1	THE NEPHROTOXICITY OF AMINOGLYCOSIDES IN PATIENTS WITH SEVERE
2	SEPSIS OR SEPTIC SHOCK: A PROPENSITY BASED STUDY
3	Picard W ^{1*} , Bazin F ² , Clouzeau B ¹ , Bui H-N ¹ , Soulat M ¹ , Guilhon E ¹ , Vargas F ¹ , Hilbert G ¹ ,
4	Bouchet $S^{2,3}$, Gruson D^1 , Moore $N^{2,3}$, Boyer $A^{1,2 \#}$.
5	
6	Service de Réanimation Médicale, CHU Bordeaux, 3 place Amélie Raba-Léon, 33076
7	Bordeaux cedex ¹ ; INSERM, U657 Pharmaco-Epidémiologie et Evaluation de l'Impact des
8	Produits de Santé sur les Populations, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France ² ;
9	Département de Pharmacotoxicologie CHU de Bordeaux, 3 place Amélie Raba-Léon, 33076
10	Bordeaux cedex ³
11	
12	Running title: aminoglycoside nephrotoxicity and septic shock
13	Key words: aminoglycosides, nephrotoxicity, acute renal failure, acute kidney injury,
14	intensive care, critical care, septic shock, severe sepsis
15	
16	[#] Corresponding author. Mailing address: Service de Réanimation Médicale, CHU Bordeaux,
17	3 place Amélie Raba-Léon, 33076 Bordeaux cedex ; Phone: 05 56 59 55 17, Fax 05 56 59 61
18	22, Email : <u>alexandre.boyer@chu-bordeaux.fr</u>
19	
20	* the current affiliation of Walter Picard is: Service de Réanimation Polyvalente, CH Pau, 4
21	Boulevard Hauterive, 64000 Pau
22	
23	

24 Abstract

25 To assess the risk of acute kidney injury (AKI) attributable to aminoglycosides (AG) in patients with severe sepsis or septic shock, we performed a retrospective cohort study in one 26 medical intensive care unit (ICU) in France. Patients admitted for severe sepsis/septic shock 27 28 between November 2008 and January 2010 were eligible. A propensity score for AG 29 administration was built with day 1 (D1) demographic and clinical characteristics. Patients 30 still on the ICU on D3 were included. Patients with renal failure before D3 or endocarditis 31 were excluded. The time window for assessment of renal risk was D3-D15, defined according 32 to the Risk, Injury, Failure, Loss, and End-Stage Renal Disease (RIFLE) classification. The 33 AKI risk was assessed by means of a propensity-adjusted Cox proportional hazards regression 34 analysis. Of 317 consecutive patients, 198 received AGs. The SAPS II score and nosocomial 35 origin of infection favoured the use of AGs whereas a pre-existing renal insufficiency and the neurological site of infection decreased the propensity for AG treatment. 103 patients with 36 renal failure before D3 were excluded. AG were given once-daily over 2.6±1.1 days. AKI 37 38 occurred in 16.3% of patients in a median time of 6 [5-10] days. After adjustment to the 39 clinical course and exposure to other nephrotoxic agents between D1 and D3, a propensity-40 adjusted Cox proportional hazards regression analysis showed no increased risk of AKI in 41 patients receiving AGs (aRR = 0.75 [0.32-1.76]). In conclusion, in <u>critically septic patients</u> 42 presenting without early renal failure, an aminoglycoside therapy for less than 3 days was not 43 associated with an increased risk of AKI.

45 Introduction

46 Aminoglycosides (AGs) have a bactericidal activity, which has been proven to be synergic 47 with *βlactams*. If adding an aminoglycoside (AG) to a standard antibiotic treatment did not 48 translate into a reduction of mortality in NGB sepsis in subgroups of patients with globally 49 moderate degrees of severity (1), a decrease in mortality was recently reported in a metaanalysis comparing a bitherapy versus a βlactam alone in patients with septic shock (2). In 50 addition, AGs widen the spectrum of the antibiotic treatment, which should be advantageous 51 52 in populations with an increased risk of resistant bacteria, such as intensive care unit (ICU) 53 patients (3, 4). Empiric antibiotic treatments including AGs could be more appropriate in up to 15-20% compared with a β lactam alone (5, 6). In the ICU setting, modifications of the 54 55 empiric antibiotic treatment or the addition of a new antibiotic occur less frequently after 56 bitherapy including an AG compared with monotherapy (7).

57 Unfortunately, nephrotoxicity is an important potential limitation of AGs. There is a 58 consensus that AG-related nephrotoxicity has decreased over years due to better consideration of both reduced duration of treatment and once daily administration (8). However, in ICU 59 patients, higher doses have been recommended (9) as an increased volume of distribution 60 61 (Vd) has been described (10). These aggressive doses could be responsible for higher nephrotoxicity incidence. To date, a decrease in renal function has been observed in 5-14% of 62 63 patients receiving AGs according to a wide definition (>33% decrease in creatinine clearance 64 (Crcl) \pm plasma creatinine increase \geq 0.3mg/dL) or a more restrictive definition (>50%) decrease in Crcl \pm plasma creatinine increase ≥ 0.5 mg/dL) (11-13). Both definitions may 65 66 overestimate AG-associated renal toxicity and the addition of criteria for tubular damage to 67 the definitions based on plasma creatinine lowers the incidence of AG-related nephrotoxicity by 2- or 3-fold (13, 14). Conversely, a recent score designed to assess acute kidney injury 68

