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Abstract Central nervous system (CNS) infections are poten-
tially life threatening if not diagnosed and treated early. The
initial clinical presentations of many CNS infections are non-
specific, making a definitive etiologic diagnosis challenging.
Nucleic acid in vitro amplification-based molecular methods
are increasingly being applied for routine microbial detection.
These methods are a vast improvement over conventional
techniques with the advantage of rapid turnaround and higher
sensitivity and specificity. Additionally, molecular methods
performed on cerebrospinal fluid samples are considered the
new gold standard for diagnosis of CNS infection caused by
pathogens, which are otherwise difficult to detect.
Commercial diagnostic platforms offer various monoplex
and multiplex PCR assays for convenient testing of targets
that cause similar clinical illness. Pan-omic molecular plat-
forms possess potential for use in this area. Although molec-
ular methods are predicted to be widely used in diagnosing
and monitoring CNS infections, results generated by these
methods need to be carefully interpreted in combination with
clinical findings. This review summarizes the currently avail-
able armamentarium of molecular assays for diagnosis of

central nervous system infections, their application, and future
approaches.
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Introduction

The central nervous system (CNS) has unique anatomic and
immunologic characteristics that play an important role in the
pathogenesis and detection of infection. CNS is protected by
the blood–brain barrier (BBB) but is still highly vulnerable to
microbial invasion by extension from a contiguous focus; he-
matogenous dissemination; or less commonly, intraneural pas-
sage of organisms [1]. Various environmental or commensal
bacteria, viruses, fungi, protozoa, or parasites can migrate into
CNS causing a variety of infections [2••]. Clinical manifesta-
tion of CNS infection can consist of fever, headache,
vomiting, photophobia, stiff neck, and focal neurological
presentations.

CNS infections are classified according to their anatomic
localization (Fig. 1) [2••, 3, 45•]. Infection of the meninges,
brain, and spinal cord results in meningitis, encephalitis, brain
abscess, and myelitis, respectively. Infection may be limited to
a single anatomic compartment or may involve multiple sites
(e.g., meningoencephalitis and encephalomyelitis). Based on
the duration, infection can be classified as acute, sub-acute,
chronic, or recurrent. Meningitis is characterized by the onset
of fever, headache, neck stiffness, and photophobia over a
period of hours to days. Encephalitis is characterized by brain
parenchymal inflammation, and the clinical hallmark is alter-
ation in mental status, ranging from lethargy to coma [6].
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Myelitis is characterized by the inflammation of the spinal
cord with symptoms including fever, headache, and
paraparesis or paralysis. Based on the duration, infection can
be classified as acute, sub-acute, chronic, or recurrent.

The most rapidly fatal infection of the CNS is acute bacte-
rial meningitis, with an annual incidence of 3 to 5 cases per
100,000 persons in the USA and an associated mortality rate
of 6 to 26 % [2••]. Annually, approximately 4000 cases of
acute bacterial meningitis occur in the USAwith 500 deaths.
The leading causes of bacterial meningitis across all age
groups include Streptococcus pneumoniae, group B
Streptococcus, Neisseria meningitidis, Haemophilus
influenzae, and Listeria monocytogenes.

CNS infections caused by viruses are more common and
mostly mild and self limited. These can clinically manifest as
meningitis and/or encephalitis [7]. The incidence of viral CNS
infections can vary by geographic region and season. Non-
polio enteroviruses account for majority of meningitis/
encephalitis cases that typically peak between late spring to
fall [8•]. The more serious CNS infections due to herpes sim-
plex viruses (HSVs) are associated with sporadic encephalitis
and meningitis with severe sequelae if not treated promptly
[9].

