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Objective: To discuss the altered pharmacokinetic properties
of selected antibiotics in critically ill patients and to develop basic
dose adjustment principles for this patient population.

Data Sources: PubMed, EMBASE, and the Cochrane-Controlled
Trial Register.

Study Selection: Relevant papers that reported pharmacoki-
netics of selected antibiotic classes in critically ill patients and
antibiotic pharmacodynamic properties were reviewed. Antibiot-
ics and/or antibiotic classes reviewed included aminoglycosides,
�-lactams (including carbapenems), glycopeptides, fluoroquino-
lones, tigecycline, linezolid, lincosamides, and colistin.

Data Synthesis: Antibiotics can be broadly categorized accord-
ing to their solubility characteristics which can, in turn, help
describe possible altered pharmacokinetics that can be caused by
the pathophysiological changes common to critical illness. Hy-
drophilic antibiotics (e.g., aminoglycosides, �-lactams, glycopep-
tides, and colistin) are mostly affected with the pathphysiological
changes observed in critically ill patients with increased volumes

of distribution and altered drug clearance (related to changes in
creatinine clearance). Lipophilic antibiotics (e.g., fluoroquinolo-
nes, macrolides, tigecycline, and lincosamides) have lesser vol-
ume of distribution alterations, but may develop altered drug
clearances. Using antibiotic pharmacodynamic bacterial kill char-
acteristics, altered dosing regimens can be devised that also
account for such pharmacokinetic changes.

Conclusions: Knowledge of antibiotic pharmacodynamic prop-
erties and the potential altered antibiotic pharmacokinetics in
critically ill patients can allow the intensivist to develop individ-
ualized dosing regimens. Specifically, for renally cleared drugs,
measured creatinine clearance can be used to drive many dose
adjustments. Maximizing clinical outcomes and minimizing anti-
biotic resistance using individualized doses may be best achieved
with therapeutic drug monitoring. (Crit Care Med 2009; 37:
840–851)

KEY WORDS: pharmacokinetics; critically ill; pharmacodynamics;
antibiotic; dosing
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Antibiotic treatment of critically
ill patients remains a signifi-
cant challenge to intensivists
world-wide with persisting

high mortality and morbidity rates. The
importance of effective therapy continues
to grow with increasing numbers of pa-
tients with increasingly levels of sickness
severity being admitted to intensive care
units (ICUs) (1). Compelling evidence
suggests that in infected critically ill pa-
tients, source control of the pathogen
and early and appropriate antibiotic ther-
apy remains the most important inter-
vention that the clinician can implement
for such patients (1–6). Therefore, opti-
mizing antibiotic therapy should be a pri-
ority in the management of critically ill
patients.

A vast array of pathophysiological
changes can occur in critically ill patients
that can complicate antibiotic dosing.
Knowledge of the pharmacokinetic and
pharmacodynamic properties of the anti-
biotics used for the management of crit-
ically ill patients is essential for selecting
the antibiotic dosing regimens, which
will optimize patient outcomes (7).
Changes in volume of distribution (Vd)
and clearance (CL) of antibiotics have
been noted in these patients, which may
affect the antibiotic concentration at the
target site. It follows that the pharmaco-
dynamic parameters that determine anti-
biotic efficacy, which can vary between
antibiotic classes, may also be affected.
Optimization of these parameters is nec-
essary to maximize the rate of response
through patient recovery and minimized
antibiotic resistance (7–9).

The aim of this review is to identify
the pathophysiological changes that oc-
cur in critically ill patients and the effect
that they have on the pharmacokinetic
behavior, and furthermore, the pharma-
codynamic effect of commonly used anti-
biotics. Furthermore, we seek to develop
general principles of dosage adjustment
of these antibiotics in critically ill pa-
tients. Because of the spectrum of differ-
ent patient presentations and different
levels of organ function that critically ill
patients may present with, it is not the
intention of this article to provide defin-
itive dose adjustment recommendations
for each of the cited antibiotic classes.
However, we aim to provide information
that empowers the clinician to individu-
alize antibiotic dosing by considering the
factors that are most likely to affect anti-
biotic pharmacokinetics.

Search Strategy and Selection
Criteria

Data for this review were identified by
searches of PubMed (1966 to February
2008), EMBASE (1966 to February 2008)
and the Cochrane Controlled Trial Regis-
try as well as references from relevant
articles. Search terms were “antibiotic”
or “antibacterial,” “intensive care unit,”
or “critically ill” or “critical illness,” and
“pharmacokinetics” or “pharmacodynam-
ics.” English language papers were re-
viewed. Numerous articles were identi-
fied through searches of the extensive
files of the authors. All relevant papers
that described antibiotic pharmacody-
namics and/or antibiotic pharmacokinet-
ics in critically ill patients were reviewed.

