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Role of albumin in the preservation 
of endothelial glycocalyx integrity 
and the microcirculation: a review
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Abstract 

The endothelial glycocalyx comprises a complex layer of membrane-bound proteoglycans, secreted glycosaminogly-
cans, glycoproteins, glycolipids and bound plasma proteins such as albumin and antithrombin associated with the 
endothelial surface. The glycocalyx plays an important role in vascular homeostasis, regulating vascular permeability 
and cell adhesion, and acts as a mechanosensor for hemodynamic shear stresses; it also has antithrombotic and 
anti-inflammatory functions. Plasma proteins such as albumin are physiologically bound within the glycocalyx, thus 
contributing to stability of the layer. Albumin is the major determinant of plasma colloid osmotic pressure. In addition, 
albumin transports sphingosine-1-phosphate which has protective endothelial effects, acts as a free radical scavenger, 
and has immunomodulatory and anti-inflammatory effects. This review examines the physiological function of the 
endothelial glycocalyx and the role of human albumin in preserving glycocalyx integrity and the microcirculation.
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The endothelial glycocalyx
Composition and structure of the endothelial glycocalyx
The endothelial glycocalyx is a complex carbohydrate-
rich gel-like layer lining the luminal surface of blood ves-
sels [1]; it functions as a barrier between the blood and 
vessel wall [2, 3]. The glycocalyx layer is composed of 
membrane-bound proteoglycans, secreted glycosami-
noglycans (GAGs), sialic acid-containing glycoproteins, 
and glycolipids associated with the endothelial surface 
(Fig.  1) [4]. The main proteoglycans of the endothelial 
glycocalyx are membrane-spanning syndecans and gly-
cosylphosphatidylinositol-linked glypicans which carry 
the two main GAGs, heparan sulfate and chondroitin 
sulfate, through covalent attachment to the protein core. 
Syndecans carry both GAGs, while glypicans carry only 
heparan sulfate. Table  1 summarizes the characteristics 

of core proteoglycans in the glycocalyx [5]. A third major 
GAG, hyaluronan, is secreted by endothelial cells but is 
not covalently linked to a core protein; it binds to cell 
surface adhesion receptors such as CD44. Plasma pro-
teins such as albumin and antithrombin are also bound 
within the glycocalyx [4, 6–9].

The term endothelial surface layer is sometimes used 
to describe the intimal surface of blood vessels compris-
ing the endothelial glycocalyx and associated compo-
nents derived from endothelial cells and plasma [3, 10]. 
The thickness of the glycocalyx/endothelial surface layer 
(Fig.  2) [11] varies depending on the method used for 
measurement [9]. Intravital microscopy and orthogonal 
polarization spectral imaging are techniques which indi-
rectly measure the endothelial glycocalyx in  vivo, and 
the glycocalyx can be measured indirectly ex vivo using 
microparticle image velocimetry. The glycocalyx can 
be measured directly in  vitro using transmission elec-
tron microscopy, confocal laser scanning microscopy 
and atomic force microscopy, and ex  vivo using two-
photon laser scanning microscopy [12, 13]. In humans, 
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the mean microvascular glycocalyx thickness estimated 
using orthogonal polarization spectral imaging was about 
0.5 µm (range 0.3 to 0.75 µm) [14].

Physiological function of the endothelial glycocalyx
The outermost layer of the microvasculature serves as a 
regulatory barrier of vascular permeability. It participates 
in mechanotransduction by sensing fluid shear forces 
and regulating the vascular tone. The endothelial glyco-
calyx, which has an important role in maintaining vas-
cular homeostasis [9], also has several anti-adhesive and 
antithrombotic effects on the surface of endothelial cells 
and can protect endothelial cells from oxidative stress [3, 
6–9, 15, 16].