Rapid and accurate detection and identification of microbi-
al pathogens is essential in directing timely clinical interven-
tion. Conventional methods used in clinical microbiology lab-
oratories include direct microscopic examination, culture

techniques, antigen, and antibody detection assays (Table 1).
These methods although currently applied have several impor-
tant limitations—using the example of enteroviruses, the most
common cause of meningitis [10••, 11]. Direct microscopic
examination of cerebrospinal fluid (CSF) has limited sensitiv-
ity and specificity. The sensitivity of culture for enteroviruses
is between 65 and 75 % with a mean retrieval time of 3.7 to
8.2 days [12]. Furthermore, some serotypes of enteroviruses,
especiallyCoxsackievirus A strains, are known to grow poorly
or are non-cultivable [13]. Enteroviruses lack a common an-
tigen among various serotypes making a universal antigen or
antibody detection impossible. Similar issues occur around
the diagnosis of CNS HSV infections by conventional
methods—culture sensitivity from CSF is extremely poor.
Presence of HSV IgG antibodies in CSF can be used in diag-
nosis; however, production is delayed until day 10 or 12 after
infection and is therefore not ideal for early diagnosis [14].

To overcome the several limitations of conventional diag-
nostic techniques, molecular methods, dominantly PCR-based
amplification, have gradually become mainstay tools in detec-
tion and identification of microbial pathogens in CSF
(Table 1) [2••, 15]. When compared to conventional methods,
molecular methods show greater detection rates; one study
reported that 16S ribosomal ribonucleic acid (rRNA) PCR-
based assays were able to accurately detect the causative or-
ganism in 65 % of banked CSF samples, compared to 35 %
when using culture and microscopy [16]. In another report,
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Fig. 1 A diagram of nervous system anatomy and the specific pathogens
associated with each structure. Modified with permission from Swanson
and McGavern [5•]. AVs alphaviruses, BVs bunyaviruses, CMV
cytomegalovirus, HEVs human enteroviruses, HIV human
immunodeficiency virus, HSV herpes simplex virus, JCV John
Cunningham virus, JEV Japanese encephalitis virus, LCMV
lymphocytic choriomeningitis virus, MeV measles virus, Mum mumps
virus, Nip Nipah virus, PV poliovirus, RV rabies virus, SLEV St. Louis

encephalitis virus, TBEV tick-borne encephalitis virus, WNV West Nile
virus, Lm Listeria monocytogenes, Nm Neisseria meningitidis, Ec
Escherichia coli, Cn Cryptococcus neoformans, Hc Histoplasma
capsulatum, Bh Blastocystis hominis, Ci Coccidioides immitis, Td
Toxoplasma gondii, GBS Guillain-Barré syndrome, HIB Haemophilus
influenzae type b, MTB Mycobacterium tuberculosis, Sp Streptococcus
pneumoniae, Tp Treponema pallidum
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improved diagnostic yield based on molecular methods was
used to optimize antibiotic treatment of patients with infec-
tious meningitis when conventional methods provided a neg-
ative result [17]. Currently, molecular methods performed on
CSF samples are considered a Bplatinum^ standard, in con-
trast of the culture gold standard, in diagnosis of CNS infec-
tions caused by viruses which are difficult to detect and iden-
tify [18–20].

Since we provided a review on the topic in 2002 [21•], the
diagnostic landscape in CNS infections has changed dramat-
ically. PCR-based molecular methods made their way into
clinical microbiology laboratory, providing tools for rapid
and accurate diagnosis. In parallel, several commercial molec-
ular assays as summarized in Table 2 have been cleared by the
Food and Drug Administration (FDA) for detection of target
microbial pathogens in CSF.

Despite the advances in molecular techniques, several chal-
lenges remain. Using a combination of conventional and mo-
lecular diagnostic methods, Glaser et al. showed that in ap-
proximately 62 % of patients with clinical encephalitis, an
etiologic organism could not be identified [22]. The focus is
now shifting towards development of advanced techniques
beyond nucleic acid-based detection. In this review, we give
an update on the existing conventional and molecular plat-
forms for the diagnosis of CNS infections. We also provide
a preview on the potential clinical application of future tech-
nologies including pan-omic assays. The emphasis is given to
optimal test selection based on the clinical scenario.

