned. Urinary crCl, though more specific, bears the same limitations (39). We used 264 

MDRD formula for basal estimation of glomerular filtration rate following recommendation 265 

of RIFLE classification. However, recently, the KDIGO (Kidney Disease: Improving Global 266 
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Outcomes) initiative proposed a modified RIFLE classification that should be used in the 267 

future (40). However, to date, RIFLE remains the most validated classification with more than 268 

half a million studied patients. We excluded from the analysis patients who had impaired 269 

renal function that worsened between day 1 and day 3 since we expect aminoglycoside 270 

nephrotoxicity to be manifest some days after starting. However, we performed a sensitivity 271 

analysis in reincorporating patients excluded for initial renal failure (defined by creatinin 272 

clearance <37.5) (n=58), and patients needing immediate renal replacement therapy (n=14). 273 

Among this population (n=286), 107 (37,4%) patients developed AKI. The AKI adjusted 274 

relative risk of aminoglycoside treatment (yes vs. no) given by the Cox model was 0,95 [CI 275 

95% 0,59-1,47], p=0,76. Finally, the finding of no increased risk might be attributed to a lack 276 

of power despite the relatively large number of patients included. However, the probability 277 

that the trend in the reduction of risk obtained in this study could be reversed to an increase is 278 

low, especially with the statistical methods used. With traditional multivariable regression 279 

techniques, models become unstable when the sample size is small and the number of 280 

covariates included in the model is large relative to the number of outcome events. Adjusting 281 

on propensity scores is a mean to prevent from overloading subsequent regression models 282 

especially when studying a rare outcome (41). In this case, though the choice of treatment was 283 

not randomized, and it might be surmised that these drugs would be used in patients at lower 284 

risk of renal failure, the use of a propensity score built with all known risk factors for renal 285 

failure should protect against such confounding. Of course the lack of association we found 286 

does not mean that AG are no longer nephrotoxic, just that the choice of patients and the way 287 

the drugs were given was judicious. Further studies in similar patients in other settings would 288 

be useful to confirm these results, and ideally under randomized controlled circumstances, 289 

which unfortunately are hardly possible in this context. 290 
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In conclusion, with modern modalities of administration including high dose once daily and 291 

short duration of treatment, AG did not appear to increase the AKI risk in ICU patients treated 292 

for severe sepsis or septic shock without early acute renal failure.  293 

 294 

 295 

296 
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Figure legends 303 

Figure 1. Propensity score for aminoglycoside treatment at baseline for the studied patients  304 

 305 

 306 

  307 

308 
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Table 1. Baseline characteristics of the patients for propensity score elaboration 309 

Variables  Aminoglycosides  

 n=317 
No 

n=103 
Yes 

n=214 p value 

Sex  Male 191 (60.2) 61 (59.2) 130 (60.7)  

Age   59 (17) 59 (16) 59 (18) 0.67 

SAPS II  59.2 (20.7) 60.7 (20.2) 56.0 (21.3) 0.06 

Nosocomial sepsis Yes 175 (55.2) 44 (42.7) 131 (61.2) <10-1 

Sepsis origin Blood or catheter 21 (6.6) 6 (5.8) 15 (7.0) 0.02 

 Abdominal, urinary or 
gynecological tract  

34 (10.7) 8 (7.8) 26 (12.1)  

 Lung, skin soft tissue, 
osteitis or arthritis 

232 (73.2) 71 (68.9) 161 (75.2)  

 Neurological 13 (4.1) 8 (7.8) 5 (2.3)  

 No identified origin 17 (5.4) 10 (9.7) 7 (3.3)  

Sepsis severity  Septic shock 227 (71.6) 71 (68.9) 156 (72.9) 0.47 

 Severe sepsis  90 (28.4) 32 (31.1) 58 (27.1)  

Number of organ failure No failure 35 (11.0) 10 ( 9.7) 25 (11.7) 0.60 

 At least one 282 (89.0) 93 (90.3) 189 (88.3)  

Rhabdomyolysis*   40 (12.62) 17 (16.50) 23 (10.75) 0.16 

Renal graft or single 
functional kidney  

 18 (5.7) 6 (5.8) 12 (5.6) 0.94 

Diabetes mellitus   55 (17.3) 14 (13.6) 41 (19.2) 0.21 

Cirrhosis  41 (12.93) 11 (10.7) 30 (14.0) 0.40 

Preexisting renal failure  30 (9.5) 13 (12.6) 17 ( 7.9) 0.19 

Nephrotoxic treatments 
ACE inhibitors/ARB 
Diuretics 
High osmolar 
radiocontrast agent 
Hydroxyethil 
starches 
NSAIds 
Antimicrobial agent° 
Immunosuppressive 
treatment °° 

 
                                             85 (27.0)              26 (25.2)             59 (27.8)                             0.63 

                                             97 (30.8)              29 (28.2)             68 (32.1)                             0.48 

                                             27 (8.6)                10 (9.7)               17 (8.0)                               0.62 

                                             15 (4.8)                  5 (4.8)               10 (4.7)                               0.96 

                                             18 (5.7)                 4 ( 3.9)              14 (6.6)                               0.31 

                                             32 (10.2)              10 (9.7)               22 (10.4)                             0.85 

                                             19 (6.0)                   7 (6.8)              12 (5.7)                               0.69 

Nephrotoxic treatments No 128 (40.6) 48 (46.6) 80 (37.7) 0.13 

 At least one 187 (59.4) 55 (53.4) 132 (62.3)  