Regulation of vascular permeability and barrier function
Starling’s original model of transvascular fluid exchange, 
which depends on a balance between hydrostatic and 
oncotic pressure gradients in semi-permeable capillaries, 
fails to explain the clinical responses observed after fluid 

Fig. 1 Structure of the endothelial glycocalyx illustrating proteoglycans and glycosaminoglycans. Reproduced with permission from [4]. GPI 
glycosylphosphatidylinositol

Table 1 Characterization of proteoglycan core proteins in the glycocalyx. Adapted from [5]

GPI glycosylphosphatidylinositol

Core protein Core size (kDa) Number of subtypes Structural characteristics Linked glycosaminoglycan (GAG)

Syndecan 19–35 4 Transmembrane protein Heparan sulfate, chondroitin sulfate

Glypican 57–69 6 GPI-anchored protein Heparan sulfate, chondroitin sulfate

Perlecan 400 1 Secreted Heparan sulfate, chondroitin sulfate

Versican 370 1 Secreted Chondroitin sulfate, dermatan sulfate

Decorin 40 1 Secreted Chondroitin sulfate, dermatan sulfate

Biglycan 40 1 Secreted Chondroitin sulfate, dermatan sulfate

 Minecan 35 1 Secreted Keratan sulfate

Fig. 2 Electron micrograph of a cross-sectional image of a coronary 
endothelial glycocalyx (courtesy of B. van den Berg, Maastricht 
University). Reproduced with permission from [11]
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resuscitation. A revised Starling model, first proposed 
by Levick and Michel [17] which incorporates the effect 
of the endothelial glycocalyx, basement membrane and 
extracellular matrix on fluid exchange, provides a bet-
ter explanation of fluid transvascular interchanges and 
a patient’s response to fluid resuscitation because the 
effect of the glycocalyx in reducing fluid extravasation 
was unknown. Consequently, in Starling’s original model, 
the observed extracellular volume distribution follow-
ing fluid resuscitation was not predicted by the model 
[2, 16–19]. Starling’s original principle and the revised 
Starling equation and glycocalyx model are compared in 
Additional file  1: Table  S1 [18] and shown in Fig.  3 [2]. 
The revised Starling model proposes that the endothe-
lial glycocalyx is the key determinant of hydrostatic and 
oncotic pressure gradients between the capillary lumen 
and the interstitium. Important Starling forces are the 
transendothelial pressure difference (Pc −  Pis) and col-
loid osmotic pressure difference between plasma and the 
subglycocalyx (πp − πsg). This oncotic pressure difference 
explains the failure of the interstitial protein concentra-
tion to influence fluid movement [2, 17, 18].

Under physiological conditions, the glycocalyx acts as a 
barrier against the shift of albumin and other circulating 
plasma components (mainly other proteins) across the 
endothelium [20, 21].

Mechanosensory function
Mechanical forces on endothelial cells generated by 
blood flow evoke biochemical responses that modulate 
endothelial structure and function through a process 
known as mechanotransduction. The glycocalyx acts as 
a cytoskeleton for endothelial cells. Mechanical distor-
tion of ‘bush-like’ clusters of proteoglycans projecting 
from anchor points in the endothelial cell cytoskeleton 

generates forces which can deform the cytoskeleton. An 
associated increase in the expression of endothelial nitric 
oxide (NO) synthase catalyzes the production of NO, 
dilating vessels and reducing stress [2, 22, 23].

Rheological function
The glycocalyx has a vasculo-protective role by repelling 
red blood cells and by physically inhibiting the interac-
tion of endothelial cell adhesion molecules (e.g., integrins 
and members of the immunoglobulin superfamily) with 
circulating platelets and leukocytes [9, 10].

Anticoagulation function
Several important anticoagulant mediators bind to GAGs 
located in the glycocalyx. These include antithrombin 
which binds via heparan sulfate to inhibit thrombin and 
activated factors IX and X; heparin cofactor II which is 
activated by dermatan sulfate; and tissue factor pathway 
inhibitor which binds via heparan sulfate to inhibit fac-
tors VIIa and Xa. Thrombomodulin, an endogenous anti-
coagulant produced by endothelial cells, interacts with 
thrombin to activate the protein C anticoagulant pathway 
[2].

Protective function against free radicals
Glycocalyx binding of enzymes such as extracellular 
superoxide dismutase protects endothelial cells against 
oxidative stress from reactive oxygen species (ROS) while 
maintaining NO availability, thus preventing endothelial 
dysfunction [9, 24].

Physiological role of endogenous albumin
Although albumin has a net negative charge, its ampho-
teric nature promotes tight binding to the glycocalyx with 
the net effect of reducing hydraulic conductivity across 
the vascular barrier, resisting glycocalyx degradation (i.e., 
protecting against shedding) and thereby contributing to 
maintenance of vascular integrity and normal capillary 
permeability, and facilitating transmission of shear stress 
[2, 15, 23, 25].