Conventional Microbiology Methods

Microscopic Examination

A positive CSF Gram stain is highly suggestive of bacterial
meningitis [23, 24]. The reported sensitivity of the Gram stain
for diagnosis of bacterial meningitis is 60∼80 % in patients
who have not received antimicrobial treatment and 40∼60 %
among those on antibacterial treatment [25]. In one study,
Gram stain detected as many as 90 % S. pneumoniae and
50 % L. monocytogenes in CSF collected from patients with
bacterial meningitis confirmed by PCR [26]. Two organisms
which are often diagnosed by microscopy areMycobacterium
tuberculosis by acid-fast bacillus (AFB) staining and
Cryptococcus neoformans by India ink or Gram stain. While
these methods maintain satisfactory specificities, the sensitiv-
ities are relatively poor; thereby, a culture is usually performed
in parallel.

Culture

Culture of brain tissue can provide definitive diagnosis of
CNS infections; however, obtaining biopsies is highlyTa
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invasive and often avoided unless deemed necessary by a
clinician. CSF sampling is most commonly performed
to determine etiology of suspected CNS infection [25,
27]. CSF viral, bacterial (including mycobacterial), and
fungal cultures remain the mainstay in the diagnosis of
infectious meningitis. However, the yield of CSF cultures
in suspected cases is low [28]. Another disadvantage of
CSF bacterial culture is that it requires up to 72 h for
final identification. A recent study reported that CSF
mycobacterial culture had a sensitivity of 22 % and a
specificity of 100 % in diagnosis of tuberculosis menin-
gitis [29]. For viruses, the application of monoclonal an-
tibodies in shell vial culture has increased the speed and
specificity. However, due to the long time and low sen-
sitivity, CSF viral culture is often unable to provide the
timely diagnosis required for optimum patient manage-
ment [11, 30].

Rapid Antigen Detection

Among the antigen assays for CNS infections, Cryptococcal
antigen is the most widely used. The test relies on detection of
Cryptococcus capsular polysaccharide antigens in CSF by en-
zyme immunoassay [31]. In a single report that examined
patients >35 years of age with CNS cryptocossis, an overall
sensitivity and specificity of 93∼100 and 93∼98 %, respec-
tively, were reported [32]. Cryptococcus is a neurotropic fun-
gus; polysaccharide serum antigen titers in conjunction with
host immune status are often used as a diagnostic aid to deter-
mine need for lumbar puncture to evaluate patient for CNS
involvement. The baseline peak titer of polysaccharide anti-
gen in serum or CSF has demonstrated important prognostic
significance [33] with higher titer (peak titer >1:1024) associ-
ated with antifungal therapy failure [34].

Detection of galactomannan (GM) antigen and (1,3)-β-D-
glucan (BDG) in CSF can aid in the diagnosis of CNS asper-
gillosis or other invasive fungal infection such as fusariosis
[10••, 35]. Elevated BDG in serum as well as CSF is associ-
ated with fungal infections; measuring the levels of BDG
might be a useful biomarker in the evaluation of fungal CNS
disease [36]. It was recently reported that patients receiving
effective antifungal therapy showed reduction in CSF BDG
concentration (<31 pg/ml), and for this reason, BDG titers in
CSF can be as a useful biomarker in monitoring response to
treatment [37].

For acute bacterial meningitis, a rapid antigen assay is
available to detect pneumococcal capsular antigen [38].
Recently, several reports revealed potential application of de-
tection of M. tuberculosis-specific antigens in CSF as rapid
diagnosis of tuberculosis meningitis [39, 40]. The level of
M. tuberculosis early secreted antigenic target 6 (ESAT-6)
was associated with clinical severity and may be used for the
prognosis of tuberculosis meningitis [41, 42].Ta
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Serology

Definitive serological diagnosis of CNS infections is
established by detecting IgM antibodies or demonstrating a
at least a fourfold increase in neutralizing antibody titers be-
tween acute- and convalescent-phase CSF [43, 44]. In general,
due to delay in antibody response after symptom onset, a
negative antibody test cannot be used to rule out infections
and retesting may be required. In addition, in certain selected
populations such as immunocompromised individuals, the
tests may not offer optimum sensitivity. In most circum-
stances, nucleic acid amplification tests have surpassed
antibody-based detection as the test of choice [11]. For certain
infections, these assays still have a valuable role. CSF IgM is
the most widely used test for West Nile virus (WNV) infec-
tions; antibody may appear as early as 3 days and persist for
up to 3 months. However, its accuracy is complicated by high
cross-reactivity with other clinically relevant flaviviruses and
related vaccines [45]. Antibodies against recombinant WNV
E proteins have been proposed as a potential solution to make
this important distinction in areas where cross-reacting viruses
co-circulate or in individuals who have been immunized [45].