General Concepts

Kill Characteristics of Antibiotics. For
antibiotics, pharmacodynamic parame-
ters relate pharmacokinetic parameters

to the ability of the antibiotic to kill or
inhibit the growth of the infective organ-
ism (10). Different antibiotic classes have
been shown to have different kill charac-
teristics on bacteria (Fig. 1 and Table 1).

Developing dosing regimens that max-
imize the rate of response in ICU patients
is important for optimizing patient out-
comes and minimizing the development
of antibiotic resistance (2, 3, 5, 9).

Pharmacokinetic Changes Observed
in Critically Ill Patients. The changes to
the pharmacokinetic parameters of anti-
biotics in critically ill patients are driven
by both drug and disease factors. From a
drug perspective, the hydrophilicity and
lipophilicity of the molecule will influ-
ence Vd and CL of a drug. Figure 2 sum-
marizes these effects diagrammatically.

Changes in Vd. The pathogenesis of
infections in critically ill patients appears
highly complex (1, 11–13). Endotoxins
from bacteria or fungi may stimulate the
production of various endogenous media-
tors that may affect the vascular endothe-

Figure 1. Pharmacokinetic and pharmacodynamic parameters of antibiotics on a concentration vs.
time curve. Key: T � MIC—The time for which a drug’s plasma concentration remains above the
minimum inhibitory concentration (MIC) for a dosing period; Cmax/MIC, the ratio of the maximum
plasma antibiotic concentration (Cmax) to MIC; AUC/MIC, the ratio of the area under the concentration
time curve during a 24-hour time period (AUC0–24) to MIC.

Table 1. Pharmacodynamic properties that correlate with efficacy of selected antibiotics

Antibiotics �-lactams Aminoglycosides Fluoroquinolones
Carbapenems Metronidazole Aminoglycosides
Linezolid Fluoroquinolones Azithromycin
Erythromycin Telithromycin Tetracyclines
Clarithromycin Daptomycin Glycopeptides
Lincosamides Quinupristin/dalfopristin Tigecycline

Quinupristin/dalfopristin
Linezolid

PD kill characteristics Time-dependent Concentration-dependent Concentration-dependent with
time-dependence

Optimal PD parameter T � MIC Cmax:MIC AUC0–24:MIC

MIC, minimum inhibitory concentration; AUC, area under curve; PD, pharmacodynamics; Cmax,
maximum concentration.
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lium resulting in either vasoconstriction or
vasodilatation with maldistribution of
blood flow, endothelial damage, and in-
creased capillary permeability (14). This
capillary leak syndrome results in fluid
shifts from the intravascular compartment
to the interstitial space (15, 16). This would
increase the Vd of hydrophilic drugs which
decreases their plasma drug concentration.
Vd of hydrophilic drugs may also be in-
creased by the presence of mechanical ven-
tilation, hypoalbuminaemia (increased cap-
illary leakage) extracorporeal circuits (e.g.,
plasma exchange, cardiopulmonary by-
pass), postsurgical drains, or in patients
with significant burn injuries (17–20). Li-
pophilic drugs typically have a large Vd
because of their partitioning into adipose
tissue, and as such the increased Vd that
results from third-spacing is likely to cause
insignificant increases in drug Vd.

Changes in Antibiotic Half-Life. Drug
elimination half-life (T1/2) is directly re-
lated to antibiotic CL and Vd. T1/2 is rep-
resented by the equation (21):

T1/2 �
0.693 � Vd

CL

It follows that an increased drug CL is
likely to reduce T1/2, whereas an in-
creased Vd is likely to increase T1/2.

CL, and therefore T1/2, can be affected
by the disease process that occurs in crit-

ically ill patients and from interventions
of the intensivist. Standard initial man-
agement of hypotension that critically ill
patients may develop is administration of
intravenous fluids. When hypotension
persists, vasopressor agents are pre-
scribed. It is, therefore, not surprising
that critically ill patients often have
higher than normal cardiac indices (13,
22). Some information suggests that me-
chanical ventilation may cause decreased
antibiotic CL (19). In the absence of sig-
nificant organ dysfunction, there is often
an increased renal perfusion and conse-
quently increased creatinine clearance
and elimination of hydrophilic antibiotics
(23–25). It follows that dose adjustment
for hydrophilic antibiotics can be guided
by measures of creatinine clearance even
in patients with significant burn injuries
(19). Strong evidence suggests that the
most effective way to calculate renal
function remains using an 8, 12, or 24-
hour creatinine clearance collection (26,
27), although recent work has suggested
that a 2-hour creatinine clearance may be
an adequate substitute (28). It must be
emphasized that equations such as the
Cockroft-Gault (29) and Modified Diet in
Renal Disease (30) equations are likely to
be unreliable and, if possible, should not
be substituted for urinary creatinine
clearance data (31).

