Regional Variation in Out-of-Hospital Cardiac Arrest Incidence and Outcome

Graham Nichol; Elizabeth Thomas; Clifton W. Callaway; et al.

http://jama.ama-assn.org/cgi/content/full/300/12/1423

Supplementary material
JAMA Report Video
http://jama.ama-assn.org/cgi/content/full/300/12/1423/DC1

Correction
Correction is appended to this PDF and also available at
http://jama.ama-assn.org/cgi/content/full/jama;300/15/1763-a
Contact me if this article is corrected.

Citations
This article has been cited 4 times.
Contact me when this article is cited.

Topic collections
Cardiovascular System; Prognosis/Outcomes; Arrhythmias; Cardiovascular Disease/Myocardial Infarction; Emergency Medicine
Contact me when new articles are published in these topic areas.

Related Articles published in the same issue
Prehospital Termination of Resuscitation in Cases of Refractory Out-of-Hospital Cardiac Arrest
Comilla Sasson et al. JAMA. 2008;300(12):1432.

Surviving Cardiac Arrest: Location, Location, Location
Arthur B. Sanders et al. JAMA. 2008;300(12):1462.
Regional Variation in Out-of-Hospital Cardiac Arrest Incidence and Outcome

Graham Nichol, MD, MPH
Elizabeth Thomas, MSc
Clifton W. Callaway, MD, PhD
Jerris Hedges, MD, MS
Judy L. Powell, BSN
Tom P. Aufderheide, MD
Tom Rea, MD
Robert Lowe, MD, MPH
Todd Brown, MD
John Dreyer, MD
Dan Davis, MD
Ahamed Idris, MD
Ian Stiell, MD, MSc

Context The health and policy implications of regional variation in incidence and outcome of out-of-hospital cardiac arrest remain to be determined.

Objective To evaluate whether cardiac arrest incidence and outcome differ across geographic regions.

Design, Setting, and Patients Prospective observational study (the Resuscitation Outcomes Consortium) of all out-of-hospital cardiac arrests in 10 North American sites (8 US and 2 Canadian) from May 1, 2006, to April 30, 2007, followed up to hospital discharge, and including data available as of June 28, 2008. Cases (aged 0–108 years) were assessed by organized emergency medical services (EMS) personnel, did not have traumatic injury, and received attempts at external defibrillation or chest compressions or resuscitation was not attempted. Census data were used to determine rates adjusted for age and sex.

Main Outcome Measures Incidence rate, mortality rate, case-fatality rate, and survival to discharge for patients assessed or treated by EMS personnel or with an initial rhythm of ventricular fibrillation.

Results Among the 10 sites, the total catchment population was 21.4 million, and there were 20520 cardiac arrests. A total of 11,898 (58.0%) had resuscitation attempted; 2729 (22.9% of treated) had initial rhythm of ventricular fibrillation or ventricular tachycardia or rhythms that were shockable by an automated external defibrillator; and 954 (4.6% of total) were discharged alive. The median incidence of EMS-treated cardiac arrest across sites was 52.1 (interquartile range [IQR], 48.0–70.1) per 100,000 population; survival ranged from 3.0% to 16.3%, with a median of 8.4% (IQR, 5.4%–10.4%). Median ventricular fibrillation incidence was 12.6 (IQR, 10.6–5.2) per 100,000 population; survival ranged from 7.7% to 39.9%, with a median of 22.0% (IQR, 15.0%–24.4%), with significant differences across sites for incidence and survival (P<.001).

Conclusion In this study involving 10 geographic regions in North America, there were significant and important regional differences in out-of-hospital cardiac arrest incidence and outcome.

JAMA. 2008;300(12):1423-1431

See also pp 1432 and 1462.
traumatic injury. This network consists of 11 sites and 1 central coordinating center. This consortium was established to evaluate the treatment of persons with life-threatening injury or OHCA and to conduct clinical trials of promising scientific and clinical advances so as to improve resuscitation outcomes. A registry (ROC Epistry–Cardiac Arrest) was created by this consortium including all cardiac arrests assessed or treated by emergency medical services (EMS) personnel in the participating geographic regions.

The ROC Epistry–Cardiac Arrest is a prospective, multicenter, observational registry of OHCA in EMS agencies and receiving institutions in 8 US sites and 3 Canadian sites. These sites are participants in the ROC clinical research network. One site that self-reported incomplete case capture (San Diego, California) was excluded from the analyses herein.

Study Population
The population of interest consisted of all OHCA cases that occurred within the catchment area of a participating EMS agency, including infants, children, and adults. The census tract of the location of the case was identified and recorded to assess the catchment population served by the agency using census data. Subgroups of the cohort included all EMS-assessed OHCA, EMS-treated OHCA, and cardiac arrests with an initial rhythm of ventricular fibrillation. Included were cases of cardiac arrest that occurred outside the hospital, were evaluated by EMS personnel and either (1) received attempts at external defibrillation (by lay responders or emergency personnel) or chest compressions by organized EMS personnel or (2) were pulseless but did not receive attempts to defibrillate or cardiopulmonary resuscitation (CPR) by EMS personnel. This latter group included patients with a do-not-attempt-resuscitation directive signed and dated by a physician, extensive history of terminal illness or intractable disease, or request from the patient’s family. Traumatic injury cases were excluded.