Under physiological conditions, the concentration of 
intravascular albumin is the major determinant of plasma 
colloid osmotic pressure [18].

Exposed thiol groups on the albumin molecule act as a 
scavenger for ROS such as superoxide  (O2

−) and hydroxyl 
(•OH) radicals and reactive nitrogen species, e.g., perox-
ynitrite radicals. Albumin has an additional anti-oxidant 
effect through binding to free copper ions  (Cu2+) which 
are known to accelerate the production of free radicals 
[26, 27].

Albumin also has immunomodulatory and anti-
inflammatory effects through binding of bacterial prod-
ucts, modulation of antigen-presenting cell function, 

Fig. 3 The revised Starling principle. Reproduced with permission 
from [2]. Jv/A filtered volume per unit area; Lp hydraulic conductance; 
Pc capillary hydrostatic pressure; Pis interstitial hydrostatic pressure; σ 
osmotic reflection co-efficient; πp oncotic pressure in the luminal side 
of endothelial surface layer; πsg oncotic pressure in the subglycocalyx 
space
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modulation of cytokine production, and reducing 
hypoxia-inducible factor-1α gene expression which is 
upregulated in response to low oxygen concentrations 
[25].

Along with lipoproteins, albumin has an important 
role in delivering sphingosine-1-phosphate (S1P) to the 
endothelial cell surface where it functions in maintaining 
normal vascular permeability [28]. S1P protects endothe-
lial cells by suppressing the activity of metalloproteinases, 
stabilizes the glycocalyx by reducing GAG degradation 
and shedding [21, 22], and regulates barrier function 
by modulating the expression of vascular endothelial-
cadherin and β-catenin at endothelial cell–cell contact 
regions [29].

Post-translational modifications of human serum albu-
min include glycation, cysteinylation, S-nitrosylation, 
S-guanylation and S-transnitrosation which can affect 
the binding of some exogenous drugs [30]. In addition, 
advanced glycation end (AGE)-modified albumin can 
induce proinflammatory signaling through activation 
of AGE receptors [31]. This was illustrated in a murine 
model of peritonitis and sepsis where administration of 
therapeutic infusion solutions containing high concen-
trations of AGE-modified albumin reduced survival [32].

Alterations of the endothelial glycocalyx
Pathologies/interventions associated with glycocalyx 
alterations
Glycocalyx and endothelial cell damage, or endotheli-
opathy as it is known [33], occur in several clinical situ-
ations including ischemia–reperfusion injury, hypoxia/
reoxygenation, inflammation, sepsis, hemorrhagic shock, 
hypervolemia, hyperglycemia, excessive shear stress and 
coronary artery bypass surgery [23, 34]. These injuries 
determine pathological changes in the endothelial glyco-
calyx such as impaired mechanotransduction, increased 
egress of leukocytes, loss of coagulation control, loss of 
anti-oxidant defense, loss of deposited growth factors, 
and increased vascular permeability (Fig.  4) [10, 35]. In 
a clinical context, disruption of the endothelial glycoca-
lyx layer can lead to development of interstitial edema in 
some patients, notably those with inflammatory condi-
tions such as sepsis [36].

Ischemia–reperfusion injury
Ischemia–reperfusion injury results in tissue dam-
age following disruption of the glycocalyx [37]. Micro-
vascular endothelial cell dysfunction produces organ 
dysfunction locally or systemically, including sys-
temic inflammatory response syndrome [38]. Car-
diac ischemia–reperfusion injury may occur during 
procedures such as coronary artery bypass grafting, 

Fig. 4 Pathologies/interventions associated with glycocalyx alterations. Reproduced with permission from [10]. ecSOD extracellular superoxide 
dismutase; MMP matrix metalloprotease; NO nitric oxide. Sulodexide is a highly purified glycosaminoglycan mixture of low molecular weight 
heparin plus dermatan sulfate [30]
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percutaneous coronary angioplasty, and heart transplant 
surgery [39], with cardiac surgery per se also producing 
glycocalyx damage [40].

Sepsis
Glycocalyx shedding is a feature of inflammation, trauma 
and sepsis, and is mediated by pro-inflammatory agents 
including tumor necrosis factor-α, C-reactive protein, 
adenosine, bradykinin, histamine, platelet-activating fac-
tor, and bacterial lipopolysaccharide. Glycocalyx shed-
ding leads to increased vascular permeability, tissue 
edema and relative hypovolemia [41–43].