Further evidence suggests that criti-
cally ill patients may have higher creati-
nine clearances even in the presence of
normal plasma creatinine concentrations
(32, 33). A subsequent higher CL of re-
nally eliminated drugs may result in a
decreased T1/2.

Hypoalbuminemia. Protein binding is
a factor that may influence the Vd and CL
of many antibiotics. A notable example of
this pharmacokinetic alteration exists for
ceftriaxone, which is 95% bound to albu-
min in normal ward patients (34, 35). In
hypoalbuminemic states, as common in
critically ill patients, this can result in a
higher unbound concentration that has
a 100% increased CL and 90% greater
Vd (36). Other highly protein-bound
antibiotics that probably develop al-
tered pharmacokinetics from hypoalbu-
minaemia include oxacillin and teico-
planin.

Development of End-Organ Dysfunc-
tion. With further deterioration in the
health status of the patient, significant
myocardial depression can occur, which
leads to a decrease in organ perfusion and
failure of the microvascular circulation
(37). This may then progress to multiple
organ dysfunction syndrome, which may
include renal and/or hepatic dysfunction
(38). This will result in decreased antibiotic
CL, prolonged T1/2, and potential toxicity
from elevated antibiotic concentrations
and/or accumulation of metabolites. For
some drugs, if dysfunction of the primary
eliminating organ occurs, other organs
may increase their intrinsic CL causing lit-
tle change in expected plasma concentra-
tion (e.g., in renal dysfunction, ciprofloxa-
cin transintestinal CL can increase,
resulting in only a small decrease in total
body CL) (39). Preliminary data also sup-
port increased biliary CL of ticarcillin and
piperacillin in renal dysfunction (40, 41).

Figure 3 schematically identifies the
pharmacokinetic changes that can occur
because of the altered physiology in crit-
ical illness.

When renal dysfunction is present or
if the patient needs renal replacement
therapy, standard texts or review articles
should be used as a guide for altered
dosing (42–44).

Tissue Penetration. Antibiotic phar-
macokinetics at the target site, which is
usually tissue (45), are important to pre-
dict antibiotic-bacteria interactions. Mi-
crodialysis is an in vivo sampling tech-
nique that is the subject of an increasing
number of research publications, partic-
ularly in critically ill patients (46–49).
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Figure 2. The interrelationship of hydrophilicity and lipophilicty of antibiotic molecules on the
pharmacokinetic characteristics in general ward patients (General pharmacokinetics �PK�) and the
altered PK observed in critically ill patients in intensive care unit (ICU). CL, clearance; Vd, volume of
distribution.
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The current data suggest that antibiotic
penetration into tissues of patients with
septic shock is impaired, possibly up to
five to ten times lower than in healthy

volunteers, although in other patients
with sepsis but without shock there
seems to be a less significant effect on
tissue concentrations (47–49). Therefore,

dosing of antibiotics at high doses is
probably required to maximize antibiotic
penetration, particularly in patients with
shock, although data to support this is
currently lacking.

The potential pharmacokinetic vari-
ability for many antibiotics requires the
clinician to develop dosing strategies that
account for altered pharmacokinetics and
pathogen susceptibility studies in each
patient. Such individualized dosing may
facilitate optimized patient outcomes.
Ongoing evaluations of sickness severity
can facilitate timely adjustment of antibi-
otic dosing.

Specific Antibiotic Classes

General pharmacokinetic and phar-
macodynamic characteristics will be con-
sidered for aminoglycosides, �-lactams,
glycopeptides, fluoroquinolones, lincos-
amides as well as tigecycline, linezolid,
and colistin. The clinical application and
dosing implications of these properties
for critically ill patients will also be ad-
dressed. Table 2 describes the potential
altered pharmacokinetics of these antibi-
otics in critically ill patients.

Figure 3. Schematic representation of the basic pathophysiological changes that can occur during sepsis
and their subsequent pharmacokinetic effects. Note that there can be significant overlap between the
groups above enabling multiple permutations for altered drug pharmacokinetics, e.g. patients with
mild-to-moderate renal failure may develop increased transintestinal clearance of ciprofloxacin resulting in
relatively normal plasma concentrations (39). CL, clearance; Vd, volume of distribution.

