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 CURRENTOPINION Assessment of adequacy of volume resuscitation

John H. Boyda,b,c and Demetrios Sirounisa,b

Purpose of review
It has recently become evident that administration of intravenous fluids following initial resuscitation has a
greater probability of producing tissue edema and hypoxemia than of increasing oxygen delivery.
Therefore, it is essential to have a rational approach to assess the adequacy of volume resuscitation. Here
we review passive leg raising (PLR) and respiratory variation in hemodynamics to assess fluid
responsiveness.

Recent findings
The use of ultrasound enhances the clinician’s ability to detect and predict fluid responsiveness, whereas
enthusiasm for this modality must be tempered by recent evidence that it is only reliable in apneic patients.

Summary
The best predictor of fluid response for hypotensive patients not on vasopressors is a properly
conducted passive leg raise maneuver. For more severely ill patients who are apneic, mechanically
ventilated and on vasopressors, point of care echocardiography is the best choice. Increases in vena
caval diameter induced by controlled positive pressure breaths are insensitive to arrhythmias and can
be performed with relatively brief training. Most challenging are patients who are awake and on
vasopressors; we suggest that the best method to discriminate fluid responders is PLR measuring
changes in cardiac output.

Keywords
fluids therapy, shock, ultrasound

INTRODUCTION
At normal or low circulating volumes, there exists
a well described relationship between stroke
volume (SV) and ventricular end-diastolic volume
[1], and SV increases rapidly with administration
of intravenous fluids [2–5]. This basic physiology
has been applied in practice through initiatives
such as the surviving sepsis guidelines, and
patients presenting with signs of shock routinely
receive intravenous volume expansion of 20 ml/
kg, while undergoing diagnostic evaluation [6].
This protocol-driven care results in standard and
effective initial volume therapy; however, the
clinical challenge lies with patients who exhibit
ongoing shock. Fully 50% of patients with non-
hemorrhagic shock remain in shock following
initial volume expansion and needing vasopres-
sors to achieve a minimally acceptable blood pres-
sure (BP) [7]. Nearly 90% of patients with shock
refractory to initial fluid resuscitation will require
mechanical ventilation [8,9]. In these patients,
mean airway pressures of nearly 18 mmHg [10]
combine with recent fluid expansion of the
circulation to reestablish the postresuscitation
equilibrium of venous return and SV.

The patient with shock despite volume
resuscitation
Upon presentation for nonhemorrhagic shock
(prior to fluid administration), central venous pres-
sure (CVP) lies between 0 and 5 mmHg [1–5,11].
Following guideline-driven intravenous fluid
therapy CVP will rise to 9–15 mmHg [12,13]. With
this change in CVP comes a predictable but pro-
found effect upon inferior vena caval size when
assessed by means of transthoracic echocardiogra-
phy. Although subjects with a normal circulating
volume have an inferior vena cava (IVC) diameter of
17 mm that collapses more than 50% during regular
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inspiration [14–16], following initial volume resus-
citation the IVC diameter increased to 23 mm, with
no significant respiratory variation in 2/3 of the
patients [17].

Is the patient fluid responsive?
Will an individual benefit from additional intrave-
nous fluid therapy or is the prescription of
additional fluids toxic? The decision to administer
supplemental intravenous fluids to the patient at
risk of progressive organ failure rests upon the belief
that additional volume expansion will increase car-
diac output (CO) and thereby increase tissue oxygen
delivery. However, when SV can no longer be
increased, additional administration of intravenous
fluids results in tissue edema, hypoxia and is associ-
ated with higher mortality [12,18–23]. Therefore,
the ability to judge where the patient lies on the
Starling curve is of more than academic interest, it
is clinically essential. For the purpose of this review a
‘fluid responsive’ patient will mean measurable
increase of at least 15% in SV. Tests of fluid respon-
siveness began with direct measurement of right
atrial pressure, commonly referred to as CVP.
Exhaustively reviewed elsewhere [24], in patients
who are critically ill, CVP in isolation cannot dis-
criminate those who will respond to fluids. Experts
now agree that maneuvers capable of rapidly chang-
ing preload (defining two points on the Starling
curve) offer far better abilities to divine fluid respon-
siveness. Passive leg raising (PLR) and ‘opportunis-
tic’ observation of respiratory variation in thoracic
pressure may be used to rapidly alter preload.

Passive leg raising to reversibly alter preload
A period of 30–60 s following bilateral PLR, preload
is increased following recruitment of blood from the
legs [25]. It has been estimated that approximately
300 ml of blood is transferred from the legs to the
central circulation using this method [26&&]. The
ideal PLR begins with the patient’s head elevated
to at least 458 above the horizontal and consists of
rapidly moving the bed to simultaneously elevate

the lower limbs to 30–458 above the horizontal,
whereas lowering the head of the bed to 08. This
positioning offers a greater central shift in blood
compared with a patient who is supine at the onset
of the maneuver [27]. PLR can be performed with
good results in both mechanically ventilated and in
spontaneously breathing patients [25,26&&,28,29].
Assessing the hemodynamic effect of the PLR-
induced central blood shift is not uniform but rather
must be tailored to the patient. In hypotensive
individuals not on vasopressors, an increase in BP
suggests that the patient will respond to a fluid
bolus. The ease of measurement (invasive or
noninvasive BP monitoring) of the result of the
maneuver suggests that PLR is best suited to patients
who are not yet on vasopressors. In patients already
on vasoactive medications, there is no detectable
change in BP, and so the measure of interest is
change in CO. CO changes can be detected after
1–2 min after PLR by using echocardiography or
alternative measures of output [29]. The increased
complexity and wider confidence intervals around
repeat CO measures makes this technique less rig-
orous for patients already on vasopressors.