Key Covariates
Cardiac arrests were classified as having an “obvious” cause when the circumstances and evidence clearly supported such an etiology (ie, cardiac arrest in a patient with a known toxic ingestion). Etiology was classified as “no obvious cause” for cardiac arrests for which the cause was uncertain or for which there was evidence of a primary cardiac etiology.

Some patients were initially treated with a manual defibrillator capable of recording the patient’s initial rhythm. Others were initially treated with an automated external defibrillator (AED) with a built-in computer algorithm capable of classifying the patient’s initial rhythm as resembling ventricular fibrillation (ie, shockable) or not (ie, not shockable). Therefore, initial rhythm was categorized as ventricular fibrillation, ventricular tachycardia, pulseless electrical activity, asystole, shockable, or not shockable. For the purpose of this analysis, ventricular fibrillation, ventricular tachycardia, and shockable rhythms were grouped together.

Data Management and Quality Assurance
Each site used multiple strategies to identify consecutive OHCA cases. Examples of case identification strategies included telephone notification of each incident defibrillator use or CPR by EMS personnel, regular hand sorting through paper EMS charts, or electronic queries of EMS records by a variety of data fields; ie, dispatch call type, vital signs, diagnosis, or a combination of these fields.

Data were abstracted from EMS records and hospital records using standardized definitions for patient characteristics, EMS process, and outcome at hospital discharge. Data were abstracted locally, coded without personal health information, and transmitted to the data coordinating center by Web entry of individual cases or batch upload of multiple cases grouped together. Site-specific quality assurance included initial and continuing education of EMS personnel in data collection. The data coordinating center ensured the quality of the data by (1) using range and logic checks in both the Web-based data entry forms and the batch upload process; (2) systematic review of data to uncover inconsistencies; (3) review of randomly selected records to confirm accuracy of data entry; and (4) annual site visits.

The study was approved under waiver of documented written consent under minimal risk criteria by 74 US institutional review boards and 34 Canadian research ethics boards as well as 26 EMS institutional review boards. In addition, approval in the form of a memorandum of understanding was obtained from 24 hospitals and from 94 EMS systems.

Outcome Measures
The annual incidence was calculated per 100,000 population for the 12-month period of May 1, 2006, to April 30, 2007. The incidence rate in persons of any age was adjusted for age and sex data from the 2000 census for the United States and 2001 census for Canada. The mortality rate was calculated as the number of known deaths per population using similar methods. The case-fatality rate was calculated as the number of known deaths divided by the total number of cases including those with missing final status. The survival rate was calculated as the number of known survivors divided by the total number of cases, including those with missing final vital status. The cause-fatality rate and survival rate would only sum to 100% if final vital status were known for all patients.

Survival to discharge was defined as discharge alive from the hospital after the index OHCA. Patients transferred to another acute care facility (eg, to undergo implantable cardioverter defibrillator placement) were considered to be still hospitalized. Patients transferred to a nonacute ward or facility were considered discharged.
Statistical Analysis

We were aware before study implementation that the use of the prehospital emergency care record to abstract data for inclusion in the study databases could be associated with incomplete data due to the need for rapid treatment and consequent lack of time for EMS personnel to complete the record. A common approach to accounting for such unobserved data is to use multivariate analysis to describe observed outcomes as a function of covariates based on cases with complete data. Then outcomes are estimated for cases with incomplete data. However, this method underestimates uncertainty.5

Instead, we accounted for missing cases by using multiple imputation methods.6-8 Estimated expected cases for agency by month were determined by averaging observed cases for agency by month were deter-

ment period and at the end of the accounting for such unobserved data is to use multivariate analysis to describe observed outcomes as a function of covariates based on cases with complete data. Then outcomes are estimated for cases with incomplete data. However, this method underestimates uncertainty.5

Instead, we accounted for missing cases by using multiple imputation methods.6-8 Estimated expected cases for agency by month were determined by averaging observed cases for agency by month were determined by averaging observed cases in an agency by month based on March 2006–February 2007 data. We assumed an agency was missing cases if the observed rate was much less than expected average (P$, .005), especially at the start of the enrollment period and at the end of the reporting year. A Poisson regression model was used within each site to estimate the expected incidence m for each month with underreported episodes for each agency. For each of 10 imputed data sets, a random draw from a Poisson distribution with mean m was used to impute the number of missing cases. For each such missing case, covariate values were then obtained through hot deck imputation using valid cases from months with good data at the corresponding agency.8

Baseline characteristics of EMS systems and EMS performance on cases were summarized using categorical and parametric or nonparametric descriptors as appropriate. These were reported by site.

Imputation was performed by using S-PLUS version 6.2 (TIBCO Software Inc, Palo Alto, California). Equality of rates among all sites were assessed with χ2 tests. Two-sided P values were used. The cutoff for statistical significance was P$.05.

RESULTS

Ten sites were included (TABLE 1). Some of these sites include the entire named region (eg, Dallas, Texas), whereas others include several municipalities with the region (eg, Alabama). The Alabama site included 26 census county divisions. The Iowa site included 381 census county divisions. Sites had a median catchment population of 1 709 049 (interquartile range [IQR], 958 960–2 581 569). Median population density was 698 (IQR, 405-1596) individuals per square mile. Two hundred eleven of 225 EMS agencies participating in the consortium transported patients included in this analysis to 227 of 268 receiving hospitals in the sites’ catchment area. These included a mix of fire-based and non–fire-based governmental and private agencies that provided basic or advanced life support and did or did not provide patient transport.