Table 2. General PK characteristics of various antibiotics and possible changes that can occur during fluid shifts in critically ill patients

Antibiotic Class Vd (L/kg)

Increased
Vd with

Fluid
Shifts?

Decreased
Cmax with

Fluid
Shifts? Plasma T1/2 (hrs) Protein Binding

Altered CL in
Critically Ill? TDM Required?

Aminoglycosides
(61, 62, 67)

0.2–0.3 (consistent
with extracellular
water)

Yes Yes 2–3 Low Varies proportionately
with renal function

Yes, to ensure high
Cmax and
adequate CL

�-lactams (33,
70, 155, 156)

Variable but
consistent with
extracellular
water

Yes Yes 0.5–2 (except
ceftriaxone 6–9
hrs)

Low (except ceftriaxone
and oxacillin)

Varies proportionately
with renal function
(some exceptions)

No

Carbapenems
(90, 91)

Variable but
consistent with
extracellular
water

Yes Yes 1 (except
ertapenem 4
hrs)

Low (except
ertapenem)

Varies proportionately
with renal function

No

Glycopeptides
(17, 105)

0.2–1.6 (consistent
with extracellular
water)

Yes Yes 4–6 (vancomycin)
80–160

(teicoplanin)

30% to 55%
(vancomycin) 90%

(teicoplanin)

Varies proportionately
with renal
function. Increased
teicoplanin CL in
hypoalbuminemia

Yes, to ensure
plasma Cmin �15
mg/mL

Tigecycline
(132–134)

7–10 Unlikely Unlikely 37–66 73% to 79% May decrease with
cholestasis

No

Clindamycin
(138, 140)

0.6–1.2 No Yes 1.5–5 65% to 90% Decreased hepatic CL No

Linezolid (130) 0.5–0.6 Yes Yes 3.5–7 31% PK changes in critical
illness probably not
clinically
significant

No

Colistin (143,
146, 147)a

0.18–1.5 (assuming
60 kg patient)

Likely Likely 2–7.4 Unknown Varies proportionately
with renal function

No

Vd, volume of distribution; CL, clearance; PK, pharmacokinetic; TDM, therapeutic drug monitoring.
aVery little accurate pharmacokinetic data exists for colistin because of a lack of reliable analytical methods (141).
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Aminoglycosides. Dosing of aminogly-
coside antibiotics has been vigorously de-
bated in the literature because of the nar-
row therapeutic index of these drugs. The
kill characteristic of the aminoglycosides
is concentration dependent (50–54), with
a significant postantibiotic effect that can
prevent bacterial regrowth for prolonged
periods should drug concentrations fall
below the minimum inhibitory concen-
tration (MIC) (51–54). Such pharmacody-
namic properties have stimulated re-
search that has supported once daily
administration as opposed to small, mul-
tiple doses (50, 55–58). It is considered
that high minimum concentration
(Cmin), or more specifically the area un-
der the concentration-time curve (AUC),
are more closely correlated with the
well-documented adverse renal and oto-
toxic effects of these hydrophilic drugs
(50, 55, 56), although recent data sug-
gest a genetic predisposition to ototox-
icity (59).

Aminoglycosides often have increased
Vd in critically ill patients that can result
in a decreased maximum concentration
(Cmax) (60–65). This increased Vd has
been shown to increase proportionally
with increasing levels of sickness severity
(66). Maximal weight-based dosing (e.g.,
tobramycin/gentamicin 7 mg/kg) consis-
tently achieves adequate Cmax:MIC ratios
(62). In burn patients (61) and patients
undergoing mechanical ventilation (65),
an increased Vd has been shown to pro-
long T1/2. However, creatinine clearance
is likely to be more descriptive of amino-
glycoside CL (67). Such pharmacokinetic
variability and potential for adverse ef-
fects mandates that monitoring of plasma
aminoglycoside concentrations is essen-
tial. Although Bayesian dosing methods
may be used, use of dosing nomograms
should be avoided as they have been in-
validated in critically ill patients (62, 68).
To optimize aminoglycoside:bacterial ef-
fectiveness in critically ill patients, ex-
tended-interval dosing with Cmax moni-
toring and MIC determination of the
pathogen remains ideal practice. How-
ever, given the apparent success of mg/kg
dosing (62), a low Cmin (preferably unde-
tectable concentration) should be ob-
tained to minimize aminoglycoside toxic-
ity. Multiple doses per day should only be
considered for the treatment of endocar-
ditis or in neutropenic patients.