Unlike measures that compare beat-to-beat vari-
ation in CO, PLR performs well in arrhythmia and in
those with high work of breathing as BP and CO are
measured over a 30-s interval, smoothing distortion
because of arrhythmia and respiratory efforts [26&&].
Of note is that PLR is not predictive of fluid response
in patients with intra-abdominal hypertension [30].

Respiratory variation
Cyclical changes in intra-thoracic pressure as a result
of respiration have been widely recognized to vary
cardiac preload under usual circumstances. The
most predictable hemodynamic effect of respiratory
variation occurs in mechanically ventilated patients
with no autonomous respiratory effort; the apnea
generally the result of prescribed sedative-hyp-
notics. During a mechanical breath, a surge in
intra-thoracic pressure shifts blood from the pul-
monary circulation to the left heart, rapidly increas-
ing SV. Observing BP, this is seen as a rapid increase
in pulse pressure (PP) [31]. During prolonged high
intra-thoracic pressure such as a 30–45-s recruit-
ment maneuver or open lung ventilation strategies,
the right heart preload is impacted with a decrease
in venous return. This will be detected as a decline in
PP. Concerns have been raised whether changes in
PP can reliably act as a surrogate for SV, particularly
those with noncompliant small arteries. In the
hands of experienced operators, aortic blood flow
measured with an apical five-chamber view offers
more direct estimation of SV variation (SVV) [32]

KEY POINTS

! Two-thirds of patients are not fluid responsive following
30 ml/kg fluids.

! PLR is the best method to assess fluid responsiveness in
hypotensive patients not on vasopressors.

! IVC variability may only be used for apneic patients.
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with a respiratory variation of more than 12%
highly predictive of a positive fluid response [33].
Whether using PP or more direct measures of SV as
the indicator, because beat-to-beat variability pro-
vides the estimate of fluid responsiveness irregular
arrhythmias preclude the use of SVV or pulse
pressure variation (PPV). Similarly, severe pulmon-
ary hypertension will render the (now) relatively
far smaller changes in intra-thoracic pressures
incapable of changing left heart preload [34]. The
characteristics of mechanical ventilation are also
important, and open lung ventilation strategies
with tidal volumes in the 4–6 ml/kg range for those
with severely impaired pulmonary compliance do
not provide adequate changes in preload to assess
SVV or PPV [35,36].

Focused ultrasound exam in patients without
respiratory efforts
Ultrasound has emerged as an essential clinical tool
in critically ill patients. A rapid hemodynamic
assessment using two-dimensional ultrasound of
patients in shock can screen for massive pulmonary
embolus, pericardial and pleural disease. Because of
the popularity of ultrasound, quantitative measures
of fluid responsiveness have been widely incorpor-
ated into the focused (non-Doppler) examination.
Respiratory changes transmitted to the right and left
heart as detailed above also result in variation in
loading of the inferior and superior vena cavae. As in
all vessels, compliance is reduced when the wall
tension is higher (distended). At the extreme, a static
dilated IVC suggests that the patient will not
respond to fluids. IVC diameter is best measured
1–2 cm from the right atrial junction using trans-
thoracic ultrasound [14–16,37–39], and this tech-
nique has been widely adopted over the more inva-
sive transesophageal examination of the superior
vena cava. Positive intra-thoracic pressure generally
increases the size of the IVC during controlled
ventilation; however, neither the maximum nor
minimum IVC diameter could predict fluid response
[40–43]. If one calculates the relative change in IVC
diameter according to [maximum"minimum IVC
diameter/(maximumþminimum)/2], 12% vari-
ation predicts fluid response [42], whereas a smaller
denominator calculated by (maximum"minimum
IVC diameter/minimum IVC diameter) raises the
threshold to 18% [40].

Focused ultrasound exam in patients making
respiratory efforts
In patients who make respiratory efforts the nega-
tive inspiratory pressures transmitted to the IVC

vary mainly according to the extent of patient effort
[44&&] and pressure (if any) applied through mech-
anical ventilation. A challenge in the rapidly evolv-
ing mechanically ventilated patient is to accurately
assess whether they have begun assisting the venti-
lator; however, a clinical examination including
analysis of ventilator waveforms is essential because
the evidence to date suggests that in spontaneously
breathing patients the usual change in IVC cannot
be used to predict fluid response [45&&].

CONCLUSION
Two-thirds of patients will not increase CO in
response to further fluids following an initial vol-
ume resuscitation of 30 ml/kg. The single predictor
of fluid response for hypotensive patients not on
vasopressors is the increase in BP in response to a
properly conducted passive leg raise maneuver. This
reflects the ease of performing both the maneuver
and assessing a positive response (BP). For more
severely ill patients who are both mechanically
ventilated and on vasopressors, point of care echo-
cardiography is the best choice. Increases in vena
caval diameter induced by controlled positive pres-
sure breaths are insensitive to arrhythmias and can
be performed with relatively brief training. Most
challenging are patients who are awake (either spon-
taneously breathing or in a noncontrolled mode of
mechanical ventilation) and on vasopressors; we
suggest that the best method to discriminate fluid
responders is PLR measuring changes in CO (for
instance using an esophageal probe to measure
descending aortic blood flow).
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