In the total catchment population of 21.4 million (FIGURE), there were 20 520 cases of OHCA assessed by EMS.

Table 1. Characteristics of Included Sites

<table>
<thead>
<tr>
<th>Site</th>
<th>Service Area Population</th>
<th>Population Density, Residents per Square Mile</th>
<th>No. of EMS Agencies</th>
<th>No. of Hospitals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabamaa</td>
<td>644 701</td>
<td>485</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Dallas, Texas</td>
<td>1 989 357</td>
<td>3173</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Iowaa</td>
<td>1 015 347</td>
<td>388</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Milwaukee, Wisconsin</td>
<td>940 164</td>
<td>3885</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Ottawa, Ontario, Canada</td>
<td>4 030 696</td>
<td>314</td>
<td>39</td>
<td>37</td>
</tr>
<tr>
<td>Pittsburgh, Pennsylvaniia</td>
<td>935 967</td>
<td>396</td>
<td>6</td>
<td>38</td>
</tr>
<tr>
<td>Portland, Oregon</td>
<td>1 751 119</td>
<td>431</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Seattle, Washington</td>
<td>1 666 978</td>
<td>1 573</td>
<td>35</td>
<td>18</td>
</tr>
<tr>
<td>Toronto, Ontario, Canada</td>
<td>5 627 021</td>
<td>911</td>
<td>32</td>
<td>55</td>
</tr>
<tr>
<td>Vancouver, British Columbia, Canada</td>
<td>2 779 373</td>
<td>1 604</td>
<td>39</td>
<td>33</td>
</tr>
<tr>
<td>Total</td>
<td>21 398 723</td>
<td>640</td>
<td>225</td>
<td>268</td>
</tr>
</tbody>
</table>

TABLE 1

Characteristics of Included Sites

Abbreviation: EMS, emergency medical services.

*The Alabama Resuscitation Outcomes Consortium (ROC) site includes 26 census county divisions within the state. The Iowa ROC site includes 381 census county divisions within the state.

Figure. Patient Flow Based on Utstein Template for Out-of-Hospital Cardiac Arrest

©2008 American Medical Association. All rights reserved.
Of these, 19,920 (97.1% of total) were observed and 600 (2.9%) were imputed. These imputed cases were distributed among 12 agencies (5.7% of total) at 7 sites. Resuscitation was attempted in 11,898 cases (58.0% of total). Nine hundred fifty-four (4.6% of total) were known to have been discharged alive.

Patient and EMS characteristics for all cases are shown in Table 2. Emergency medical services-assessed OHCA patients had a median age of 67 years (IQR, 53-80 years) (Table 2); 12,631 (61.6%) were men. A total of 2271 OHCAs (11.1%) occurred in public locations; 2730 (13.3%) had a first recorded rhythm of ventricular fibrillation and 1887 (9.2%) had a missing or undetermined first recorded rhythm. Among EMS-treated OHCAs, 1848