- 69 (AKI) in severely septic patients (the RIFLE score (15)) found <u>24% AKI</u> in patients receiving
 70 AGs (16).
- These controversial data suggest that AG-associated AKI might not be solely attributed to AGs because of the frequent confounding factors associated with AKI (17-19), such as septic shock *per se*, other nephrotoxic drugs (20), direct effect of bacterial toxins and comorbidities such as diabetes or altered baseline renal function. The aim of this study was to assess the AG-attributed AKI (the real AG nephrotoxicity) in patients with septic shock or severe sepsis.
- 76

77 Materials and methods

78 Design and ethical aspects

79 This was a retrospective, observational study performed in a single 28-bed medical ICU from 80 November 2008 to January 2010. The study protocol was approved by the Ethical committee 81 of the Société de Réanimation de Langue Française. Written consent was waived because of 82 the observational nature of the study.

83 Inclusion, exclusion criteria and recruitment period

The first part of the study consisted in including all patients admitted for or who developed septic shock or severe sepsis. Factors associated with the administration of AGs in septic shock or severe sepsis on day 1 (D1) were studied in this first set of patients.

Adult patients still in the ICU on D3 were eligible for inclusion in the second part of the study 87 88 aiming at the determination of the nephrotoxicity risk associated with AG treatment (primary 89 objective). Patients who had another indication for AG such as endocarditis, even complicated 90 by severe sepsis, were excluded. Patients with renal failure before D3 (either those under 91 chronic renal replacement therapy or with acute tubular necrosis needing renal replacement 92 therapy) were excluded as the distinction between aspecific renal failure and the specific 93 AGs-associated nephrotoxicity would be impossible in these patients. Patients with D1 renal clearance of less than 56.25 ml/mn/1.73m² (I category of the RIFLE score (21)) followed by a 94 95 severe decrease until D3 without the need for renal replacement therapy (D1/D3 renal clearance >1 + D3 renal clearance $< 37.5 \text{ ml/mn}/1.73\text{m}^2$ before D3) were also excluded, since 96 this decrease cannot either be attributed to AGs. Studied parameters were collected from D1 97 98 to the end of study, i.e., D15, day of discharge or day of death when occurring before D15.

99 Objectives

100 The primary objective of this study was the assessment of the AKI risk from D3 to D15, in

101 patients having received AGs, in comparison with patients who did not receive AGs.

The secondary objectives were the identification of factors associated with the administration
of AGs in severe sepsis or septic shock and the description of AG treatment in a population of
ICU patients with severe sepsis or septic shock.

105 The AKI was defined by the increase of the RIFLE score (21) from

106 1) (No risk + creatinine clearance > 56.25 ml/mn/1.73m² on D3) to (Risk, Injury or

107Failure from D3 to D15)

108
 2) Risk category (37.5 ml/mn/1,73m² <crCl< 56.25 ml/min/1.73m²) to Injury or
 109
 Failure.

110 Creatinine clearance was calculated on a daily basis using daily serum creatinine and the 111 simple modified modification in diet in renal disease (MDRD) which is supposed to provide 112 estimation of the glomerular filtration rate (GFR) (15). For each patient included in the 113 cohort, the charts were reviewed and the following data were recorded: demographic 114 variables, Simplify Acute Physiology Score II (SAPS II) at the end of D1, Sequential Organ 115 Failure Assessment (SOFA) at the end of D1 and D3, type, cause and severity of infection 116 (severe sepsis and septic shock were defined according to the international guidelines (23)), 117 nephrotoxic drugs and intravenous (iv) iodate contrast used at admission and all along the 118 stay, other risk factors for nephrotoxicity (i.e. diabetes mellitus, presence of a single 119 functional kidney, cirrhosis, kidney graft, pre-existing renal failure, rhabdomyolysis (defined 120 by CPK >500 IU/L)).

121 The duration of therapy, the dose and serum concentrations of AGs were also recorded.

122 AG treatment

In the ICU, AGs were always combined with βlactams. Gentamicin (G) was recommended
for treatment of infections due to Gram-positive or community-acquired Gram-negative

125 bacteria, whereas amikacin (A) was recommended for treatment of nosocomial-acquired 126 Gram-negative bacteria infections. Tobramycin was not recommended. Doses and 127 adjustments were checked daily by senior physicians with expertise in infectious diseases (AB 128 and DG). The AG loading dose was calculated according to the total body weight (TBW) (20 129 mg/kg for A and 7 mg/kg for G) (10, 24). This regimen was defined according to an expected mean Vd of 0.3 to 0.4 L/kg and a target peak concentration of 25-30 mg/L for G and 40-50 130 131 mg/L for A. If the observed peak was <20 mg/L for G or <35 mg/l for A, the daily dose was 132 increased by 1.25-1.3 fold. Inversely if the peak was >35 mg/L for G or >55 mg/l for A, the 133 daily dose was reduced in the same proportions. If the trough was >2.5 mg/L for G and 5 134 mg/L for A, the AG injection was delayed until the target trough was obtained. Peak was 135 assessed 30 minutes after the end of AG infusion and trough just before the following one, 136 except for the last administration. A maximum of 5 days of AG therapy was recommended. 137 The area under the curve (AUC) were calculated from the peak and trough of the same 138 interval by using a one-compartment PK model.

