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Summary

Based on our work and that of many other workers, we have devel-

oped a model of coagulation in vivo. Many workers have demonstrated mechanisms by which cells can influence the coagulation process.

Nonetheless, the prevailing view of hemostasis remains that the protein coagulation factors direct and control the process with cells serving primarily to provide a phosphatidylserine containing surface on which the procoagulant complexes are assembled. By contrast, we propose a model in which coagulation is regulated by properties of cell surfaces.

This model emphasizes the importance of specific cellular receptors for the coagulation proteins. Thus, cells with similar phosphatidylserine content can play very different roles in hemostasis depending on their

complement of surface receptors. We propose that coagulation occurs not as a "cascade", but in three overlapping stages: 1) initiation, which occurs on a tissue factor bearing cell; 2) amplification, in which plate- lets and cofactors are activated to set the stage for large scale thrombin

generation; and 3) propagation, in which large amounts of thrombin are generated on the platelet surface. This cell based model explains some aspects of hemostasis that a protein-centric model does not.

Modeling Hemostasis

A model is a way of conceptualizing and understanding a compli-

cated system. A good model should be simple enough to understand, yet complicated enough to accurately reflect the process it was designed to represent. The purpose of this paper is to present a model of coagulation which focuses on the roles of specific cell surfaces in controlling the coagulation process. This paper is intended to be part of a series in which different views of the coagulation process are presented.

A "Cascade" or "Waterfall" model was a great advance in our

understanding of coagulation, and was originally proposed by two

groups nearly simultaneously (1, 2), This model was subsequently

refined to the scheme shown in Fig. I as more was learned about the

elucidating the identity, function and interactions of the individual

procoagulant proteins. It accurately represents the overall structure of the coagulation process as a series of proteolytic reactions. Each

protease cleaves and activates the subsequent protease in the series. The Cascade model also included the recognition that anionic phospholipid, especially phosphatidylserine, was required for the assembly and optimal function of most of the coagulation complexes (3). This information was absolutely critical to understanding the coagulation reactions. However, the viewpoint that is implicit in this concept of coagulation is that the role of cells, especially platelets, is primarily to provide anionic phospholipid for coagulation complex assembly.

The coagulation "Cascade" models very well the screening coagula-

tion laboratory tests, the prothrombin time (PT) and activated partial

thromboplastin time (aPTT), which correspond to the extrinsic and

intrinsic pathways. However, it is clearly inadequate to explain the

pathways leading to hemostasis in vivo. As this model currently exists it is inconsistent with clinical observations in several key respects. If there are separate "intrinsic" and "extrinsic" coagulation pathways in vivo as shown in the Cascade model, why can the activation of factor X by the extrinsic (f.VIIa/TF-initiated) pathway not compensate for a lack of factor VIII or IX in hemophiliacs. In fact the activation of hemostasis by an "intrinsic" pathway in vivo must be questioned anyway, since deficiency of f.XII, high molecular weight kininogen (HMK) or pre-kallikrein (PK) does not cause a clinical bleeding tendency. Of course, it is clear that some components of the "intrinsic" pathway, f.VIII and f.IX, are essential for hemostasis, since their deficiency leads to hemophilia. We also know that deficiencies of f.X, f.V and f.VII lead to serious clinical bleeding syndromes. By contrast, f.XI deficiency is much less predictable in causing a bleeding diathesis and leads to a less

severe clinical picture than deficiency of f.IX or f.VIII. Therefore, we

(4-6) and others (7, 8) concluded that there are very likely not separate "extrinsic" and "intrinsic" pathways operating under normal conditions in vivo, and the overall model of coagulation required rethinking.

A key step in understanding how the "extrinsic" and "intrinsic"

pathways might be interdependent in vivo was the recognition that the f.VIIa/TF complex can activate f.IX as well as f.X (9). Also important was the finding that thrombin could directly activate factor XI on a charged surface (10). Once it was learned that activated platelets could provide a surface for activation of f. XI  by thrombin under physiologic conditions, it was clear why factor XII, HMK and PK might not be required for hemostasis. This led to a concept of hemostasis in which tissue factor was the primary physiologic activator. It was still not clear why direct activation of f.X by f.VIIa/TF could not compensat, at least partially, for a lack of factors IX or VIII. It was hypothesized that tissue factor pathway inhibitor (TFPI) inhibited f.VIIa/TF before it could produce enough f.Xa for hemostasis. These modifications to the cascade model reflect the evolution of our understanding of how the

coagulation proteins interact during hemostasis. However, the pre-

vailing concepts of coagulation still viewed the cellular components as primarily providing a phospholipid surface on which the proteins could express their activity.