�-Lactam Antibiotics. The �-lactam
group of antibiotics consists of penicil-
lins, cephalosporins, and monobactams.
Although these antibiotics are generally

hydrophilic molecules that are renally
cleared with moderate-to-low protein
binding, there is variability within this
group �e.g., ceftriaxone has a longer
T1/2—5.8 to 8.7 hours in adults—and
high protein binding—�95% (34, 35)�.
In conventional bolus dosing regimens,
plasma concentrations of these antibi-
otics may fall to low levels between
doses (33, 69, 70).

In vivo animal experiments have dem-
onstrated that �-lactams have a slow con-
tinuous kill characteristic that is almost
entirely related to T � MIC (71). Data
from a recent study by McKinnon et al
(72) suggest that maintaining a T � MIC
of 100% is associated with significantly
greater clinical cure (82% vs. 33% p �
0.002) and bacteriologic eradication
(97% vs. 44%; p � 0.001) in patients with
severe infections. Other studies have
demonstrated maximum killing of bacte-
ria at four to five times MIC (73, 74). As
such, concentrations of �-lactam antibi-
otics should be maintained at four to five
times the MIC for extended periods dur-
ing each dosing period (51, 52, 54). This
would be especially appropriate in patient
groups likely to have compromised host-
defenses, including critically ill patients.
Research shows that an improved phar-
macodynamic profile is obtained with ei-
ther more frequent dosing or extended or
continuous infusions (70, 73, 75– 80).
This mode of administration is likely to
be of high value if the patient develops a
high glomerular filtration rate and/or in-
creased volume of distribution, which
commonly occurs in critically ill patients
receiving �-lactams (33, 70, 79, 81–83).
Some data exist to suggest that some
�-lactams, such as piperacillin and ticar-
cillin, are likely to have increased biliary
CL in the absence of renal CL (40, 41).
The clinical implications of this situation
are likely to be significant when a patient
develops moderate renal and hepatic dys-
function leading to greatly reduced anti-
biotic CL (84–86). Seizures have been
noted with high �-lactam exposures but
are relatively uncommon.

Support for reduced mortality from
extended infusions (4-hour infusion every
8 hours) of piperacillin-tazobactam was
described in a recent cohort study of 194
seriously ill patients with Pseudomonas
aeruginosa infection by Lodise et al (87).
In this study, patients receiving extended
infusions with an Acute Physiology and
Chronic Health Evaluation II score �17
had a significantly lower 14-day mortality
rate (12.2% vs. 31.6%; p � 0.04) than

those receiving bolus infusions. Data on
clinical cure superiority of continuous in-
fusions of �-lactam antibiotics also exist.
In a retrospective cohort study in patients
with ventilator-associated pneumonia,
Lorente et al (88) described superior clin-
ical cure when given a continuous infu-
sion (90.5%) compared with extended in-
fusion (over 30 minutes; 59.6%). Roberts
et al (89) described advantages for clinical
cure in patients receiving ceftriaxone by
continuous infusion when 4 or more days
of therapy was required. No difference
was found in the intention-to-treat anal-
ysis of this article, though. Further re-
search is required to quantify the clinical
utility of administering �-lactams as a
continuous infusion.

Carbapenems. Carbapenems have very
similar pharmacokinetic properties to
�-lactams (Table 2). Pharmacodynami-
cally, they are time-dependent antibiotics
that have been reported to have maximal
bactericidal activity when T � MIC is
maintained for a minimum of 40% of the
dosing interval. In critical illness, carbap-
enems are likely to develop increased Vd
and higher CL (90, 91). Continuous infu-
sion of these antibiotics has been studied,
as has administration by extended infusion,
which is thought to be appropriate given
the low %T � MIC to optimize activity.
Pharmacodynamic advantages to this
method of dosing have been well described
(92–94) and appear highly appropriate for
use in critically ill patients.

Glycopeptides. Glycopeptides are rela-
tively hydrophilic antibiotics that include
vancomycin and teicoplanin. The optimal
pharmacodynamic properties of glyco-
peptides have not been completely eluci-
dated. Some in vitro and animal data sug-
gest that the bactericidal activity of
vancomycin is time dependent (95–97),
whereas other data from a nonneutro-
penic mouse model found Cmax:MIC to
correlate with efficacy (98). Other studies
have proposed that AUC:MIC is the phar-
macokinetic and pharmacodynamic pa-
rameter correlated with efficacy (10, 99).

As such there is little consensus on
whether Cmax:MIC or T � MIC should be
maximized in dosing regimens. Previous
studies examining continuous infusion of
vancomycin have not provided conclusive
results. Wysocki et al (100) found no clin-
ical advantages for continuous infusion of
vancomycin compared with intermittent
dosing in 160 patients. However, recently
Rello et al (101), described a suggestion
of clinical superiority for continuous in-
fusion of vancomycin in a subset of pa-
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tients treated for ventilator-associated
pneumonia caused by methicillin-resis-
tant Staphylococcus aureus.