139 Statistical analysis

140 The categorical variables were compared using Chi-squared test and continuous variables 141 were compared using the Student's t. In order to adjust for confounding factors of AKI that 142 could have participated in the decision to administrate AG, a propensity score of AG 143 treatment was built with D1 variables (the day of sepsis and antibiotic initiation). All the 144 variables supposed to interact with the decision were considered. On D3, once patients 145 meeting prespecified criteria had been excluded, the time to AKI was examined by Kaplan-146 Meier and propensity-adjusted Cox proportional hazards regression analyses. The dependant 147 binary variable was the AKI occurrence and AG treatment was the primary independent 148 variable. Most of the other independent variables having been already considered in the 149 propensity score, only new nephrotoxic treatments (after D1 and until either AKI or the end of

- 150 the study, i.e. D15 or before if death or discharge), and the evolution of sepsis by delta SOFA
- 151 (D3-D1) were added to this model. Adjusted relative risks were computed for variables in the
- 152 final model. A p value of 0.05 was considered significant. All calculations were computed
- 153 using SAS version 9.3 (SAS corporation, Cary, NC).
- 154

155 Results

156 Day 1 results and propensity score

157 Between November 2008 and January 2010, 317 adult patients were consecutively included 158 in the study. AGs had been administered to 198 patients. Septic shock was present in 227 159 (71.6%) whereas 90 (28.4%) had a severe sepsis (table 1). In table 2 are described the 160 variables constituting the propensity score for AG treatment. The most significant factors 161 associated with AG administration were the SAPS II score and the nosocomial origin of 162 infection which both favoured the decision to use AG treatment. In turn, a pre-existing renal 163 insufficiency and the neurological site of infection both decreased the propensity for AG 164 treatment. The distribution of the propensity score for receiving AG according to the true AG 165 administration shows that a number of patients had an intermediate score (data not shown). 166 Once adjusted for the propensity score, no difference between patients receiving or not AGs 167 was observed anymore (data not shown).

168 Day 3 results

169 Between D1 and D3, 103 patients among 317 were excluded, among whom 72 for either 170 initial severe AKI (n=58) or renal replacement therapy (n=14) (AGs were administered in two 171 thirds of these patients (n=48)). The remaining population of 214 patients had a mean length 172 of ICU and hospital stay of respectively 16±16 and 38±60 days. Twenty-one died before D15 173 (10%). Among these 214 patients, 150 received AGs. The mean duration of AG therapy was 174 2.6±1.1 days. Amikacin was prescribed in 74% and gentamicin in 26%. Results of drug 175 monitoring including trough and peak determinations are shown in table 3. The area under the 176 curve (AUC) of gentamicin was 200±114 mg.h/L and 537±590 mg.h/L for amikacin. Figure 1 177 represents the distribution of the propensity score, according to whether AGs were given or 178 not, in the 214 patients. AKI occurred in 35 patients (16.3%) with a median delay of 6 [5-10] 179 days. The results of the multivariate analysis of risk factors for acute renal failure are shown in table 3. The SOFA score improved from D1 to D3 in 154 patients (72%) whereas it decreased in 60 (28%). At least one additional nephrotoxic agent had been administered in 133 patients (62%) in the period from D1 to the index date. Variables associated with the occurrence of AKI risk in the multivariate Cox model are shown in table 4. After adjustment to delta SOFA, exposure to additional nephrotoxic agents (D1-index date), and propensity score for AG treatment, the administration of AGs was not associated with a significant risk of AKI (table 4).

187 Ninety one patients (28.7%) died before D28 among the entire D1 population and the 188 variables independently associated with the occurrence of death in the multivariate Cox model 189 were age and gender whereas AG treatment was not significantly associated with D28 190 mortality (table 5).

192 Discussion

The main finding of our study is that aminoglycosides are not associated with an increase in AKI in patients admitted to ICU for severe sepsis or septic shock without early renal failure after adjustement on the clinical evolution of patients in the first three ICU days (delta SOFA D3-D1 and exposure to nephrotoxic agents) and, most importantly, on the propensity score to receive AGs.

198 The propensity score was based on the risk factors for AG nephrotoxicity listed in two meta-199 analyzes (25, 26) to which we added specific characteristics of sepsis. The patient severity 200 (SAPS II score, OR = 1.02 [1.00-1.04]) was a major determinant in the decision to use AGs, 201 reflecting the prescribers' confidence in the bactericidal and synergistic action of AGs (27). 202 Another factor positively influencing AG treatment was the nosocomial origin of infection 203 (OR = 2.10 [1.22-3.63]). This could be expected since hospital infections are commonly 204 caused by multiresistant bacteria (28). Conversely, the <u>neurological</u> origin of sepsis 205 discouraged the initiation of AGs (OR = 0.14 [0.03 - 0.76]), which is in accordance with their 206 pharmacokinetic characteristics, no more than 10 percents of the total intravenous dose 207 penetrating cerebrospinal fluid (29). Patients with preexisting renal failure (OR = 0.37 [0.14-208 1.00]) were less prone to be treated by AGs probably due to a benefit-risk approach in this 209 subset of patients.