| Table 2. Patient and EMS Characteristics of All Episodes |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Characteristics | EMS-Assessed Cardiac Arrest (n = 20,520) | EMS-Treated Cardiac Arrest (n = 11,898) | Initial Rhythm VT/VF or Reported Shockable by AED (n = 2729) | Witnessed Initial Rhythm VT/VF (n = 1850) | EMS-Assessed But Not EMS-Treated (n = 8,622) |
| Age, median (IQR), y | 67 (53-80) | 67 (53-79) | 65 (54-76) | 65 (54-76) | 68 (53-81) |
| Unknown | 449 (2) | 92 (1) | 26 (1) | 13 (1) | 357 (4) |
| Male sex, No. (%) | 12,631 (61) | 7,550 (64) | 2,073 (76) | 1,420 (77) | 5,081 (59) |
| Unknown | 183 (0.8) | 27 (0.2) | 5 (0.2) | 4 (0.2) | 156 (1.8) |
| Location of cardiac arrest, No. (%) | Public | 2,271 (11) | 1,848 (16) | 798 (29) | 575 (31) | 393 (5) |
| Health care setting | 274 (1) | 231 (2) | 46 (2) | 40 (2) | 43 (1) |
| Home/nonpublic | 17,455 (85) | 9,773 (82) | 1,883 (69) | 1,235 (67) | 7,682 (89) |
| Unknown | 520 (3) | 16 (<1) | 2 (<1) | 0 | 504 (6) |
| First recorded rhythm, No. (%) | VT/VF/shockable | 2,730 (13) | 2,729 (23) | 2,729 (100) | 1,850 (100) | 1 (<1) |
| Not shockable | 1,086 (5) | 1,085 (6) | NA | NA | NA | 1 (<1) |
| Asystole | 4,793 (23) | 4,792 (40) | NA | NA | NA | 1 (<1) |
| Pulseless electrical activity | 2,350 (11) | 2,349 (20) | NA | NA | NA | 1 (<1) |
| Not determined | 551 (3) | 549 (5) | NA | NA | NA | 2 (<1) |
| Unknown | 1,336 (7) | 394 (3) | NA | NA | 942 (11) |
| No analysis by EMS | 7674 (37) | NA | NA | NA | 7,674 (89) |
| Witness status | Bystander | 4,728 (23) | 4,410 (37) | 1,589 (58) | 1,589 (86) | 318 (4) |
| EMS | 1,127 (5) | 1,074 (9) | 262 (10) | 262 (14) | 53 (1) |
| Unwitnessed | 11,850 (58) | 5,407 (45) | 724 (26) | NA | 6,443 (75) |
| Unknown | 2,815 (14) | 1,007 (9) | 155 (6) | NA | 1,808 (21) |
| Bystander CPR Performed | 3,989 (19) | 3,739 (31) | 1,091 (40) | 827 (45) | 249 (3) |
| Unknown | 3,910 (19) | 1,289 (11) | 228 (8) | 262 (14) | 2,620 (30) |
| Time from call to first advanced life support arrival, median (IQR), min | 7:00 (5:00-10:00) | 7:24 (6:13-10:43) | 7:15 (5:00-10:37) | 8:00 (5:31-11:42) | 6:11 (4:45-8:37) |
| Unwitnessed | 3995 (19) | 897 (8) | 196 (7) | 141 (8) | 3,098 (36) |
| Time from call to first EMS rhythm analysis, median (IQR) | 9:31 (7:10-12:41) | 9:38 (7:18-12:49) | 8:58 (6:53-11:43) | 9:52 (7:34-12:55) | 8:04 (6:00-11:02) |
| Unknown | 9,927 (45) | 1,622 (14) | 202 (7) | 87 (5) | 7,976 (90) |
| Etiology of cardiac arrest, No. (%) | No obvious cause | 17,727 (86) | 10,962 (92) | 2,665 (98) | 1,910 (98) | 6,764 (78) |
| Other cause | 1,548 (8) | 910 (8) | 62 (2) | 38 (2) | 638 (7) |
| Unknown | 1,245 (6) | 26 (<1) | 3 (<1) | 2 (<1) | 1,220 (14) |
| Service level of first arriving vehicle, No. (%) | BLS | 698 (3) | 298 (2) | 64 (2) | 42 (2) | 412 (5) |
| BLS-D | 8,883 (41) | 5,989 (44) | 1,257 (46) | 885 (48) | 3,055 (35) |
| BLS+ | 2,854 (13) | 1,761 (15) | 357 (13) | 246 (13) | 823 (10) |
| ALS | 6,732 (32) | 4,459 (37) | 1,018 (37) | 655 (36) | 4,272 (50) |
| Unknown | 1,081 (3) | 123 (1) | 33 (1) | 0 | 61 (1) |

Abbreviations: AED, automated external defibrillator; CPR, cardiopulmonary resuscitation; EMS, emergency medical services; IQR, interquartile range; NA, data not applicable; VF, ventricular fibrillation; VT, ventricular tachycardia.

This refers to the highest skill level of EMS providers on the first arriving vehicle. BLS (basic life support) indicates capable of performing CPR; BLS-D, capable of performing CPR and defibrillation; BLS+, capable of performing CPR and defibrillation, administering symptom relief medication, or starting intravenous therapy; ALS (advanced life support), capable of providing advanced cardiac life support, including performing endotracheal intubation, interpreting cardiac rhythm, and administering intravenous antiarrhythmic medication.
Regional variation in out-of-hospital cardiac arrest

A prospective observational study of out-of-hospital cardiac arrest (OHCA) was conducted in 12 regions throughout North America during 2000 to 2002. The incidence of OHCA, the known case-fatality rate, and survival to discharge were evaluated. The overall unadjusted incidence per 100,000 person-years was 12.8 per 100,000 person-years. The known case-fatality rate ranged from 91.8% to 96.9% (median, 96.0%; IQR, 92.1%-96.3%). The known survival to discharge ranged from 1.1% to 8.1% (median, 3.3%; IQR, 2.4%-6.4%). The proportion of patients with vital status missing ranged from 0.1% to 2.0% (median, 1.2%; IQR, 0.5%-1.4%). All P values for differences in rates across sites were <.001.

Emergency medical services--treated OHCA is described in Table 4. The unadjusted incidence of EMS-treated OHCA was 55.6 per 100,000 person-years. The adjusted incidence per 100,000 census population ranged from 40.3 to 86.7 (median, 52.1; IQR, 48.0-70.1). The adjusted mortality rate per 100,000 census population ranged from 36.9 to 78.0 (median, 47.0; IQR, 42.8-60.1). The known case-fatality rate ranged from 83.5% to 93.8% (median, 90.9%; IQR, 87.3%-92.5%). The known survival to discharge ranged from 3.0% to 16.3% (median, 8.4%; IQR, 5.4%-10.4%). The proportion of patients with vital status missing ranged from 0.1% to 5.3% (median, 1.5%; IQR, 0.7%-2.4%). All P values for differences in rates across sites were <.001.