Many features of endothelial dysfunction in sepsis are 
shared with aging and with numerous chronic diseases 
such as hypertension, dyslipidemia, diabetes mellitus 
(DM), cardiovascular disease (CVD), cerebrovascular 
disease, chronic kidney disease (CKD), chronic pulmo-
nary disease, liver disease, and cancer. Common features 
include glycocalyx degradation and shedding; increased 
oxidative stress and systemic inflammation; intercellular 
junction disassembly, endothelial cell death and blood–
tissue barrier disruption; enhanced leukocyte adhesion 
and extravasation; and induction of procoagulant and 
antifibrinolytic pathways [43].

Hemorrhagic shock
Endothelial glycocalyx shedding has been shown in 
rodent models of hemorrhagic shock, although the 
underlying mechanism is unknown [44–46]. Recent 
results in rats subjected to non-traumatic hemorrhagic 
shock showed glycocalyx degradation, which was inde-
pendent of increased vascular barrier permeability [46].

Hyperglycemia
Evidence from rodent models [47] and clinical studies in 
volunteers [48] suggests that acute and chronic hyper-
glycemia can cause glycocalyx damage. The link between 
DM and CVD is well established with CVD being the 
most common cause of morbidity and mortality in dia-
betic patients [49]. A role for heparan sulfates in the 
development of widespread vascular endothelial damage 
leading to albuminuria and associated complications in 
patients with type 1 DM was suggested by Deckert and 
colleagues who formulated the ‘Steno hypothesis’ which 
proposes that albumin leakage results from extensive 
vascular damage [50]. Exposure of vascular endothelial 
cells to hyperglycemia and advanced glycosylation end 
products causes glycocalyx disintegration with increased 
leukocyte egress and release of human protease activated 
receptor 2 agonists, together with endothelial NO syn-
thase uncoupling, resulting in reduced NO availability 
and increased vascular permeability [51].

Other
High-density lipoprotein cholesterol (HDL-C) may have 
a role as a causal contributor to sepsis survival [52, 53]. 
Low HDL-C levels have been shown to be a strong pre-
dictor of organ dysfunction or death in patients with 
suspected sepsis [54]. As HDL-C is able to bind and 
sequester pathogenic lipids (e.g., endotoxins), its modifi-
cation might be a novel therapeutic strategy for treating 
sepsis [55].

Potential effects of fluid therapy
Hypervolemia and type of fluid administered
A direct comparison of the hemodynamic effects of 
resuscitation fluids showed that colloids significantly 
increased plasma volume, cardiac index, and central 
venous pressure compared with crystalloids (p < 0.05), 
despite infusion of a higher volume of crystalloids 
(median 1800 vs 1500 mL) [55]. This is relevant because 
the duration of fluid infusion in fluid challenge signifi-
cantly influences fluid responsiveness [56]. Fluid respon-
siveness does not equate with fluid requirement. Excess 
volume in the circulation is compensated by redistri-
bution between stressed and unstressed volume [57] 
and, in the worst cases, by a leak to the interstitial space 
worsening tissue oxygenation [58]. A recently reported 
randomized trial found no differences between a slow 
(180  min) or rapid (30  min) infusion of 5% albumin on 
plasma volume expansion in patients following major 
abdominal surgery, and the rapid infusion had no effect 
on vascular leak [59].

As the type of fluid infused has an important effect on 
the glycocalyx, differences between albumin and crystal-
loids on glycocalyx function have been described.

In in  vivo experiments of anesthetized rats subjected 
to hemorrhagic shock followed by fluid resuscitation, 
administration of normal saline failed to restore endothe-
lial glycocalyx thickness and plasma levels of syndecan-1 
(indicating failure to repair the glycocalyx), leading to a 
marked increase in vascular permeability and leukocyte 
rolling/adhesion. In contrast, albumin stabilized perme-
ability and leukocyte rolling/adhesion, effects which were 
comparable to fresh frozen plasma. Albumin partially 
restored endothelial glycocalyx thickness, and lowered 
plasma syndecan-1 to baseline levels [60].