The overall incidence of AKI in our study was 16% (35/214) which should be considered as low compared to the data of a recent Italian study reporting a 40% incidence of acute renal failure in 279 septic ICU patients (30). This might be explained by our decision to exclude patients with AKI occurring before D3. Adding these excluded patients (n=72) would have led to a comparable overall risk of AKI (37%; 107/286). Many studies have attempted to determine the specific renal risk of AGs and the risk prevalence of AKI is highly variable. The vast majority of published studies suffer from the absence of combination of validated 217 acute renal failure criteria and sufficient severity of patients to allow the extrapolation of 218 results to critically ill patients. The Acute Dialysis Quality Initiative group developed the 219 RIFLE classification accounting for a broad range of acute impairment of kidney function 220 through consensus of experts (15). It has been validated in ICU patients and can detect AKI 221 with high sensitivity and specificity (15, 21). A recent retrospective study using these criteria 222 has shown a 24% AG <u>nephrotoxicity</u>, but <u>only 12%</u> of patients experiencing AKI had severe 223 sepsis (16). A strength of our study was to use a validated AKI classification in an exclusively 224 ICU population. We also carefully avoided other methodological flaws. Patients with Injury, 225 Failure or Loss of RIFLE score before D3 were excluded in order to increase the specificity of 226 AGs-associated acute renal failure. Indeed, AG-associated nephrotoxicity is known to occur 227 at the end of the AG treatment or later, i.e. from D3 to D15. This time window was chosen 228 based on a previously reported mean delay between AG treatment and nephrotoxicity of 229 8.8±3.4 days (22).

230 Moreover, AKI in severe sepsis or septic shock population is a complex issue. While septic 231 shock remains the leading cause of AKI in this population (32), the pressure on renal function 232 is increased by many other factors such as nephrotoxic drugs (20), direct effect of bacterial 233 toxins, vascular nephritis etc.. (33). To better assess the causal link between the 234 administration of AGs and the AKI occurrence, we performed a quasi-randomized study in 235 which all variables supposed to interact with AKI occurrence were considered in a propensity 236 adjusted Cox proportional hazards regression. It would therefore make sense to abandon the 237 assessment of AG nephrotoxicity by the rate of acute renal failure occurring after the 238 administration of AG and to prefer a better methodological assessment of AG-associated AKI 239 (19).

- 240 No AG-associated AKI risk was found in this study (adjusted OR 0.75 95%CI [0.32-1.76]),
- and there might even be a slight trend towards a reduced renal risk in AG patients,

242 considering the study population did not include patients with early acute renal failure. This 243 might be related to both pharmacological and physiological mechanisms. Recent 244 pharmacological concepts of AGs administration such as the once-daily dose schedule for 245 AGs administration which result in a decrease of AG-associated AKI (9) have been respected 246 in the present study as shown by the use of once daily doses of gentamicin and amikacin 247 during a short course achieving a correct rate of target obtention (Table 3). A physiological 248 mechanism has also been suggested by several authors (34-36). Lipcsey et al. compared four 249 groups of pigs (endotoxinemia + tobramycin, endotoxinemia + saline, saline + tobramycin, 250 saline alone) and suggested that sepsis-induced hypoperfusion was predominant over specific 251 AG toxicity on the AKI occurrence (35). More recently, Langenberg et al. compared 3 groups 252 of sheep (E. coli infusion, E. coli infusion followed by gentamicin IV, control group) and showed a lower rate of NO synthase and hypoxia-inducible factor in the gentamicin group 253 254 compared to the septic group. This provides evidence that AGs might stop endothelial and 255 cellular signals at the origin of sepsis-related AKI (36).

256 There are some limitations to this study. This was a retrospective cohort study conducted at a 257 single ICU, possibly limiting its extrapolation. Particularly, even if the AG administration was 258 consistent with the standards of care at the time of the study (100% once daily dose, 61% of 259 Cpeak target attainment, short duration) (37), recent recommendations have emphasized the 260 use of higher doses of amikacin (25-30 mg/kg) potentially changing the AG-associated AKI 261 risk (38). The general characteristics of the population are also representative of medical ICU 262 septic patients (SAPS II 59±20, 72% septic shock, mean duration of ICU stay of 14±16 days). 263 In critically ill patients, assessing glomerular filtration rate by mean of serum creatinine can be questioned. Urinary crCl, though more specific, bears the same limitations (39). We used 264 265 MDRD formula for basal estimation of glomerular filtration rate following recommendation 266 of RIFLE classification. However, recently, the KDIGO (Kidney Disease: Improving Global

267	Outcomes) initiative proposed a modified RIFLE classification that should be used in the
268	future (40). However, to date, RIFLE remains the most validated classification with more than
269	half a million studied patients. We excluded from the analysis patients who had impaired
270	renal function that worsened between day 1 and day 3 since we expect aminoglycoside
271	nephrotoxicity to be manifest some days after starting. However, we performed a sensitivity
272	analysis in reincorporating patients excluded for initial renal failure (defined by creatinin
273	clearance <37.5) (n=58), and patients needing immediate renal replacement therapy (n=14).
274	Among this population (n=286), 107 (37,4%) patients developed AKI. The AKI adjusted
275	relative risk of aminoglycoside treatment (yes vs. no) given by the Cox model was 0,95 [CI
276	95% 0,59-1,47], p=0,76. Finally, the finding of no increased risk might be attributed to a lack
277	of power despite the relatively large number of patients included. However, the probability
278	that the trend in the reduction of risk obtained in this study could be reversed to an increase is
279	low, especially with the statistical methods used. With traditional multivariable regression
280	techniques, models become unstable when the sample size is small and the number of
281	covariates included in the model is large relative to the number of outcome events. Adjusting
282	on propensity scores is a mean to prevent from overloading subsequent regression models
283	especially when studying a rare outcome (41). In this case, though the choice of treatment was
284	not randomized, and it might be surmised that these drugs would be used in patients at lower
285	risk of renal failure, the use of a propensity score built with all known risk factors for renal
286	failure should protect against such confounding. Of course the lack of association we found
287	does not mean that AG are no longer nephrotoxic, just that the choice of patients and the way
288	the drugs were given was judicious. Further studies in similar patients in other settings would
289	be useful to confirm these results, and ideally under randomized controlled circumstances,
290	which unfortunately are hardly possible in this context.