There is now a significant body of work from many researchers

showing that different cell surfaces have very different properties as

related to the coagulation process, even if the cells have similar membrane lipid composition. Coagulant properties result from expression of a variety of cell features, including protein receptors, that localize components of the coagulation system to specific cell surfaces. Our work has led us to focus on how the localization of the coagulation reactions to different cell surfaces serves to control the coagulation process. This potentially represents a paradigm shift - from a concept that views coagulation as being controlled by the levels and kinetics of the coagulation proteins to one that considers the process to be controlled by the cellular components. We believe that a clearer understanding

of the role of cells has allowed us to answer some of the unanswered questions in hemostasis and develop a cell-based model that reflects the pathways of hemostasis in vivo.

A Cell-Based Model of Hemostasis

We view hemostasis as occurring in three (overlapping) phases. The

initiation of coagulation takes place on TF-bearing cells, such as the

fibroblast illustrated in Fig. 2. If the procoagulant stimulus is

sufflciently strong, enough factors Xa, IXa and thrombin are formed to successfully initiate the coagulation process. Amplificalion of the

coagulant response occurs as the "action" moves from the TF-bearing cell to the platelet surface. The procoagulant stimulus is amplified as platelets adhere, are activated and accumulate activated cofactors on their surfaces. Finally, in the propagation phase, the active proteases combine with their cofactors on the platelet surface - the site best adapted to generate hemostatic amounts of thrombin. The activity of

the procoagulant complexes produces the burst of thrombin generation that results in fibrin polymerization.

Inappropriate coagulation is prevented by several mechanisms.

The inactivation and propagation steps are localized on different cell

surfaces. The plasma protease inhibitors localize the reactions to cell

surfaces by inhibiting active proteases that diffuse into the fluid phase.

Finally, endothelial cells express active antithrombotic features that

prevent coagulation from being initiated in the intact endothelium.

Initiation

TF is the primary physiologic initiator of coagulation. It is structu-

rally unrelated to the rest of the coagulation proteins and is an integral membrane protein (13, 14). Therefore, TF remains localized to the membrane of the cell in which it was synthesized. It is expressed on a variety of extravascular cells under normal conditions, and can also be

expressed by blood monocytes and endothelial cells in inflammatory

states. There are now data suggesting that TF-containing membrane

vesicles may bind to platelet surfaces in an evolving thrombus (15). The source and physiologic role of such vesicles remain uncertain, but it is clear that normal circulating unactivated platelets neither contain nor express TF. It is important that the initiating and propagating steps are

normally sequestered to different cell surfaces to limit the undesired

activation of coagulation. Bringing f.VllalTF activity into close prox-

imity to activated platelet surfaces is a key step in effective initiation

of hemostatic coagulation (or thrombosis).

During the process of hemostasis, a break in the vessel wall allows

plasma to come into contact with TF-bearing extravascular cells. Factor VII in plasma binds tightly to cellular TF and is rapidly activated by coagulation (16) and non-coagulation proteases. The f.VllalTF complex activates both f.X and f.lX. Factor Xa can activate plasma f.V

(17), as can non-coagulation cellular proteases (18,19). The f.X acti-

vated by the f.Vlla/TF complex is rapidly inhibited by TFPI or ATIII if

it leaves the protected environment of the cell surface. However, the

f.Xa that remains on the cell surface can combine with f.Va to produce small amounts of thrombin (20) which plays an important role in subsequently activating platelets and f.VIII during the amplification phase.

Amplification

Damage to the vasculature allows platelets as well as plasma to

come into contact with extravascular tissues. Platelets adhere to extra-vascular matrix components at the site of injury. The process of binding to matrix proteins partially activates platelets, as well as localizing them near a site of TF exposure. Small amounts of thrombin generated on TF-bearing cells amplify the initial procoagulant signal by en-

hancing platelet adhesion (21), fully activating platelets and activating

factors V, VIII and XI (20). Thus, thrombin acts on the platelet surface

to "set the stage" for procoagulant comlpex assembly.