A recent review of commonly used resuscitation fluids 
for use in the critically ill highlighted the need to con-
sider not only the oncotic properties of a fluid, but also 
its relative ability to protect and restore the endothelial 
glycocalyx. In this regard, evidence from observational 
and pre-clinical in vitro and in vivo studies indicates that 
albumin and fresh frozen plasma are superior to crys-
talloids and artificial colloids [61], although prospective 
studies are needed to confirm these findings.
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Markers of endothelial damage
Biomarkers of endothelial damage have been developed 
with most applied prognostically for conditions of sys-
temic inflammation and sepsis [43, 62–71] (Box  1). In 
patients with septic shock, increased plasma angiopoi-
etin-2 levels were associated with higher fluid overload, 
hepatic and coagulation dysfunction, acute kidney injury, 
mortality, and plasma cytokines, likely as the result of 
increased vascular leakage [72].

Assessment of glycocalyx damage using a variety of 
biomarkers has provided evidence of glycocalyx degra-
dation in a range of clinical conditions including trauma, 
CKD, myeloid leukemia, acute decompensated heart fail-
ure, and Crohn’s disease [5].

Box 1. Biomarkers of endothelial damage

Function Biomarker Reference

Markers of endothelial 
glycocalyx degradation

Urinary GAGs (heparan 
sulfate, chondroitin sulfate, 
hyaluronan and syndecan)

[62]

Markers of endothelial 
cell activation

Endocan [63]

Angiopoietin-1 [64–66]

Angiopoietin-2 [64–68]

Cell adhesion molecules Selectins [68]

Intercellular adhesion mol-
ecule 1 (ICAM-1); vascular 
cell adhesion molecule 1 
(VCAM-1)

[63]

Vasoactive peptides Mid-regional pro-adre-
nomedullin

[69]

Mid-regional pro-ANP [70]

Natural anticoagulants Thrombomodulin [70]

Polypeptides with 
vasoconstrictor and 
vasopressor activity

Endothelin [68]

Growth factors Vascular endothelial growth 
factor (VEGF)

[68]

Vascular damage Circulating endothelial cells [71]

ANP atrial natriuretic peptide, GAGs glycosaminoglycans

maintaining glycocalyx integrity and partially restoring 
impaired vascular permeability via release of S1P from 
RBCs; anti-inflammatory and anti-oxidative effects; 
improvement of the microcirculation and hemodynamics 
following hemorrhagic shock or endotoxemia; and acting 
as an effective plasma volume expander.

Clinical studies on the effect of human albumin 
in the glycocalyx and microcirculation
A recent study of patients with septic shock (n = 30) 
reported that, compared with saline, albumin improved 
skin endothelial cell function, improving microcircula-
tory blood flow. These beneficial effects may be inde-
pendent of the oncotic properties of albumin as neither 
cardiac output nor skin blood flow differed between albu-
min- and saline-treated patients [88].

Conclusions and expert opinion
The endothelial glycocalyx plays an important role in reg-
ulating vascular permeability. Glycocalyx and endothelial 
cell damage occurs in several clinical situations including 
sepsis, hemorrhagic shock, hypervolemia, and hypergly-
cemia. Albumin is physiologically bound within the gly-
cocalyx, protecting against shedding and contributing to 
the maintenance of vascular integrity and normal capil-
lary permeability. Owing to these properties, albumin 
has the potential to improve outcomes in clinical sce-
narios characterized by damaged glycocalyx. Based on 
our review and interpretation of the available literature, 
we provide an opinion on the most suitable applications 
for albumin and highlight areas which require additional 
research.

Monitoring the microcirculation and endothelial damage
Several techniques are available to monitor the microcir-
culation and endothelial damage. These include: intravi-
tal microscopy in in vivo animal models for visualization 
of vascular dynamic events such as microvascular per-
meability, vasotone and blood flow [89] or the glycocalyx 
[90, 91]; assessment of the microcirculation with poten-
tial to measure the glycocalyx in critically ill patients [92]; 
application of near-infrared spectroscopy to measure tis-
sue oxygenation [93, 94]; measuring skin mottling over 
the anterior surface of the knee [94]; measuring micro-
albuminuria [95]; biomarkers of acute kidney injury [96]; 
measuring protein concentrations in alveolar fluid lavage; 
and hemostasis-related biomarkers, e.g., factor VIII, von 
Willebrand factor, International Normalized Ratio, par-
tial thromboplastin time and platelet count.