Other highly important serological assays for CNS infec-
tions are tests used for screening and diagnosis of neurosyphilis.
Neurosyphilis can be confirmed by a positive CSF venereal
disease research laboratory (VDRL) test [46]. Detection of an-
tibodies to varicella zoster virus (VZV) IgG and/or DNA in
CSF remain as the most commonly used methods to establish
a diagnosis of VZV-related CNS disease [47].

Molecular Methods in Diagnosis of CNS Infections

Because of higher sensitivity and specificity, nucleic acid
in vitro amplification-based molecular techniques are now
widely implemented across clinical laboratories in the USA.
Molecular methods have dramatically improved the ability to
diagnose CNS infections in a reasonable and effective time
frame. Several PCR-derived techniques have collectively ex-
panded the flexibility and rigor of currently available labora-
tory diagnostic methods [48, 49].

Reverse transcriptase (RT)-PCR was developed to amplify
RNA targets; its application has played an important role in
diagnosing RNA-virus infections and in some cases monitor-
ing response to therapy. Timely access to enterovirus RT-PCR
results have been shown to facilitate shorter hospital stays,
reduce unnecessary antibiotic use, and lessens ancillary labo-
ratory testing [50–52]. Broad-range rRNA PCR techniques,
which use single pair of primers targeting conserved regions
of genes, are successfully used for rapid detection and identi-
fication of bacterial pathogens and herpesviruses in the CSF
[16, 53, 54]. Isothermal amplification-based techniques in-
cluding loop-mediated isothermal amplification (LAMP) has

been successfully developed to provide point-of-care diagno-
sis within minutes to hours [55]. Table 2 provides an overview
and comparison of commercial molecular in vitro diagnostic
devices (IVDs) that have been cleared by the US FDA for
detection and identification of microbial pathogens in CSF.
Details and updates concerning these devices are available
f r om t h e FDA web s i t e ( h t t p : / / www. f d a . g o v /
MedicalDevices /ProductsandMedicalProcedures /
InVitroDiagnostics/ucm330711.htm#microbial). In the
following section, we will discuss three different types of
molecular testing with focuses on CNS infection diagnosis.

Monoplex Assays

A conventional molecular procedure includes the following
three separate steps: sample extraction, target nucleic acid am-
plification, and amplicon detection. One of the first molecular
assays used successfully for CNS infection diagnosis was for
detection of HSV in CSF [56•]. PCR quickly became the test
of choice when studies demonstrated that CSF PCR was
equivalent to culture of brain tissue for diagnosis of HSV
encephalitis and meningitis [15]. Since then, numerous
PCR-based methods for herpesvirus and enterovirus have be-
come available with superior sensitivity compared to viral
culture [57, 58].

Real-time PCR with simultaneous nucleic acid amplifica-
tion and amplicon detection further accelerated the transition
to molecular testing in clinical laboratories. Unlike conven-
tional PCR, the real-time system is a Bclosed^ system and
therefore overcomes the important concern of carryover con-
tamination. At the time of manuscript preparation, three mo-
lecular assays to detect HSV [59] and enteroviruses [51, 60] in
CSF have been approved by FDA as shown in Table 2 [61••].