- In conclusion, with modern modalities of administration including high dose once daily and
 short duration of treatment, AG did not appear to increase the AKI risk in ICU patients treated
- 293 for severe sepsis or septic shock without early acute renal failure.

294

295

297 Acknowledgements:

298 We would like to thank the patients and the clinical and clerical teams involved in this study.

299 Conflict of interest statement:

300 The authors have no relevant conflict of interest in the field of aminoglycoside treatment.

301

- 303 Figure legends
- 304 Figure 1. Propensity score for aminoglycoside treatment at baseline for the studied patients

Varia	ables		Aminogl	ycosides	
			No	Yes	
		n=317	n=103	n=214	p value
Sex	Male	191 (60.2)	61 (59.2)	130 (60.7)	
Age		59 (17)	59 (16)	59 (18)	0.67
SAPS II		59.2 (20.7)	60.7 (20.2)	56.0 (21.3)	0.06
Nosocomial sepsis	Yes	175 (55.2)	44 (42.7)	131 (61.2)	<10-1
Sepsis origin	Blood or catheter	21 (6.6)	6 (5.8)	15 (7.0)	0.02
	Abdominal, urinary or gynecological tract	34 (10.7)	8 (7.8)	26 (12.1)	
	Lung, skin soft tissue, osteitis or arthritis	232 (73.2)	71 (68.9)	161 (75.2)	
	Neurological	13 (4.1)	8 (7.8)	5 (2.3)	
	No identified origin	17 (5.4)	10 (9.7)	7 (3.3)	
Sepsis severity	Septic shock	227 (71.6)	71 (68.9)	156 (72.9)	0.47
	Severe sepsis	90 (28.4)	32 (31.1)	58 (27.1)	
Number of organ failure	No failure	35 (11.0)	10 (9.7)	25 (11.7)	0.60
	At least one	282 (89.0)	93 (90.3)	189 (88.3)	
Rhabdomyolysis*		40 (12.62)	17 (16.50)	23 (10.75)	0.16
Renal graft or single functional kidney		18 (5.7)	6 (5.8)	12 (5.6)	0.94
Diabetes mellitus		55 (17.3)	14 (13.6)	41 (19.2)	0.21
Cirrhosis		41 (12.93)	11 (10.7)	30 (14.0)	0.40
Preexisting renal failure		30 (9.5)	13 (12.6)	17 (7.9)	0.19
Nephrotoxic treatments					
ACE inhibitors/ARB		85 (27.0)	26 (25.2)	59 (27.8)	0.63
Diuretics		97 (30.8)	29 (28.2)	68 (32.1)	0.48
High osmolar radiocontrast agent		27 (8.6)	10 (9.7)	17 (8.0)	0.62
Hydroxyethil		15 (4.8)	5 (4.8)	10 (4.7)	0.96
starches		18 (5.7)	4 (3.9)	14 (6.6)	0.31
NSAIds		32 (10.2)	10 (9.7)	22 (10.4)	0.85
Antimicrobial agent ^o Immunosuppressive treatment ^{oo}		19 (6.0)	7 (6.8)	12 (5.7)	0.69
Nephrotoxic treatments	No	128 (40.6)	48 (46.6)	80 (37.7)	0.13
-	At least one	187 (59.4)	55 (53.4)	132 (62.3)	

309 Table 1. Baseline characteristics of the patients for propensity score elaboration

310

311 Qualitative variables are represented with n (%), quantitative variables with mean (SD)

312 SAPS Simplified acute physiology score; ACE angiotensin converting enzyme ; ARB

313 angiotensin receptor blockers; NSAIds Non steroidal anti-inflammatory drugs

- 314 * rhabdomyolysis is defined by CPK>500 IU/L; ° vancomycin, amphotericin B, acyclovir,
- 315 foscavir; °° calcineurin inhibitors