Incidence and outcomes associated with ventricular fibrillation, described in Table 5. The unadjusted incidence per 100,000 person-years was 12.8 per 100,000 person-years. The adjusted incidence per 100,000 census population ranged from 9.3 to 19.0 (median, 12.6; IQR, 10.6-15.2). The adjusted mortality rate per 100,000 census population ranged from 7.2 to 13.7 (median, 10.1; IQR, 8.9-11.2). The known case-fatality rate ranged from 59.8% to 89.2% (median, 75.8%; IQR, 73.2%-82.9%). The known survival to discharge ranged from 7.7% to 39.9% (median, 22.0%; IQR, 15.0%-24.4%). The proportion of patients with vital status missing ranged from 0% to 7.9% (median, 2.6%; IQR, 1.1%-3.5%). All P values for differences in rates across sites were <.001.

Table 3. Incidence and Outcome of EMS-Assessed Out-of-Hospital Cardiac Arrest

<table>
<thead>
<tr>
<th>Region</th>
<th>Alabama (n = 715)</th>
<th>Dallas (n = 2462)</th>
<th>Iowa (n = 1028)</th>
<th>Ottawa (n = 2965)</th>
<th>Pittsburgh (n = 1217)</th>
<th>Portland (n = 1320)</th>
<th>Seattle (n = 2349)</th>
<th>Toronto (n = 5156)</th>
<th>Vancouver (n = 2373)</th>
<th>Overall (n = 19584)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted inc. rate per 100000</td>
<td>106.7</td>
<td>159.0</td>
<td>93.1</td>
<td>71.8</td>
<td>105.1</td>
<td>77.5</td>
<td>144.0</td>
<td>96.8</td>
<td>75.9</td>
<td>95.0</td>
</tr>
<tr>
<td>Adjusted mortality rate per 100000</td>
<td>103.3</td>
<td>153.2</td>
<td>86.1</td>
<td>68.9</td>
<td>101.1</td>
<td>71.4</td>
<td>131.8</td>
<td>93.5</td>
<td>70.0</td>
<td>90.0</td>
</tr>
<tr>
<td>Case-fatality rate, %</td>
<td>96.9</td>
<td>96.0</td>
<td>92.7</td>
<td>96.0</td>
<td>96.3</td>
<td>92.0</td>
<td>91.8</td>
<td>96.4</td>
<td>92.1</td>
<td>94.7</td>
</tr>
<tr>
<td>Survival to discharge, %</td>
<td>1.1</td>
<td>2.4</td>
<td>6.1</td>
<td>3.3</td>
<td>3.3</td>
<td>6.5</td>
<td>8.1</td>
<td>3.2</td>
<td>6.7</td>
<td>4.4</td>
</tr>
<tr>
<td>Vital status data missing, %</td>
<td>2.0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.7</td>
<td>0.3</td>
<td>1.5</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Abbreviation: EMS, emergency medical services.

*Milwaukee was excluded from this analysis because of self-reported incomplete data on patients in whom resuscitation was not attempted. All rates were unequal across sites at P < .001.
response and postresuscitation care in the hospital.

Other studies have reported regional variation in the incidence of OHCA. Such gradients are associated with socioeconomic and racial disparities in health. As a consequence of these gradients, cardiovascular disease is the leading cause of income-related differences in premature mortality in the United States and Canada.

It is plausible that use of secondary prevention in patients with established cardiovascular disease is more common in some regions compared with others. This would reduce the occurrence of OHCA if secondary prevention attenuated the risk of arrhythmia. Randomized trials of statin therapy and secondary analyses of statin use in a trial of implantable defibrillators demonstrate that use of such medication reduces the risk of subsequent arrest. Other studies demonstrate that β antagonists reduce the risk of death due to cardiac arrest in patients with heart failure. However, the magnitude of regional variation in medication use is much less than the magnitude of variation in cardiac arrest observed in the present study. Therefore, differences in prevention do not fully explain our findings.

Also, it is plausible that patients with symptoms of acute myocardial infarction have less delay in seeking care in some geographic regions compared with others. This would reduce the occurrence of infarction-related ventricular fibrillation or shift the occurrence of this rhythm to the in-hospital setting. If such differences in delay in care exist, it seems unlikely that they are due to differences in patient delay in reacting to symptoms of myocardial infarction, since interventions to modify this delay have had limited success. Instead, such differences could reflect regional differences in care and outcome for patients with acute cardiovascular events. Such differences could be reduced by implementation of systems of care for such patients. However, we observed large regional variation in survival of all EMS-treated cardiac arrests as well as in survival of the minority of cardiac arrests that were due to ventricular fibrillation and potentially associated with acute myocardial infarction. Therefore, regional variation in care for acute cardiovascular events does not fully explain our findings.