Real-time PCR-based methods are the main format to de-
tect Zika virus, which was first reported in Uganda in 1947
and is now a worldwide concern after the virus spread widely
in Brazil and Central America [62]. Faye et al. developed a
one-step RT-PCR assay to detect Zika virus in human serum
with limit of detection of 7.7 pfu/reaction [63, 64]. In addition
to plasma, Zika virus RNA can be detected in the urine and
plasma within first 2 weeks after symptom onset [65]. In
March 2016, the FDA approved a trioplex-PCR assay under
emergency use authorization for the simultaneous detection of
Zika, Chikungunya, and dengue viruses in serum, urine, CSF,
and amniotic fluid. The RT-PCR assay uses dual-labeled hy-
drolysis probes with a LOD of 1.54 × 10 GCE/ml [4] of Zika
vi rus in serum (ht tp : / /www.fda .gov/downloads /
Med i c a lDev i c e s / S a f e t y /Eme rg e n cyS i t u a t i o n s /
UCM491592.pdf).

Introduction of real-time PCR-based diagnostic assays has
had a substantial impact on early and effective diagnosis of cer-
tain bacterial infections [66, 67]. Isothermal amplification-based
molecular assays have excellent performance characteristics and
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have the distinct advantage of not requiring any specialized
equipment. These assays are therefore ideal for use as on or near
point-of-care testing. Using this technology, LAMP-based
methods have been used to detect Neisseria meningitis,
S. pneumoniae, H. influenzae type b, M. tuberculosis, and
Japanese encephalitis virus (JEV) in the CSF [68–71]. The
XpertMTB/RIF assay has revolutionized the landscape of global
tuberculosis control by providing an integrated and automated
system that enables rapid clinical decision making in a POC or
near-care context [67]. Several studies have applied the Xpert
MTB/RIF to evaluate detection of M. tuberculosis in CSF from
cases of TB meningitis [72•, 73, 74]. In a meta-analysis of 13
studies, the pooled sensitivity of Xpert assay was 80.5 % (95 %
CI 59.0–92.2) against culture and 62.8 % (95 % CI 47.7–75.8)
against composite standard. Using a large volume of sample (at
least 8–10 ml) is required for testing CSF, and centrifugation can
lead to modest improvement in yield [75]. Despite the lack of
standardization for sample processing, WHO has endorsed test-
ing CSF with the automated Xpert MTB/RIF assay as a first-line
test over conventional microscopy in patients with suspected TB
meningitis.

Multiplex Assays

Relative simplicity and high-throughput detection make mul-
tiplex molecular assays an attractive option for screening and
detection of a panel of microbial targets [76]. Several multi-
plex PCR assays have been developed to identify bacterial
pathogens in CSF, targeting the most common causes of men-
ingitis, S. pneumoniae, N. meningitis, H. influenzae [26, 48,
76, 77], L. monocytogenes [26, 77], Streptococcus agalactiae,
Staphylococcus aureus, Escherichia coli [26], and
Mycoplasma pneumoniae [26]. A multiplex PCR followed
by Luminex suspension array can simultaneously detect eight
bacterial and viral pathogens in CSF including N. meningitis,
S. pueumoniae, E. coli, S. aureus, L. monocytogenes,
S. agalactiae, HSV-1/2, and VZV [78].

Considering the breadth of pathogens implicated in CNS in-
fection, application of comprehensive molecular panels with
multiple bacterial and viral targets have improved the diagnostic
efficiency. The BioFire FilmArrayMeningitis/Encephalitis panel
is currently the only FDA-cleared multiplex assay for the detec-
tion of six bacterial (E. coliK1,H. influenzae,L.monocytogenes,
N. meningitidis, S. agalactiae, and S. pneumoniae), seven viral
(cytomegalovirus, enterovirus, HSV-1, HSV-2, human herpesvi-
rus 6 (HHV-6), human parechovirus, and VZV), and single fun-
gal (C. neoformans/gattii) target in CSF (Table 2). The integrated
FilmArray system has a turnaround time of about an hour, with
only 2 min of hands-on time. At the time of the manuscript
preparation, two studies have reported on the performance of
this assay [79, 80]. Using 48 samples from Gram stain-
negative CSF samples from suspected cases of meningitis,
Wootton et al. showed that this system detected more viral

pathogens especially EBV. Four cases of WNVand single case
of Histoplasma were not detected by this assay. Among HIV-
infected patients in Uganda, the test performance demonstrated
superior sensitivity and specificity for detection of Cryptococcus
[79, 80]. Although the FilmArray Meningitis/Encephalitis panel
offers a promising platform for rapid diagnosis of CNS infec-
tions, further clinical studies are needed to determine its perfor-
mance for various targets and among other high-risk
populations.