Like most �-lactams, glycopeptide CL
is closely related to creatinine clearance.
Nonrenal CL of vancomycin has been well
described and shown to increase in pa-
tients with acute renal failure, although
it displays significant variability among
patients (102). In obese patients, weight-
based dosing (�30 mg/kg) that uses total
body weight appears appropriate al-
though such patients may require more
frequent dosing (103). Therefore, empir-
ical dosing based on creatinine clearance
data with subsequent therapeutic drug
monitoring of Cmin plasma concentra-
tions (suggested Cmin 15–20 mg/L) is rec-
ommended (104–106). It should be noted
that recent data report higher rates of
nephrotoxicity with high vancomycin
dosing when higher Cmin concentrations
(�15 mg/L) are present (107). Nephro-
toxicity will be potentiated by coadminis-
tration with other nephrotoxic drugs
such as aminoglycosides or amphoteri-
cin.

Fluoroquinolones. Fluoroquinolones
are lipophilic antibiotics that include cip-
rofloxacin, moxifloxacin, levofloxacin,
and gatifloxacin. All fluoroquinolones
have extensive distribution characteris-
tics and achieve good extracellular and
intracellular concentrations with excel-
lent penetration of neutrophils and lym-
phocytes (108). The Vd of most fluoro-
quinolones is minimally affected in the
critically ill patient, although levofloxa-
cin requires increased dosing in critically

ill patients because of a decreased T1/2

(resulting in an AUC reduced by 30% to
40%) (109–111). The pharmacokinetics
of selected fluoroquinolones are de-
scribed in Table 3.

Fluoroquinolones not only display
largely concentration-dependent kill
characteristics, but also some time-
dependent effects. Previous research has
suggested that achieving a Cmax:MIC ratio
of 10 for ciprofloxacin is the critical vari-
able in predicting bacterial eradication
(112–114). Forrest et al studied cipro-
floxacin in critically ill patients and con-
cluded that achieving an AUC:MIC
greater than 125 is associated with a suc-
cessful clinical outcome (115). This re-
sult is necessary for Gram-negative or-
ganisms with Gram-positive organisms
requiring an AUC:MIC of 30 (115–118).
Inappropriate low dosing of ciprofloxacin
has also been associated with the emer-
gence of resistant bacterial strains (par-
ticularly enterococci, pseudomonas and
methicillin-resistant Staphylococcus au-
reus) (9, 119–121). For Gram-negative
bacteria, this may occur when AUC:MIC
�100 (122, 123). Therefore, AUC:MIC
and Cmax:MIC are pharmacodynamic vari-
ables that require close attention for op-
timal fluoroquinolone usage. Dosing
should seek to maximize Cmax:MIC as
this will drive adequate AUC:MIC expo-
sures. The principal adverse effects that
may occur with drug toxicity include
QT-interval prolongation as well as
confusion and dizziness. The latter two
effects may affect any cognition evalu-

ations by the healthcare staff of criti-
cally ill patients.

Linezolid. Linezolid belongs to a new
class of antimicrobials called the oxazo-
lidinone. Although linezolid is quite hy-
drophilic, it distributes widely into tis-
sues and is mostly metabolized
hepatically before being cleared renally
(124, 125). At this time, no dose adjust-
ment is recommended in renal dysfunc-
tion or hepatic dysfunction (125, 126).
From a pharmacodynamic perspective,
maintaining a T � MIC of 40% to 80% is
thought to be the major predictor of ef-
ficacy (10, 127–129). A 600-mg 12-hourly
dose should achieve this ratio in humans
against susceptible organisms with MICs
up to 2–4 mg/L. Linezolid T1/2 has been
shown to be shorter and Vd is larger in
critically ill patients, although these are
probably not significant (130).

A significant area of interest for the
intensivist should be the potential for ad-
verse effects associated with linezolid and
drug interaction with other agents that
may inhibit monoamine oxidase (125).
Although linezolid is generally safe and
well tolerated for up to 28 days at 600 mg
twice daily (131), evidence exists that
therapy longer than 14 days can cause
reversible myelosuppression (132). As
such, as part of individualized patient-
specific therapy, patients prescribed lin-
ezolid may require complete blood
counts ordered �up to weekly (131)� to
monitor for hematologic adverse effects.

Tigecycline. Tigecycline is a member
of the glycylcyclines that are novel tetra-
cyclines with Gram-positive and Gram-

Table 3. General PK characteristics of fluoroquinolone antibiotics and possible changes that can occur during fluid shifts in critically ill patients

Fluoroquinolone Vd (L/kg)

Increased
Vd with

Fluid
Shifts?