Intravital microscopy using sidestream darkfield (SDF) 
imaging is a non-invasive method increasingly used to 
analyze the sublingual microcirculation. The technique 
visualizes erythrocytes within the microvasculature due 

Role of human albumin in maintaining glycocalyx 
integrity
Pre‑clinical studies of the effect of human albumin 
on the glycocalyx and microcirculation
Pre-clinical studies which illustrate the mechanism of 
action of albumin, and its effects in models of hemor-
rhagic shock, endotoxemia, vascular permeability and 
ischemia are summarized in Table 2 [13, 14, 60, 73–87]. 
Results from in  vitro, in  vivo, and ex  vivo experiments 
illustrate the multifunctional nature of albumin including 
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Table 2 Preclinical models of albumin

HES hydroxyethyl starch; LPS lipopolysaccharide; MoA mechanism of action; RBC red blood cell; S1P sphingosine-1-phosphate; TNF-α tumor necrosis factor alpha

Preclinical model Main findings Reference

Mechanism of action (MoA)

Rat perfused venular microvessel Primary MoA of albumin in maintaining vascular permeability is 
release of S1P from RBCs

[73]

Rat experimentally induced hypovolemic shock Albumin infusion partially restored the measured thickness of the 
endothelial glycocalyx and restored microvascular permeabil-
ity. Restored permeability may be due to delivery of S1P to the 
endothelium and not wholly dependent on glycocalyx recovery

[74]

In vitro human uterine vein endothelial cells exposed to LPS and 
TNF-α

Human serum albumin (4%) inhibited inflammatory and oxidative 
stress pathways induced by endotoxins

[75]

In vitro model of inflammatory vascular injury using bovine aortic 
endothelial cells

Human serum albumin had modest intrinsic non-thiol-dependent 
anti-inflammatory effects

[76]

In vitro artificial semipermeable membrane Albumin decreased water permeability of ultrafiltration membranes 
in a concentration dependent manner. Effects were mediated by 
plugging of the capillary pore and solute–solvent exchange at the 
capillary membrane surface

[77]

Atomic force microscopy and reflectance interference contrast 
microscopy of bovine lung endothelial cells

Albumin (0.1% and 4%) increased the thickness and produced 
softening of the glycocalyx compared with 1% albumin. Albumin 
produced glycocalyx softening in a concentration-dependent 
manner

[13]

Models of hemorrhagic shock

Anesthetized rats subjected to hemorrhagic shock Albumin partially restored endothelial glycocalyx thickness and 
stabilized permeability and leukocyte rolling/adhesion

[60]

Awake hamsters subjected to hemorrhagic shock Albumin improved the microcirculation in correcting metabolic 
disorders (improving arterial base excess and oxygen extraction 
ratio) more effectively than RBC infusion

[78]

Rat intravital microscopy of the mesenteric microcirculation Albumin improved microcirculation and global hemodynamics 
following hemorrhagic shock and attenuated the inflammatory 
response to reperfusion

[79]

Models of endotoxemia

Mouse experimentally induced endotoxemia Human serum albumin (4%) increased survival of endotoxemic mice 
compared with saline

[75]

Rat experimentally induced endotoxemia Human serum albumin (4% or 20%) increased perfused vessel 
density and blood flow velocity and decreased flow heterogeneity 
to control values

[80]

Rat experimentally induced endotoxemia Albumin (20%) improved hemodynamic parameters and microcir-
culatory perfusion; association with recovery of some glycocalyx 
components

[81]

Models of vascular permeability

Ex vivo perfused isolated guinea pig heart HES infusion, but not albumin infusion, significantly decreased net 
coronary fluid filtration

[82]

Rat experimentally induced hemorrhage or sepsis Following hemorrhage or cecal ligation and incision, plasma vol-
umes after albumin or crystalloid infusions were similar

[83]

Ex vivo perfused isolated guinea pig heart Glycocalyx integrity was maintained with 1% human albumin and 
crystalloid, but functional breakdown of the vascular barrier was 
observed with 0.5% albumin and crystalloid

[84]

Rat anaphylactic shock Under conditions of increased microvascular permeability, albumin 
(5%) was the most effective plasma volume expander compared 
with gelatin (4%), HES (6%) or saline

[85]

Models of ischemia

Ex vivo perfused isolated guinea pig heart Albumin was more effective than HES or saline in preventing cardiac 
fluid extravasation with ischemia–reperfusion injury