Co-infections are frequently encountered among immuno-
compromised patients and present a difficult diagnostic chal-
lenge for clinicians. Multiplex design enables simultaneous
detection and identification of multiple targets on the same
sample. Rajasingham et al. [81] used a panel of monoplex
and multiplex molecular assays to conduct a prospective co-
hort study in Uganda to comprehensively evaluate the etiolo-
gy of meningitis among HIV-infected adults. Among the 314
HIV-infected patients with suspected meningitis, EBV co-
infection was detected with Cryptococcus, M. tuberculosis,
or other viral pathogens [81]. The clinical significance of
EBV in CSF in these settings is not completely understood,
although a single study associated high EBV viral load as a
marker of poor outcome in individuals with bacterial menin-
gitis and EBV co-infection/reactivation [82].

Pan-Omic Molecular Assays

Technological improvements in metagenomic deep sequencing
have led to its potential application for clinical diagnosis of in-
fections [83, 8485••]. Several reports have demonstrated its util-
ity into solving diagnostic dilemmas that challenge the limits of
traditional laboratory testing [83, 86, 8785••, ]. Due to sterile
status and protection by BBB, CSF and brain biopsies are ideal
to further explore the application of this technology for pathogen
detection and discovery. As demonstrated in a highly challenging
clinical situation, metagenomics was successfully used to estab-
lish a timely diagnosis of neuroleptospirosis in a 14-year-old boy
with severe combined immunodeficiency, who suffered from
recurrent bouts of fever, headache, and coma [85••]. Similarly,
high-throughput RNA sequencing performed on brain biopsy
from an 18-month-old boy with encephalopathy was able to
identify a new astrovirus as the cause [83]. Despite the enor-
mously attractive potential of metagenomics for infectious dis-
ease diagnosis, there are many technological and practical con-
cerns that need to be addressed before this form of diagnostic
testing can become mainstream and part of the clinical standard
of care.

Other promising advances have occurred in transcripto-
mics, proteomics, and metabolomics. Host and microbial
microRNA (miRNA) profiles have been used for various in-
flammatory and infectious diseases [88]. Two miRNAs, miR-
155 and miRNA-29b, were reported as potential biomarkers
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Table 3 Application of molecular methods in detecting common pathogens causing CNS infections

Organisms Clinical diseases/disorders Molecular test
applicabilitya

Comments

Viruses

Adenoviruses Meningoencephalitis B Serotype 7 is the common cause of CNS infection.
Culture is method of choice. Commercial molecular
device is available

Arboviruses Meningoencephalitis A-B Arboviruses cause CNS infections including EEE,
LAC, SLE, WEE,WNV, VEE, JE, POW, and RVF.
Serology is the test of choice

CMV Encephalitis, myelitis A Molecular detection is the test of choice. Commercial
molecular device is available. Direct detection of
resistance-related mutations has been reported

Enteroviruses Meningitis A CSF PCR is the test of choice. Stool or throat swab
PCR or culture suggestive but not diagnostic of
CNS involvement. The 5′-UTR PCR detects most
members of enteroviruses including EV-D68 but
does not provide genotype specific information

Epstein-Barr virus Primary CNS lymphoma,
myelitis

A-B Acute infection, serology. Reactivation disease or
primary CNS lymphoma, positive CSF PCR may
indicate secondary viral reactivation

HHV-6 and HHV-7 Encephalitis A CSF PCR. Commercial molecular device is available
for HHV-6

HSV-1/HSV-2 Encephalitis, meningitis
(Mollaret’s meningitis)

A CSF PCR gold standard for diagnosis. Several
commercial molecular devices are available

HTLV-1/HTLV-2 Myelitis B Serology is the test of choice. Molecular method
may enhance sensitivity

Influenza and parainfluenza viruses Encephalitis A Diagnosis suggested by CSF molecular testing