Decreased
Cmax with

Fluid
Shifts?

Plasma T1/2

(hrs)
Protein
Binding

Altered CL
with Renal

Dysfunction? Normal Dose
Dose Adjustment in Renal

Dysfunction?

Ciprofloxacin (157–159) 1.2–2.7 No Yes 3 (4–5 hrs in
the
elderly)

20% to 40% No IV 400 mg 8
hourly

Yes

Levofloxacin (109–111) 0.92–1.36 No Yes 6–8.9 24% to 38% Yes 500–750 mg daily
(May increase
to 1000 mg
daily in
critically ill
patients with
sepsis

a) CrCL � 20–49 mL/min 3
250–500 mg daily; b) CrCL
is 10–19 mL/min 3 250–
500 mg 48-hourly

Moxifloxacin (160–162) 2.45–3.55 No Yes 9.3–15.6 39% to 52% No 400 mg daily No
Gatifloxacin (163, 164) 1.98–2.31 No Yes 6.5–9.6 20% Yes 400 mg daily CrCL 	40 mL/min 3 400

mg initial dose followed by
200 mg 24-hourly

PK, pharmacokinetic; CL, clearance; CrCL, creatinine CL; Cmax, maximum concentration; IV, intravenous.
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negative activity. Pharmacokinetically,
tigecycline possesses lipophilic character-
istics that enable rapid and extensive pen-
etration into body tissues (133). It is pri-
marily eliminated by biliary excretion
with only 15% of the dose eliminated
unchanged in urine (134). There are few
data to support potentially altered phar-
macokinetics in critically ill patients.
Pharmacodynamically, although tigecy-
cline displays time-dependent killing
against some bacteria (135), AUC:MIC is
more likely to be correlated with efficacy
(132, 133). This is because of its long T1/2

and prolonged postantibiotic effect.
Lincosamides. The lincosamide anti-

biotics include clindamycin and lincomy-
cin. This lipophilic class of antibiotics
achieves wide distribution throughout
the body and achieves therapeutic con-
centrations in most body compartments
(136–138). T � MIC has been determined
to be the pharmacodynamic factor corre-
lated with efficacy. Free drug levels of

lincosamides should exceed the MIC of
the infective pathogen for at least 40% to
50% of the dosing interval (139). Hepatic
CL of clindamycin is documented to de-
crease in critically ill patients with sepsis
(140). Antibiotic-associated diarrhea is a
significant adverse effect for this class of
antibiotics.

Colistin. The polymyxin antibiotics
(e.g., colistin) were first used in the 1960s
and subsequently lost appeal because of as-
sociated nephro- and neurotoxicities (141).
With the escalation of antibiotic multi-drug
resistance, it is now being increasingly used
as an alternate antibiotic. Colistin is admin-
istered typically as colistimethate sodium
(sodium colistin methanesulphate). This
molecule is hydrolyzed to sulfomethylated
derivatives and colistin (142). It is a hydro-
philic molecule for which little pharmaco-
kinetic information exists (143). Pharmaco-
dynamically, it is thought to have
predominantly concentration-dependent
bacterial killing activity (141, 144, 145).

Colistin is available as two formula-
tions Colomycin Injection (40, 80, and
160 mg colistimethate per vial) and Coly-
Mycin Parenteral (400 mg colistimethate
per vial, Forest Laboratories, Bexley, UK),
which contain differing amounts of colis-
timethate sodium per vial; ERFA, Mon-
treal, Canada. Patient dosing should fol-
low weight and renal dysfunction
considerations where possible (146).
Comparative data between critically ill
patients and other patients is currently
lacking and dosing remains a difficult is-
sue with little consensus on appropriate
dosing strategies existing (143, 146, 147).

General Dosing Considerations. The
importance of effective antibiotic therapy
in the ICU mandates intensivists to select
effective dosing regimens for critically ill
patients. Table 4 proposes some general
dosing recommendations that could be
considered to this end. However, because
of the large spectrum of different ICU
admission diagnoses and the effect of the

Table 4. Broad guidelines that can be used to assist antibiotic dosing adjustment for critically ill patients

Antibiotic Class

Suggested Dosing Adjustment for Critically Ill Patients

Normal Renal Function Moderate to Severe Renal Dysfunction Comments

Aminoglycosides Use high doses (e.g., gentamicin 7 mg/kg)
where possible to target Cmax:MIC ratio of 10;
monitor Cmin and aim for undetectable
plasma concentrationsa