[86]

Rat transient focal cerebral ischemia Compared with saline, albumin reperfusion had a neuroprotective 
effect, significantly increasing arteriolar diameter and improv-
ing venular and capillary erythrocyte perfusion with increased 
erythrocyte flow velocity

[87]
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to light emitted by a light emitting diode probe which is 
reflected by hemoglobin and detected by a SDF camera 
[97]. Total vessel density, perfused vessel density, propor-
tion of perfused vessels and microvascular flow index 
are traditionally estimated by offline computer analy-
sis although, more recently, point-of-care approaches 
using validated automatic software platforms have been 
described [98, 99]. SDF imaging detection of RBCs is 
used as a marker of microvascular perfusion, and meas-
urement of the perfused boundary region (PBR) as an 
indirect marker for endothelial glycocalyx barrier dimen-
sions. In a large study of overweight and obese individu-
als, the PBR and presence of RBCs in the microvascular 
circulation were markedly associated [100]. Hand-held 
intravital microscopy showed that sublingual microvas-
cular blood flow alterations are common in patients with 
sepsis, with blood flow abnormality related to disease 
severity [92, 101]. Furthermore, sublingual microvascu-
lar glycocalyx is damaged in critically ill patients, espe-
cially those with sepsis [102, 103], but also after cardiac 
surgery with cardiopulmonary bypass [104, 105] and in 
emergency room and intensive care unit patients [106]. 
However, in patients with sepsis, there was no asso-
ciation of PBR and syndecan-1 values with established 
microcirculatory parameters [102], likely indicating that 
both alterations occur independently. These data should 
be treated with caution as the reproducibility of three 
sublingual microcirculation parameters (vascular den-
sity, RBC filling and PBR) estimated by SDF imaging is 
controversial and large studies are required to achieve 
statistically significant effects [107]. However, some stud-
ies have shown good reproducibility with the method if 
consecutive measurements are averaged [106, 108, 109]. 
The accuracy of in  vivo glycocalyx measurement has 
been analyzed further with an in  vitro approach using 
atomic force microscopy [102, 110]. Consensus European 
Society of Intensive Care Medicine guidelines provide 15 
recommendations for acquisition and interpretation of 
microcirculatory images obtained with hand-held vital 
microscopes for assessment of the microcirculation in 
critically ill patients [92].

According to our clinical and scientific judgement, bio-
markers of endothelial damage and/or evaluation of the 
sublingual microcirculation may have a role in identifying 
subgroups of patients at risk of morbidity and mortality.

We consider that albumin should be used in accepted 
indications in which it has a proven positive risk:benefit 
balance, mainly in septic patients (for initial resuscitation 
after adequate crystalloid infusion and hypoalbumine-
mic septic shock), for burn shock resuscitation and fluid 
maintenance, and in some cases of liver insufficiency. 
The benefits of albumin may relate to its ability to restore 
function to damaged glycocalyx, although further studies 

are required to confirm this relationship and identify 
thresholds for optimal benefit. The mechanism of action 
of these restorative effects also needs to be elucidated.

Further research
As the lung and kidney are the organs most affected by 
septic shock, pre-clinical investigation of the effects of 
albumin on permeability disorders of these organs should 
be conducted. The development of non-invasive imaging-
based analysis tools to assess changes in permeability, 
diameter, and blood flow of vessels in response to specific 
stimuli is beginning to benefit research in both pre-clin-
ical and clinical areas. It is likely that patients’ response 
to albumin may differ depending on localization of the 
blood vessel under investigation.

Detailed studies of the effect of albumin on oxidative 
stress are required and could be assessed using in  vitro 
models (e.g., cultures of human endothelial cells and 
glycocalyx components), as these are more reproducible 
than pre-clinical animal studies.

The main objective of clinical studies of albumin 
should not be to evaluate its effect on overall mortality, 
but rather on more specific endpoints such as organ dys-
function. Investigating the economic impact of albumin 
and its long-term consequences is also advised. Studies 
should accrue biological information, i.e., justification for 
the selected objectives. Smaller studies with homogene-
ous populations are preferred to large multicenter studies 
of patients with clinical heterogeneity.

In summary, additional research needs to be conducted 
to clarify the role of albumin as a protector or restorer of 
damaged glycocalyx, with the aim of identifying clinical 
applications.
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