JC virus Progressive multifocal
leukoencephalopathy

A Molecular method is the test of choice. False positive
result may happen due to high-level of BKV

LCMV Meningoencephalitis Bb Serology is the test of choice. Molecular method
may enhance sensitivity

Measles virus Sub-acute sclerosing
panencephalitis

C CSF antibodies, CSF index, brain tissue PCR

Mumps virus Encephalitis, meningitis B Serology, throat swab PCR, CSF culture, or PCR

Nipah and Hendra viruses Meningitis, encephalitis C Serology (special pathogen branch, CDC)

Parvovirus Encephalitis B Serum and CSF IgM/IgG in combination with serum
and CSF PCR is the test of choice

Rabies virus Encephalitis Bb Antibodies (serum, CSF), PCR of saliva, skin, or
CSF, IFA of nuchal biopsy, or CNS tissue.
Coordinate testing with local health department

VZV Meningitis, myelitis B CSF PCR and CSF serology are indicated

West Nile virus Encephalitis, myelitis Bb CSF IgM, paired serology (cross-reactivity with other
flaviviruses). CSF PCR limited to diagnosis in
immunocompromised patients who have impaired
humeral response

Zika virus Microcephaly A PCR has been used for plasma, urine, and CSF.
Serology is useful

Bacteria

Gram-negative rods, mainly E. coli Meningitis A-B Bacterial culture is the test of choice. Commercial
molecular device is available

Listeria monocytogenes Meningitis, encephalitis A-B Bacterial culture is the test of choice. Commercial
molecular device is available

Neisseria meningitidis Meningitis A-B Bacterial culture is the test of choice. Commercial
molecular device is available

Group B Streptococcus Meningitis A-B Bacterial culture is the test of choice. Commercial
molecular device is available
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for JEV infection as well as therapeutic targets for anti-JEV
therapy [89, 90]. Host neural epidermal growth factor like 2
and apolipoprotein B in CSF were able to diagnose tubercu-
lous meningitis with 83.3–89.3 % sensitivity and 75–92 %
specificity [91, 92]. CSF metabolite profiling has been report-
ed useful in classification, diagnosis, epidemiology, and treat-
ment assessment of CNS infections in HIV patients [93–95].
CSF metabolic profile analysis implicated bioenergetic adap-
tation as a neural mechanism regulating shifts in cognitive
states of HIV-infected patients [96].

Selective Testing Results to Interpret Correlation
with Clinical Diseases

Identification of an etiologic agent in patients with CNS infec-
tions requires consideration of the most likely causative organ-
isms, the available diagnostic tests for these agents, and the
highest-yield clinical specimens for testing. Knowledge of the
epidemiology and clinical presentation of specific agents is crit-
ical in selecting which diagnostic methods are appropriate for a
given patient. In particular, animal or vector exposures,

Table 3 (continued)

Organisms Clinical diseases/disorders Molecular test
applicabilitya

Comments

Haemophilus influenzae Meningitis A-B Bacterial culture is the test of choice. Commercial
molecular device is available

Mycobacterium tuberculosis Meningitis, myelitis A-B CSF mycobacterial culture remains the gold standard,
but commercial molecular device is available

Nocardia species Encephalitis C Bacterial culture is the test of choice. Usefulness
of molecular methods needs to be determined

Ehrlichia species Encephalitis A-B Morulae in white blood cells, PCR of whole blood,
paired serology. CSF PCR may be positive but less
sensitive than testing of whole blood

Streptococcus pneumoniae Meningitis A-B Bacterial culture is the test of choice. Commercial
molecular device is available

Treponema pallidum Neurosyphilis, myelitis C CSFVDRL, serumRPRwith confirmatory FTA-ABS

Borrelia burgdorferi Lyme disease B Serology is the test of choice. Molecular method
available

Bartonella species Encephalitis B Serology (acute usually diagnostic), PCR of lymph
node, CSF PCR not useful

Tropheryma whippelii Whipple disease,
lymphadenopathy

A CSF PCR, PAS-positive cells in CSF, small bowel
biopsy

Fungi

Cryptococcus neoformans Encephalitis, meningitis C Antigen detection is the test of choice. Culture is
useful. Molecular method has potential