	Variables	Total	OR [95% CI]
Sex	Male	191 (60.2)	1.00
	Female	126 (39.8)	0.92 [0.52-0.61]
Age		59 (17)	0.99 [0.97-1.01]
SAPS II		59.2 (20.7)	1.02 [1.00-1.04]
Nosocomial sepsis	No	142 (44.8)	1.00
	Yes	175 (55.2)	2.10 [1.22-3.63]
Sepsis origin	Blood or catheter	21 (6.6)	1.00
	Abdominal, urinary or gynecological tract	34 (10.7)	1.25 [0.32- 4.91]
	Lung, skin soft tissue, osteitis or arthritis	232 (73.2)	0.93 [0.31- 2.80]
	Neurological	13 (4.1)	0.14 [0.03- 0.76]
	No identified origin	17 (5.4)	0.23 [0.05- 1.01]
Sepsis severity	Septic shock	227 (71.6)	1.00
	Severe sepsis	90 (28.4)	0.87 [0.43- 1.74]
Number of organ failure	No failure	35 (11.0)	1.00
	At least one	282 (89.0)	0.46 [0.16- 1.30]
Rhabdomyolysis*	No	277 (87.4)	1.00
	Yes	40 (12.6)	0.61 [0.28- 1.30]
Renal graft or single	No	299 (94.3)	1.00
functional kidney	Yes	18 (5.7)	1.53 [0.43- 5.41]
Diabetes mellitus	No	262 (82.6)	1.00
	Yes	55 (17.3)	1.69 [0.78- 3.64]
Cirrhosis	No	276 (87.1)	1.00
	Yes	41 (12.9)	1.53 [0.66- 3.58]
Preexisting renal failure	No	287 (90.5)	1.00
	Yes	30 (9.5)	0.37 [0.14- 1.00]
Nephrotoxic treatments			
ACE inhibitors/ARB	No	230 (73.0)	1.00
	Yes	85 (27.0)	0.81 [0.38- 1.76]
Diuretics	No	218 (69.2)	1.00
	Yes	97 (30.8)	0.70 [0.33- 1.53]
High osmolar radiocontrast agent	No	288 (91.4)	1.00
-	Yes	27 (8.6)	0.63 [0.23- 1.73]
Hydroxyethil starches	No Yes	300 (95.2) 15 (4.8)	1.00 0.77 [0.21- 2.81]
NSAIds		297 (94.3)	1.00
INDATIUS	No Yes	297 (94.3) 18 (5.7)	1.91 [0.47- 7.70]
Antimicrobial agent°	No	283 (89.8)	1.00
i infiniterobiar agent	Yes	32 (10.2)	0.97 [0.37- 2.56]
Immunosuppressive	No	296 (94.0)	1.00

317 Table 2. Multivariate analysis of factors associated with aminoglycoside treatment

	treatment °°	Yes	19 (6.0)	0.31 [0.09- 1.03]
	Nephrotoxic treatments	No	128 (40.6)	1.00
		At least one	187 (59.4)	1.99 [0.80- 4.95]
318	Qualitative variables are represented with n (%), quantitative variables with mean (SD)			
319	SAPS Simplified acute physiology score; ACE angiotensin converting enzyme; ARB			
320	angiotensin receptor blockers; NSAIds Non steroidal anti-inflammatory drugs			
321	rhabdomyolysis is defined by CPK>500 IU/L; ° vancomycin, amphotericin B, acyclovir,			
322	foscavir; °° calcineurin inhibitors			
222				

325						
n = 150	n (%)	Dose	Duration	Cpeak (mg/L)	Cpeak	Ctrough
		(mg/kg)	(days)		% of target	% of target
					attainment	attainment
Gentamicin	39 (26)	6.0±1.6	2.9±1.1	24.9±11.4 (n=101)	47 (>25mg/L)	85.4 (<2.5mg/L)
Amikacin	111 (74)	18.4±5.5	2.5±1.0	44.3±16.0 (n=259)	66 (>40mg/L)	73.3(< 5mg/L)
326			•			

324 Table 3. Drug monitoring parameters of aminoglycoside administration.

328 Table 4. Multivariate risk for acute kidney injury (cox proportional hazards ratio)

		HR* IC95%	р
	Aminoglycoside (yes vs no)	0.75 [0.32-1.76]	0.51
	Decrease in SOFA score between D1 and D3	1.02 [0.48-2.15]	0.96
	(yes vs no)		
	Nephrotoxic treatment after day 1 (yes vs no)	0.75 [0.37-1.51]	0.43
329	*The relative risk has been adjusted on the prop	ensity score	

331 Table 5. Risk for D28 mortality

	RR* IC95%	р
Aminoglycoside (yes vs no)	0.78 [0.47-1.30]	0.34
Age	1.02 [1.01-1.04]	< 0.01
Sexe (female vs male)	0.52 [0.33-0.81]	< 0.01
Day 1 SOFA	1.05 [0.98-1.13]	0.16
Severe sepsis vs septic shock	1.05 [0.52-2.09]	0.90
*The relative risk has been adju	sted on the propensi	ty score and the SAPS II score