Other investigators have reported survival rates ranging from 0% to 21% after treatment of OHCA. Emergency medical services agencies in large cities have special challenges in achieving good outcomes after cardiac arrest. Our analysis suggests that such differences do not reflect interstudy differences in inclusion criteria or outcome definition, because each site in the present study implemented uniform definitions of cardiac arrest and survival. It seems likely that these differences reflect, in part, regional differences in the availability of emergency cardiac care. These differences include bystander CPR, lay responder defibrillation programs, EMS factors such as experience of personnel, types of interventions provided by EMS personnel or treatments available at receiving hospitals. Some of these factors have been associated with differences in survival or quality of life after resuscitation, although no analysis has had adequate power to

Table 4. Incidence and Outcome of EMS-Treated Out-of-Hospital Cardiac Arrest

<table>
<thead>
<tr>
<th>Location</th>
<th>Alabama (n = 267)</th>
<th>Dallas (n = 1265)</th>
<th>Iowa (n = 565)</th>
<th>Milwaukee (n = 801)</th>
<th>Ottawa (n = 1836)</th>
<th>Pittsburgh (n = 575)</th>
<th>Portland (n = 793)</th>
<th>Seattle (n = 1170)</th>
<th>Toronto (n = 2992)</th>
<th>Vancouver (n = 1634)</th>
<th>Overall (n = 11 898)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted incidence rate per 100 000</td>
<td>40.3</td>
<td>82.9</td>
<td>51.3</td>
<td>86.7</td>
<td>45.1</td>
<td>51.1</td>
<td>47.0</td>
<td>74.4</td>
<td>57.0</td>
<td>52.8</td>
<td>56.0</td>
</tr>
<tr>
<td>Adjusted mortality rate per 100 000</td>
<td>36.9</td>
<td>77.2</td>
<td>44.4</td>
<td>78.0</td>
<td>42.3</td>
<td>47.1</td>
<td>41.0</td>
<td>62.3</td>
<td>53.6</td>
<td>46.9</td>
<td>50.9</td>
</tr>
<tr>
<td>Case-fatality rate, %</td>
<td>91.7</td>
<td>92.6</td>
<td>86.9</td>
<td>90.1</td>
<td>93.5</td>
<td>92.3</td>
<td>86.8</td>
<td>83.5</td>
<td>93.8</td>
<td>88.5</td>
<td>90.7</td>
</tr>
<tr>
<td>Survival to discharge, %</td>
<td>3.0</td>
<td>4.5</td>
<td>11.0</td>
<td>9.7</td>
<td>5.3</td>
<td>7.0</td>
<td>10.6</td>
<td>16.3</td>
<td>5.5</td>
<td>9.7</td>
<td>7.9</td>
</tr>
<tr>
<td>Vital status data missing, %</td>
<td>5.3</td>
<td>2.9</td>
<td>2.1</td>
<td>0.1</td>
<td>1.2</td>
<td>0.7</td>
<td>2.5</td>
<td>0.2</td>
<td>0.7</td>
<td>1.7</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Abbreviation: EMS, emergency medical services.

Table 5. Incidence and Outcome of Ventricular Fibrillation

<table>
<thead>
<tr>
<th>Location</th>
<th>Alabama (n = 65)</th>
<th>Dallas (n = 195)</th>
<th>Iowa (n = 135)</th>
<th>Milwaukee (n = 165)</th>
<th>Ottawa (n = 429)</th>
<th>Pittsburgh (n = 102)</th>
<th>Portland (n = 249)</th>
<th>Seattle (n = 297)</th>
<th>Toronto (n = 614)</th>
<th>Vancouver (n = 478)</th>
<th>Overall (n = 2729)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted incidence rate per 100 000</td>
<td>9.9</td>
<td>12.8</td>
<td>12.4</td>
<td>18.7</td>
<td>10.4</td>
<td>9.3</td>
<td>15.1</td>
<td>19.0</td>
<td>11.4</td>
<td>15.2</td>
<td>12.8</td>
</tr>
<tr>
<td>Adjusted mortality rate per 100 000</td>
<td>8.8</td>
<td>10.7</td>
<td>8.9</td>
<td>13.7</td>
<td>8.6</td>
<td>7.2</td>
<td>11.3</td>
<td>11.5</td>
<td>9.5</td>
<td>10.9</td>
<td>9.8</td>
</tr>
<tr>
<td>Case-fatality rate, %</td>
<td>89.2</td>
<td>82.7</td>
<td>72.9</td>
<td>74.0</td>
<td>83.1</td>
<td>77.5</td>
<td>73.9</td>
<td>59.8</td>
<td>83.0</td>
<td>71.7</td>
<td>76.5</td>
</tr>
<tr>
<td>Survival to discharge, %</td>
<td>7.7</td>
<td>9.5</td>
<td>22.7</td>
<td>26.0</td>
<td>14.8</td>
<td>21.5</td>
<td>22.5</td>
<td>39.9</td>
<td>15.7</td>
<td>25.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Vital status data missing, %</td>
<td>3.1</td>
<td>7.9</td>
<td>4.4</td>
<td>0</td>
<td>2.1</td>
<td>1.0</td>
<td>3.6</td>
<td>0.3</td>
<td>1.3</td>
<td>3.3</td>
<td>2.5</td>
</tr>
</tbody>
</table>

All rates were unequal across sites at P < .001.
If survival after OHCA treated by EMS could be increased throughout North America from the study average of 7.9% to the maximum observed rate of 16.3%, an estimated 15,000 premature deaths would be prevented each year (52.1 per 100,000 × [304,598,626 + 33,223,840] × [16.3% – 7.9%]). Ongoing funding for fundamental, translational, and clinical research related to emergency cardiovascular care is necessary to ensure that such improvements in public health can be achieved.

This study has several strengths compared with previous studies. Clinical trials often exclude patients at higher risk of poor outcomes, so estimation of the burden of illness based only on those enrolled in trials is subject to bias. Existing OHCA registries do not contain the necessary information to determine which interventions are effective in the out-of-hospital setting. Several large regional registries have evaluated the effectiveness of out-of-hospital interventions on outcomes after OHCA.43,44 However, these studies may have underestimated the incidence of OHCA because they excluded individuals who are assessed but not treated by EMS personnel.