 310 
Qualitative variables are represented with n (%), quantitative variables with mean (SD) 311 

SAPS Simplified acute physiology score; ACE angiotensin converting enzyme ; ARB 312 

angiotensin receptor blockers; NSAIds Non steroidal anti-inflammatory drugs 313 
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* rhabdomyolysis is defined by CPK>500 IU/L; ° vancomycin, amphotericin B, acyclovir, 314 

foscavir; °° calcineurin inhibitors 315 

316 
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Table 2. Multivariate analysis of factors associated with aminoglycoside treatment 317 

Variables Total OR [95% CI] 
Sex  Male 

Female 
191 (60.2) 
126 (39.8) 

1.00 
0.92 [0.52-0.61] 

Age   59 (17) 0.99 [0.97-1.01] 

SAPS II  59.2 (20.7) 1.02 [1.00-1.04] 

Nosocomial sepsis No 
Yes 

142 (44.8) 
175 (55.2) 

1.00 
2.10 [1.22-3.63] 

Sepsis origin Blood or catheter 21 ( 6.6) 1.00 

 Abdominal, urinary or gynecological 
tract  

34 (10.7) 1.25 [ 0.32- 4.91] 

 Lung, skin soft tissue, osteitis or arthritis 232 (73.2) 0.93 [ 0.31- 2.80] 

 Neurological 13 ( 4.1) 0.14 [ 0.03- 0.76] 

 No identified origin 17 (5.4) 0.23 [ 0.05- 1.01] 

Sepsis severity  Septic shock 227 (71.6) 1.00 

 Severe sepsis  90 (28.4) 0.87 [ 0.43- 1.74] 

Number of organ failure No failure 35 (11.0) 1.00 

 At least one 282 (89.0) 0.46 [ 0.16- 1.30] 

Rhabdomyolysis*  No 
Yes 

277 (87.4)  
40 (12.6) 

1.00 
0.61 [ 0.28- 1.30] 

Renal graft or single 
functional kidney  

No 
Yes 

299 (94.3)  
18 (5.7) 

1.00 
1.53 [ 0.43- 5.41] 

Diabetes mellitus  No 
Yes 

262 (82.6) 
55 (17.3) 

1.00 
1.69 [ 0.78- 3.64] 

Cirrhosis No 
Yes 

276 (87.1)  
41 (12.9) 

1.00 
1.53 [0.66- 3.58] 

Preexisting renal failure No 
Yes 

287 (90.5)  
30 (9.5) 

1.00 
0.37 [0.14- 1.00] 

Nephrotoxic treatments    
ACE inhibitors/ARB No 

Yes 
230 (73.0)  
85 (27.0) 

1.00 
0.81 [ 0.38- 1.76] 

Diuretics No 
Yes 

218 (69.2)  
97 (30.8) 

1.00 
0.70 [ 0.33- 1.53] 

High osmolar 
radiocontrast agent 

No 
Yes 

288 (91.4)  
27 (8.6) 

1.00 
0.63 [ 0.23- 1.73] 

Hydroxyethil 
starches 

No 
Yes 

300 (95.2)  
15 (4.8) 

1.00 
0.77 [ 0.21- 2.81] 

NSAIds No 
Yes 

297 (94.3)  
18 (5.7) 

1.00 
1.91 [ 0.47- 7.70] 

Antimicrobial agent° No 
Yes 

283 (89.8)  
32 (10.2) 

1.00 
0.97 [ 0.37- 2.56] 

Immunosuppressive No 296 (94.0)  1.00 
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treatment °° Yes 19 ( 6.0) 0.31 [ 0.09- 1.03] 

Nephrotoxic treatments No 
At least one 

128 (40.6)  
187 (59.4) 

1.00 
1.99 [ 0.80- 4.95] 

Qualitative variables are represented with n (%), quantitative variables with mean (SD) 318 

SAPS Simplified acute physiology score; ACE angiotensin converting enzyme; ARB 319 

angiotensin receptor blockers; NSAIds Non steroidal anti-inflammatory drugs 320 

rhabdomyolysis is defined by CPK>500 IU/L; ° vancomycin, amphotericin B, acyclovir, 321 

foscavir; °° calcineurin inhibitors 322 

323 
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Table 3. Drug monitoring parameters of aminoglycoside administration. 324 

 325 
n = 150 n (%) Dose 

(mg/kg) 
Duration 

(days) 
Cpeak (mg/L) Cpeak  

% of target 
attainment 

Ctrough  
% of target 
attainment  

Gentamicin 39 (26) 6.0±1.6 2.9±1.1 24.9±11.4 (n=101) 47 (>25mg/L) 85.4 (<2.5mg/L) 
Amikacin 111 (74) 18.4±5.5 2.5±1.0 44.3±16.0 (n=259) 66 (>40mg/L) 73.3(< 5mg/L) 

 326 

327 
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Table 4. Multivariate risk for acute kidney injury (cox proportional hazards ratio) 328 

 HR* IC95% p
Aminoglycoside (yes vs no) 0.75 [0.32-1.76] 0.51 
Decrease in SOFA score between D1 and D3 
(yes vs no) 

1.02 [0.48-2.15] 0.96 

Nephrotoxic treatment after day 1 (yes vs no) 0.75 [0.37-1.51] 0.43 
*The relative risk has been adjusted on the propensity score 329 

330 
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Table 5. Risk for D28 mortality 331 

 RR* IC95% p 
Aminoglycoside (yes vs no) 0.78 [0.47-1.30] 0.34 
Age 1.02 [1.01-1.04] <0.01
Sexe (female vs male) 0.52 [0.33-0.81] <0.01
Day 1 SOFA  1.05 [0.98-1.13] 0.16 
Severe sepsis vs septic shock 1.05 [0.52-2.09] 0.90 
*The relative risk has been adjusted on the propensity score and the SAPS II score 332 

 333 

334 
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