332333

335 References

336 337	1.	Paul M, Benuri-Silbiger I, Soares-Weiser K, Leibovici L. 2004. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis
338 339		in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ 328: 668.
340	2.	Kumar A, Safdar N, Kethireddy S, Chateau D. A survival benefit of
341	2.	combination antibiotic therapy for serious infections associated with sepsis and
342		septic shock is contingent only on the risk of death: a meta-analytic/meta-
343		regression study. Crit Care Med 38: 1651-1664.
344	3.	Durante-Mangoni E, Grammatikos A, Utili R, Falagas ME. 2009. Do we still
345	5.	need the aminoglycosides? International journal of antimicrobial agents 33 :201-
346		205.
347	4.	Leibovici L, Vidal L, Paul M. 2009. Aminoglycoside drugs in clinical practice:
348	••	an evidence-based approach. J Antimicrob Chemother 63: 246-251.
349	5.	Beardsley JR, Williamson JC, Johnson JW, Ohl CA, Karchmer TB, Bowton
350		DL. 2006. Using local microbiologic data to develop institution-specific
351		guidelines for the treatment of hospital-acquired pneumonia. Chest 130 :787-793.
352	6.	Bhat S, Fujitani S, Potoski BA, Capitano B, Linden PK, Shutt K, Paterson
353		DL. 2007. Pseudomonas aeruginosa infections in the Intensive Care Unit: can the
354		adequacy of empirical beta-lactam antibiotic therapy be improved? International
355		journal of antimicrobial agents 30: 458-462.
356	7.	Marcus R, Paul M, Elphick H, Leibovici L. Clinical implications of beta-
357		lactam-aminoglycoside synergism: systematic review of randomised trials. Int J
358		Antimicrob Agents 37:491-503.
359	8.	Slaughter RL, Cappelletty DM. 1998. Economic impact of aminoglycoside
360		toxicity and its prevention through therapeutic drug monitoring.
361		PharmacoEconomics 14:385-394.
362	9.	Drusano GL, Ambrose PG, Bhavnani SM, Bertino JS, Nafziger AN, Louie A.
363		2007. Back to the future: using aminoglycosides again and how to dose them
364		optimally. Clinical infectious diseases : an official publication of the Infectious
365		Diseases Society of America 45:753-760.
366	10.	Rea RS, Capitano B, Bies R, Bigos KL, Smith R, Lee H. 2008. Suboptimal
367		aminoglycoside dosing in critically ill patients. Therapeutic drug monitoring
368		30: 674-681.
369	11.	Buijk SE, Mouton JW, Gyssens IC, Verbrugh HA, Bruining HA. 2002.
370		Experience with a once-daily dosing program of aminoglycosides in critically ill
371		patients. Intensive care medicine 28:936-942.
372	12.	Fayed DF, Dahmash NS, al-Zeer AH, Shibl AM, Huraib SO, Abu-Aisha H.
373		1996. Efficacy and safety of once-daily amikacin in combination with ceftazidime
374		in critically ill adults with severe gram-negative infections. J Chemother 8:457-
375	10	464.
376	13.	Schentag JJ, Plaut ME, Cerra FB. 1981. Comparative nephrotoxicity of
377		gentamicin and tobramycin: pharmacokinetic and clinical studies in 201 patients.
378	1.4	Antimicrobial agents and chemotherapy 19:859-866 .
379	14.	
380		gentamicin accumulation pharmacokinetics and nephrotoxicity in critically ill
381	15.	patients. Antimicrobial agents and chemotherapy 19: 147-152. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. 2004. Acute renal
382 383	13.	failure - definition, outcome measures, animal models, fluid therapy and
303		rande - definition, outcome measures, annual models, nuite merapy and

384		information technology needs: the Second International Consensus Conference of
385		the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204-212.
386	16.	Selby NM, Shaw S, Woodier N, Fluck RJ, Kolhe NV. 2009. Gentamicin-
387		associated acute kidney injury. QJM : monthly journal of the Association of
388		Physicians 102: 873-880.
389	17.	Li SC, Ioannides-Demos LL, Spicer WJ, Berbatis C, Spelman DW, Tong N,
390		McLean AJ. 1989. Prospective audit of aminoglycoside usage in a general
391		hospital with assessments of clinical processes and adverse clinical outcomes. The
392		Medical journal of Australia 151:224-232.
393	18.	Shrimpton SB, Milmoe M, Wilson AP, Felmingham D, Drayan S, Barrass C,
394		Gruneberg RN, Ridgway GL. 1993. Audit of prescription and assay of
395		aminoglycosides in a UK teaching hospital. The Journal of antimicrobial
396		chemotherapy 31 :599-606.
397	19.	Boyer A, Gruson D, Bouchet S, Clouzeau B, Hoang-Nam B, Vargas F, Gilles
398	- / ·	H, Molimard M, Rogues AM, Moore N. 2013. Aminoglycosides in septic shock:
399		an overview, with specific consideration given to their nephrotoxic risk. Drug
400		safety : an international journal of medical toxicology and drug experience
401		36:217-230.
402	20.	Taber SS, Mueller BA. 2006. Drug-associated renal dysfunction. Critical care
403	20.	clinics 22:357-374, viii.
404	21.	Ostermann M, Chang RW. 2007. Acute kidney injury in the intensive care unit
405	21.	according to RIFLE. Critical care medicine 35: 1837-1843; quiz 1852.
406	22.	Rybak MJ, Abate BJ, Kang SL, Ruffing MJ, Lerner SA, Drusano GL. 1999.
407	22.	Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates
408		of observed nephrotoxicity and ototoxicity. Antimicrobial agents and
409		chemotherapy 43: 1549-1555.
410	23.	Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM,
411	23.	Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally
412		ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS,
413		Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R.
414		2013. Surviving sepsis campaign: international guidelines for management of
415		severe sepsis and septic shock: 2012. Critical care medicine 41: 580-637.
416	24.	2005. Guidelines for the management of adults with hospital-acquired, ventilator-
417	27.	associated, and healthcare-associated pneumonia. American journal of respiratory
418		and critical care medicine 171: 388-416.
419	25.	Pannu N, Nadim MK. 2008. An overview of drug-induced acute kidney injury.
420	23.	Critical care medicine 36 :S216-223.
420	26.	Moore RD, Smith CR, Lipsky JJ, Mellits ED, Lietman PS. 1984. Risk factors
421	20.	for nephrotoxicity in patients treated with aminoglycosides. Annals of internal
422		medicine 100:352-357.
423	27.	Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R,
	27.	
425		Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M. 2006.
426		Duration of hypotension before initiation of effective antimicrobial therapy is the aritical determinant of auricular in human cartic check. Crit Care Med 24:1580
427		critical determinant of survival in human septic shock. Crit Care Med 34:1589-
428	20	1596. de Silve Winter I. Des Sentes DP. de Azembuis A.7. Cashinel AD. Caldeni
429	28.	da Silva Winter J, Dos Santos RP, de Azambuja AZ, Cechinel AB, Goldani
430		LZ. 2013. Microbiologic isolates and risk factors associated with antimicrobial
431		resistance in patients admitted to the intensive care unit in a tertiary care hospital.
432		Am J Infect Control 41: 846-848.