Thrombin is a potent platelet activator via its protease-activated receptors (PAR). During activation, platelets release f.V from alpha granules onto their surfaces in a partially activated form. Factor Va is then fully activated by thrombin or f.Xa.

Some of the thrombin bound to non-PAR receptors, such as GPIb/IX, remains active and can activate other coagulation factors on the platelet surface. Von Willebrand factor (vWF/f.VIII) binds to platelets and is efficiently cleaved by thrombin to activate f.VIII and release it from vWF. F.VIIIa remains bound to the platelet

surface. Now that the platelets have been activated and have activated cofactors V and VIII bound to their surfaces, assembly of the pro-coagulant complexes and large-scale thrombin generation begins.

Propagation

During the propagation phase the "tenase" and "prothrombinase"

complexes are assembled on the platelet surface, and large-scale thrombin generation takes place. Platelets express high affinity binding sites for f.IX(a) (25), f.X(a) (26), and f.XI (27). We believe these receptors play important roles in coordinating assembly of the coagulation complexes.

The "tenase" (f.VIIIalIXa) complexes assemble when f.lXa reaches

the platelet surface. The f.IXa can diffuse to platelet surfaces from its

site of activation on TF-bearing cells, since it is not rapidly inhibited by ATIII or other plasma protease inhibitors. In addition, plasma f.XI can bind to activated platelets, facilitating its activation by thrombin (11). The f.XIa can then provide additional f.IXa directly on the platelet

surface. The f.IXalVIIIa complexes activate f.X on the platelet surface

where the resulting f.Xa can move directly into a complex with its

cofactor, f.Va, as illustrated in Fig. 3. The platelet surface f.XalVa

complexes can now produce the burst of thrombin necessary to form a hemostatic fibrin clot.

Mechanisms of Procoagulant Localization

As implied in the above model of coagulation, we believe that

specialized cellular features are critical to localizing, and thereby

controlling, the coagulation process. The plasma proteins are available to any cell that comes into contact with blood. The cells can "choose" which of the proteins they will utilize by binding them to selective sites on their surfaces. Cells have features that adapt them to specialized roles in hemostasis, including cell surface expression of protein receptors, lipid composition of the outer leaflet of the plasma membrane, cell surface expression of glycosaminoglycans and synthesis or storage of coagulation proteins.

Procoagulant Mechanisms of TF-Bearing Cells

Since TF is accepted as the primary initiator of coagulation, it has

been assumed that the amount of TF exposure will predict whether or not clotting will occur. While TF expression is necessary for initiation of coagulation or thrombosis, it is not sufficient. Additional factors are involved in determining whether an effective procoagulant "signal" will be produced (20). For example, a cell that expresses TF but can not support prothrombinase assembly is much less efficient in initiating coagulation than is a cell with the same amount of TF that can also support thrombin generation (5). A good example of this concept is the ability of malignant cells to promote thrombosis in vivo. Many malignancies express TF, but their tendency to cause thrombosis does not necessarily correlate with TF activity (28). The divergent abilities of different tumor cells to activate prothrombin (29) might account for some of the discrepancy.

Coagulation Factor Localization on Platelets

Platelets are, of course, the cell type most closely associated with the

coagulation process. They provide the surface on which most of the

thrombin required for clot formation is generated. In spite of the fact

that they are well adapted to assemble coagulation complexes on their membrane surface, they do not express TF, the primary physiologic initiator of coagulation. The normal process of hemostatic coagulation can proceed when cellular TF is brought into close proximity to activated platelets and a source of coagulation factors.

One very important feature of platelets is their ability to adhere to

sites of injury and become activated by one or more pathways. Upon activation, they undergo a number of changes that allow them to serve as a surface for assembly and activity of the coagulation complexes.

Platelets do not express significant amounts of phosphatidylserine (PS) when in the unactivated state. Activation results in an increase in PS exposure on the membrane outer leaflet (30) from virtually none to up to 12% (31). This PS exposure is necessary but not sufficient to account for the procoagulant properties of platelets.