This study has several limitations. First, sites for this registry were selected by a competitive process emphasizing regional sites with well-organized EMS systems and associated investigators, so results observed in participating sites may not be representative of the community at large. However, the catchment population of participating communities includes approximately 10% of the North American population and has diverse geographic and socioeconomic characteristics. To the best of our knowledge, this population is larger than that of any other ongoing OHCA registry.

Second, it is plausible that incidence, structure, process, and outcome data reported by each site are subject to ascertainment bias because not all responses are audited. However, all sites agreed to the data elements before study initiation, trained data collection personnel, and altered existing paper or electronic data capture to increase the likelihood of data capture. Moreover, our use of timely episode reporting by sites facilitates quick feedback from the coordinating center to sites and to responders to reduce the amount of incomplete data.

Third, the expected number of OHCA cases was not observed for some agencies during specific time intervals within the sampling period. Multiple imputation was used to account for such missing data. This approach allows better estimation of the variability of the data and helps to ensure appropriately proportionate weight for each agency. This method assumes that the cases randomly imputed, which in our case were from the same agency in a different time period, have the same patient, EMS process, and outcome characteristics as the missing data. Registry data have not shown any significant time trends that would bias this imputation process.44 Furthermore, only a small proportion of the total cases were imputed in this study, so it seems unlikely that this imputation would reduce its validity.

Fourth, we were unable to assess the effect of hospital-based postresuscitation care on outcomes after OHCA because of our lack of patient-specific data about processes of care delivered in the hospital. In-hospital therapeutic hypothermia improves outcomes after OHCA.31 A small trial suggested that hemofiltration to reduce inflammation after OHCA offers additional benefit.45 Observational studies suggest that early percutaneous coronary intervention improves outcomes as well.46,47 Therefore, future assessments of regional variation in outcome after OHCA should assess the relative effects of out-of-hospital and hospital-based care.

Fifth, we also were unable to report on neurologic outcome at discharge. Assessment of Cerebral Performance Category (CPC) at discharge is a recommended part of resuscitation outcome studies.48 However, the CPC has
limited discrimination between mild and moderate brain injury. A small study with incomplete follow-up of survivors demonstrated only moderate correlation with other measures of health-related quality of life. Although a larger study demonstrated a better correlation between CPC and generic measures of health-related quality of life, CPC should not be considered a substitute for reliable and valid measures of the latter. Nonetheless, previous studies demonstrate that resuscitation interventions that are associated with better survival are also associated with better quality of life.

These findings have implications for prehospital emergency care. The 5-fold variation in survival after EMS-treated cardiac arrest and 5-fold variation in survival after ventricular fibrillation demonstrate that cardiac arrest is a treatable condition. However, only 31.4% of treated cardiac arrests (84.8% of bystander-witnessed) received bystander CPR. Therefore, ongoing efforts are necessary to encourage the public to be ready, willing, and able to provide CPR when necessary. Further improvements in outcome could be achieved by reducing the time to arrival of EMS providers capable of advanced cardiac life support by improving early detection of cardiac arrest, dispatch protocols, deployment of existing vehicles, number of vehicles available to respond, quality of CPR, and real-time or postevent quality assurance.

CONCLUSION

Out-of-hospital cardiac arrest is a common and lethal event. There are significant and important regional variations in the incidence and outcome of cardiac arrest. Additional investigation is necessary to understand the causes of this variation in an effort to better understand implications for allocation of resources to prehospital emergency care clinical practice and translational cardiac arrest research to reduce the magnitude of this variation and improve cardiovascular health.