kidney injury in critically ill patients receiving high intravenous doses of colistin methanesulfonate and/or other nephrotoxic antibiotics: a retrospective cohort 439 440 study. Crit Care 17:R174. 441 31. Pogue JM, Potoski BA, Kaye KS. 2010. Aminoglycoside use in intensive care 442 units and aminoglycoside nephrotoxicity. Comment letter 1. Antimicrobial agents and chemotherapy 54:2750, author reply 2751. 443 444 32. Ricci Z, Polito A, Polito A, Ronco C. 2011. The implications and management of 445 septic acute kidney injury. Nat Rev Nephrol 7:218-225. 446 33. Philipponnet C, Guerin C, Canet E, Robert R, Mariat C, Dijoud F, Azoulay E, Souweine B, Heng AE. 2013. Kidney biopsy in the critically ill patient, results 447 448 of a multicentre retrospective case series. Minerva Anestesiol 79:53-61. 449 34. Zager RA. 1992. Endotoxemia, renal hypoperfusion, and fever: interactive risk 450 factors for aminoglycoside and sepsis-associated acute renal failure. American 451 journal of kidney diseases : the official journal of the National Kidney Foundation 452 **20:**223-230. 453 35. Lipcsey M, Carlsson M, Larsson A, Algotsson L, Eriksson M, Lukinius A, 454 Siolin J. 2009. Effect of a single dose of tobramycin on systemic inflammatory 455 response-induced acute kidney injury in a 6-hour porcine model. Critical care 456 medicine 37:2782-2790. 457 36. Langenberg C, Gobe G, Hood S, May CN, Bellomo R. 2014. Renal 458 histopathology during experimental septic acute kidney injury and recovery. 459 Critical care medicine 42:e58-67. 460 37. Drusano GL, Louie A. 2011. Optimization of aminoglycoside therapy. 461 Antimicrobial agents and chemotherapy 55:2528-2531. Matthaiou DK, De Waele J, Dimopoulos G. 2014. What is new in the use of 462 38. 463 aminoglycosides in critically ill patients? Intensive care medicine. 464 39. Bragadottir G, Redfors B, Ricksten SE. 2013. Assessing glomerular filtration 465 rate (GFR) in critically ill patients with acute kidney injury - true GFR versus 466 urinary creatinine clearance and estimating equations. Crit Care 17:R108. 467 40. Kellum JA, Lameire N. 2013. Diagnosis, evaluation, and management of acute 468 kidney injury: a KDIGO summary (Part 1). Crit Care 17:204. 469 41. Braitman LE, Rosenbaum PR. 2002. Rare outcomes, common treatments: 470 analytic strategies using propensity scores. Annals of internal medicine 137:693-471 695. 472 473

Fulnecky EJ, Wright D, Scheld WM, Kanawati L, Shoham S. 2005. Amikacin

and colistin for treatment of Acinetobacter baumannii meningitis. The Journal of

Rocco M, Montini L, Alessandri E, Venditti M, Laderchi A, De Gennaro P,

Raponi G, Vitale M, Pietropaoli P, Antonelli M. 2013. Risk factors for acute

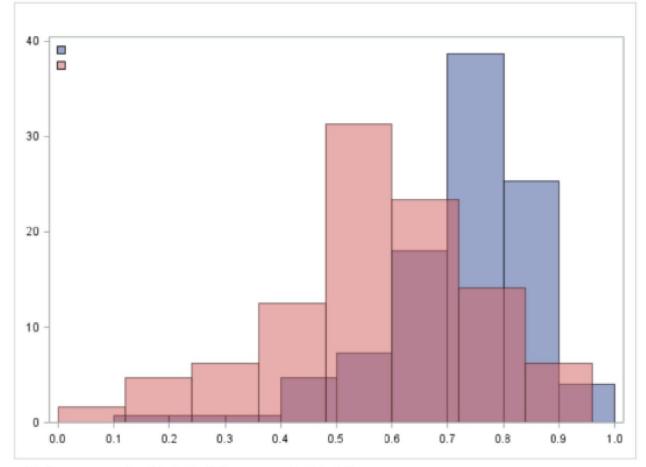
AAC Accepts published online ahead of print

433

434

435

436


437

438

29.

30.

infection 51:e249-251.

Pink: not treated with AGs; Blue: treated with AGs