Histoplasma capsulatum,
B. homini, and C. immitis

Encephalitis, meningitis C Culture is the test of choice. Values of molecular
method are to be determined

Aspergillus species Encephalitis C Culture is the test of choice. Histopathology and
serum/CSF galactomannan assay are helpful.
Molecular method has potential

Zygomycetes species Encephalitis C Culture is the test of choice. Histopathology is helpful.
Molecular method has potentials

Parasites

Toxoplasma gondii Encephalitis B Serology is the most useful diagnostic test. False
negative serology results may happen in
immunocomprised hosts. Values of molecular tests
on CSF need to be determined

Free-living amoeba, e.g.,
Acanthamoeba and Balamuthia

Encephalitis C Molecular method may provide specific confirmed
diagnosis

HSV herpes simplex virus, CMV cytomegalovirus, HHV human herpesvirus, CSF cerebrospinal fluid, HTLV human T cell lymphotropic virus, LCMV
lymphocytic choriomeningitis virus, VZV varicella zoster virus
a A, test is generally useful for the indicated diagnosis; B, test is useful under certain circumstances or for the diagnosis of specific forms of infection, as
delineated in the right-hand column; and C, test is seldom useful for general diagnostic purposes but may be available in reference laboratories for
epidemiological studies or for the diagnosis of unusual conditions
bMolecular methods were used in these cases associated with transplant of solid organ form infected donor
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geographic location, recent travel history, season of the year,
exposure of ill contacts, and occupational exposures should be
considered.

When selecting appropriate pathogen-specific molecular
diagnostic methods, the following factors should be consid-
ered. CSF is the optimal specimen for PCR testing for patients
with suspected meningitis or meningoencephalitis. While in-
direct evidence can be gained by testing of other specimen
types, attempts should be made to obtain CSF samples early
before commencement of treatment that can compromise
yield. Time of testing from symptom onset is essential to un-
derstand and rule out false negative results and recommend
retesting within a certain time frame. For example, HSV PCR
can commonly render false negative results if CSF sample is
obtained very early or late in the process of HSE infection.
Host health condition is known to influence the test perfor-
mance characteristics. Immunocompromised patients are at
risk for infection by a much wider array of opportunistic path-
ogens, for example, HHV-6, JC virus, Toxoplasma encephali-
tis in bone marrow transplant recipients, and patients with
HIV. Often, infection can be more severe (e.g., WNV) and
difficult to diagnose in this population. Table 3 provides the
practical recommendations on application and pitfalls of mo-
lecular test for diagnosis of CNS infections.

Finally, a positive nucleic acid amplification testing result
is complicated by the fact that some viruses survive latently in
macrophages or neurologic tissues and are incidentally detect-
ed by sensitive molecular techniques without an actual path-
ogenic role and can potentially lead to overtreatment. Uses of
adjunctive biomarkers that depict active replication are being
explored to overcome this drawback.

Conclusion

Historically, identification of microbiologic agents in patients
with CNS infections has been hindered by the low yield of
CSF culture for viral and fastidious bacterial organisms, de-
lays in CNS production of organism-specific antibodies, and
difficulties in obtaining optimum samples for testing. Nucleic
acid in vitro amplification-based molecular diagnosis methods
have a wider and better application in clinical microbiology
practice. The monoplex assay will likely be the main platform
for urgent, random-access, low-throughput assays. Multiplex
assays have the additional advantage of detecting multiple
targets and mixed infections. As volume of CSF sample re-
trieved is often small, multiplex assays enable comprehensive
diagnostic analysis with low amount of sample, obviating
need for repeated lumbar punctures. The clinical relevance
and cost-effectiveness of simultaneous multipathogen detec-
tion and identification strategies merit further investigation.
Application of pan-omic techniques in difficult-to-diagnose
CNS infections is the new exciting frontier; the technology

is promising, but routine implementation is expected to be
slow due to various challenges such as lack of applicable
regulatory guidelines and adaptation in the clinical setting.
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