REFERENCES

disease: the Rapid Early Action for Coronary Treat-
20. O’Connor GT, Quinton HB, Traven ND, et al. Geo-
graphic variation in the treatment of acute myocar-
dial infarction: the Cooperative Cardiovascular Project.
21. Ting HH, Rihal CS, Gersh BJ, et al. Regional sys-
tems of care to optimize timeliness of reperfusion
therapy for ST-elevation myocardial infarction: the
Mayo Clinic STEMI Protocol. Circulation. 2007;
116(7):729-736.
analysis of out-of-hospital cardiac arrest—bystander
CPR and end expired carbon dioxide. Resuscitation.
23. Gray AJ, Redmond AD, Martin MA. Use of the
automatic external defibrillator-pacemaker by ambu-
24. Lombardi G, Gallagher J, Gennis P. Outcome of
out-of-hospital cardiac arrest in New York City: the
Pre-Hospital Arrest Survival Evaluation (PHASE) study.
25. Dunne RB, Compton S, Zalesni RJ, et al. Out-
comes from out-of-hospital cardiac arrest in Detroit.
Cardiac arrest and resuscitation: a tale of 29 cities. Ann
27. Hallstrom AP, Ornato JP, Westfild M, et al. Pub-
lit Access Defibrillation Trial Investigators. Public-
access defibrillation and survival after out-of-
(7):637-646.
28. Soo LH, Gray D, Young T, et al. Influence of ambu-
 lance crew’s length of experience on the outcome of
darone for resuscitation after out-of-hospital cardiac
1999;341(12):871-878.
as compared with lidocaine for shock-resistant ven-
884-890.
31. Bernard SA, Gray TW, Buist MD, et al. Treat-
ment of comatose survivors of out-of-hospital car-
32. Hypothermia after Cardiac Arrest Study Group.
Mild therapeutic hypothermia to improve the neuro-
logic outcome after cardiac arrest [published correc-
tion appears in N Engl J Med. 2002346(22):1756].
33. van der Hoeven JG, de Koning J, van der Weyden
P, et al. Improved outcome for patients with a car-
diac arrest by supervision of the emergency medical
services system. Neth J Med. 1995;46(3):123-
130.
34. Bergner L, Bergner M, Hallstrom AP, et al. Ser-
vice factors and health status of survivors of out-of-
1(3):269-273.
of intensified prehospital treatment in out-of-
hospital cardiac arrest: survival and cerebral progno-
sis: the Odense Ambulance Study. Prehosp Emerg
Care. 2004;8(2):129-134.
Trends in the incidence of myocardial infarction and
Change in survival from out-of-hospital cardiac
arrest and its effect on coronary heart disease mortality—
Minneapolis-St Paul: the Minnesota Heart
861.
38. Rea TD, Eisenberg MS, Becker LJ, et al. Tempo-
rals in sudden cardiac arrest: a 25-year emer-
gency medical services perspective. Circulation.
sociated with survival to hospital discharge among pa-
tients hospitalised alive after out of hospital cardiac
arrest: change in outcome over 20 years in the com-
munity of Göteborg, Sweden. Heart. 2003;89(1):
25-30.
tures of designating out-of-hospital cardiac arrest as
a reportable event. Circulation. 2008;117(17):
2299-2308.
41. Emergency Medical Services at the Crossroads.
42. Steil IG, Wells GA, Spalte DW, et al. The On-
tario Prehospital Advanced Life Support (OPALS) Study:
rationale and methodology for cardiac arrest patients.
43. Ekström L, Herlitz J, Wennblom B, et al. Sur-
vival after cardiac arrest outside hospital over a 12-year
period in Gothenburg. Resuscitation. 1994;27(3):
181-187.
44. Brooks SC, Schmicker RH, Rea TD, et al. Evi-
dence for circadian variability in the frequency of out-
(10):934.
45. Laurent I, Adrie C, Vinsonneau C, et al. High-
volume hemofiltration after out-of-hospital cardiac ar-
46(3):432-437.
46. Spaulding CM, Joly LM, Rosenberg A, et al. Im-
mediate coronary angiography in survivors of out-of-
(23):1629-1633.
47. Knafelj R, Radsel P, Ploj T, et al. Primary percu-
taneous coronary intervention and mild induced hy-
pothermia in comatose survivors of ventricular fibril-
lation with ST-elevation acute myocardial infarction.
48. Jacobs I, Nadjarni V, Bahr J, et al. Cardiac arrest and
cardiopulmonary resuscitation outcome reports:
update and simplification of the Utstein templates for
resuscitation registries: a statement for healthcare pro-
fessionals from a task force of the International Liai-
son Committee on Resuscitation. Circulation. 2004;
49. Hsu JWY, Callaham M, Madsen CD. Quality-of-
life and formal functional testing of survivors of out-
of-hospital cardiac arrest correlates poorly with tra-
50. Steil IG, Nesbitt LP, Nichol G, et al. Comparison of
the cerebral performance category score and the
health utilities index for survivors of cardiac arrest [pub-
lished online ahead of print April 30, 2008]. Ann Emerg
Incomplete Financial Disclosures

To the Editor: We are writing to express our regret that we neglected to report financial disclosures in our Commentary on dietary allowance of protein. Dr Wolfe has received an honorarium and expenses for participation in the “Protein Summit 2007: Exploring the impact of high-quality protein on optimal health,” with support for the conference provided by the Egg Nutrition Center, National Dairy Council, National Pork Board, and the Beef Checkoff through the National Cattlemen’s Beef Association. Dr Miller was formerly employed by the National Cattlemen’s Beef Association until her resignation in 2005 and has served as a consultant for the Physicians’ Committee for Responsible Medicine in 2006. We apologize to the editors and readers of JAMA for omitting these disclosures and to the extent to which they may reflect a conflict of interest. We hope this information will not affect interpretation of our article. We are not contractually affiliated with and we do not receive any research support from any of the cited organizations.

Robert R. Wolfe, PhD
rwolfe2@uams.edu
Center for Translational Research in Aging and Longevity
Donald W. Reynolds Institute on Aging
University of Arkansas for Medical Sciences
Little Rock, Arkansas

Sharon L. Miller, PhD
Little Rock, Arkansas

Financial Disclosures: Dr Wolfe reported having received an honorarium and expenses for participation in the “Protein Summit 2007: Exploring the impact of high-quality protein on optimal health,” with support for the conference provided by the Egg Nutrition Center, National Dairy Council, National Pork Board, and the Beef Checkoff through the National Cattlemen’s Beef Association. Dr Miller reported having been formerly employed by the National Cattlemen’s Beef Association until her resignation in 2005 and having served as a consultant for the Physicians’ Committee for Responsible Medicine in 2006.