Use high doses where possible and monitor Cmin

thereafter (36 to 48 hourly extended interval
dosing acceptable); dosing can be guided by
MIC data if available if dose reductions are
essential

�-lactams Consider extended or continuous infusion or
more frequent dosing to ensure T � MIC;
therapeutic drug monitoring may be useful if
available

If intermitted dosing used, dosing can occur at
reduced dose or frequency (not both); err
toward larger doses as �-lactams have large
therapeutic window

Carbapenems

Glycopeptides Dosing at 30–40 mg/kg/day (vancomycin),
which can be increased according to Cmin

plasma concentrations (aim for 15–20 mg/L);
continuous infusions should be used when
difficulty obtaining therapeutic Cmin

High dosing on day 1 may be required to ensure
adequate distribution; dose adjustments should
occur according to Cmin concentrations

Fluoroquinolones Doses that achieve high Cmax:MIC ratio should
be targeted (e.g. ciprofloxacin 1200 mg/day);
levofloxacin may require 500 mg 12-hourly in
some patients with high creatinine clearance;
where high doses used, monitor for toxicity
(seizures)

Dose adjustment is probably only required in
renal impairment for levofloxacin, gatifloxacin,
and ciprofloxacin; where possible reduce
frequency and maintain dose

Tigecycline Use 100 mg loading dose then 50 mg 12 hourly No dose adjustment required in renal failure or
dialysisb

Linezolid Use 600 mg 12 hourly No dosage adjustment required in renal failure or
dialysis

Lincosamides Use 600–900 mg 8 hourly Decreased lincomycin dose or frequency in renal
or hepatic dysfunction; decrease clindamycin
dose or frequency in hepatic dysfunction

Colistin Use 5 mg/kg/day of colistin base (75,000
international units/kg/day colistimethate
sodium)c intravenously in 3 divided doses

Reduce dose or frequency (not both)

MIC, minimum inhibitory concentration; Cmax, maximum concentration; Cmin, minimum concentration.
aAminoglycoside levels should be undetectable for no more than the post-antibiotic effect. We recommend a maximum of 4 hrs before redosing as any

longer delay may enable bacterial regrowth; bif severe cholestasis present then tigecycline should be dosed with 50-mg loading dose, then 25 mg 12 hourly;
c1 mg colistimethate sodium is equivalent to 12,500 international units (165).
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different levels of organ function and
pathophysiological changes that may be
observed in these patients, it is not pos-
sible to provide specific dosing recom-
mendations for each potential patient.
Standard considerations of potential for
adverse effects and drug interactions
should always be considered as part of the
antibiotic-prescribing process and any
ongoing monitoring performed by the
clinician or associated healthcare staff.

Appropriate Dosing May Reduce De-
velopment of Antibiotic Resistance. Anti-
biotic resistance continues to escalate
worldwide with the ICU being a particular
focus on further development. There is
now sufficient data to suggest that inap-
propriately low antibiotic dosing may be
contributing to the increasing rate of an-
tibiotic resistance (9, 123, 148–154). De-
veloping dosing regimens that adhere to
pharmacodynamic principles and maxi-
mize antibiotic exposure appears to be
essential to reduce the development of
antibiotic resistance. This is probably
best achieved by administering the high-
est recommended dose to the patient.

CONCLUSION

In summary, the solubility character-
istics of antibiotics can help determine
where dose adjustment may be necessary
for individual critically ill patients. Hy-
drophilic concentration-dependent anti-
biotics may possess a higher Vd in criti-
cally ill patients leading to a reduced
Cmax. It follows that hydrophilic time-
dependent antibiotics may develop a low
Cmin that may reduce antibiotic efficacy.
Common increases in Vd need to be con-
trasted against potential increased or re-
duced antibiotic CL that can occur in
these patients. Antibiotic underdosing
can occur, which may in turn lead to the
development of antibiotic resistance
and/or therapeutic failure, if appropriate
dosing adjustments are not made. For
renally cleared compounds, dose pre-
scription based on measured creatinine
clearance should enable appropriate ini-
tial dosing in critically ill patients. Where
possible thereafter, therapeutic drug
monitoring should be considered to en-
sure target plasma concentrations are be-
ing achieved.

Given that most antibiotic regimens
have been derived from trials with pa-
tients who are not critically ill, the inten-
sivist must adapt his/her dosing to ac-
count for the potential altered
pathophysiology of this patient group. To

optimize dosing, the antibiotic’s pharma-
codynamic properties, as well as the po-
tential altered antibiotic pharmacokinet-
ics, need to be considered by the
clinician. Such a process will enable dose
selection that is more appropriate for use
in the individual patient.
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