In addition to triggering PS exposure, platelet activation also leads to

secretion of partially activated f.V from alpha granules (23) and activation of surface receptors (32, 33). It seems to us extremely likely that the binding of all of the coagulation factors that normally act on platelet surfaces is mediated by specific high-affinity interactions with protein receptors or binding sites. In this context we will use the term receptor to mean a protein binding site, that may or may not transduce a signal to the cell. Several platelet adhesive receptors have been extensively characterized, but the enumeration and characterization of non-lipid binding sites for coagulation factors is in its infancy. A number of specific platelet surface receptors have been postulated to contribute to coordination of the coagulation reactions as illustrated in Fig. 4. There is only indirect evidence for the existence of most of them.

Both unactivated and activated platelets have several receptors or

binding sites for thrombin: Glycoprotein (GP) Ib/lX (34), protease-

activated receptors (PAR) (22) and possibly others. Thrombin PARs

have been cloned and well characterized (22). This type of receptor

clearly transduces a signal for activation to the platelet (35). GPlb/lX is well characterized as the receptor for vWF. It also binds thrombin (36) and plays a role in platelet activation by thrombin (37). However, it is likely that one or more additional high affinity binding sites for thrombin are present on platelets (38-40).

In addition to serving as one of the platelet surface thrombin

receptors, the GPlb/lX complex is the primary binding site for vWF,

The binding sites on GPlb/lX for vWF/f.VIII and thrombin are distinct

(36), thus both proteins can be bound simultaneously. Rather than

mediating platelet activation by thrombin, GPlb/lX seems primarily to

localize thrombin to the surface of the platelet, where it can activate

other procoagulant factors and cofactors as in Fig. 5.

In its capacity as a receptor for vWF, GPlb/lX promotes adhesion

of unactivated platelets at sites of vascular injury. Adhesion of plate-

lets through GPlb/lX and vWF promotes at least partial platelet acti-

vation. In addition to its role as an adhesive protein, vWF is the

carrier protein for plasma factor Vlll. Binding of vWF to GPlb/LY

localizes f.VIII to the platelet surface, where it is most efficiently

activated by thrombin. By this mechanism the relatively unstable

activated form of f.VIII is produced directly on the surface where its

activity is needed to support the coagulation reactions. The f.VllIa

remains localized on the platelet surface by binding to a distinct

platelet binding site (41).

Platelet Receptors for Coagulation Factors

  Unlike GPIb/IX and GPllb/llla, receptors for most of the coagulation factors have not been identified unequivocally and the evidence for their existence is inferential. However it seems likely that such receptors coordinate assembly of the factors into functional complexes and may even participate in formation of a supercomplex of the f.IXa/VIIIa and f.Xa/Va complexes.

While it has not yet been sequenced or cloned, there is a strong functional evidence that a protein binding site exists for factor IX/IXa on platelets. It is activated upon platelet activation, localizes factor IXa to the platelet surface, and facilitates activation of factor X

by f.lXa. There is evidence for a specific, non-lipid activation-induced

binding site for f.Vlll(a) on platelets as well (41, 44).

There is evidence that a protein receptor exists on platelets for factor

X(a) and may seNe to coordinate assembly of the prothrombinase

(f.Xa/Va) complex (45, 46). The receptor for f.Xa has been proposed to be effector protease receptor-l (EPR-I), a protein that has been cloned, sequenced and characterized as a signal-transducing receptor for f.Xa on other cell types (47).

Factor Xl can bind to platelets via high molecular weight kininogen

(27), but also binds directly to a small number of high affinity sites on

platelets through its apple 3 domain (48). It is the latter interaction that

facilitates f.XI activation by thrombin on activated platelets ( I I , 12).

One coagulation protein that does not appear to have a specific

non-lipid binding site on platelets is factor Vlla (49, 50), since it

normally does not express its activity on platelets, but rather on tissue factor-bearing cells. Therefore, the binding and activity of f.Vlla on platelets appears similar to that on synthetic lipid vesicles.

Endothelial Cells Localize Clot Formation to the Site of Injury

While TF-bearing cells and platelets have specialized procoagulant

functions, vascular endothelial cells have specialized anti-coagulant

features. In a number of ways endothelial cells can be considered to be close relatives of platelets and can express a number of the same

receptors in a regulated fashion, including GPlb (51), vWF (52), f.V,

thrombin receptor (PAR), and P-selectin (53). In addition, recent

evidence has shown that endothelial cells can be repopulated from

bone marrow progenitor cells. However, endothelial cells have several unique mechanisms to contain clot formation to a site of injury and prevent thrombosis.

Thrombin that escapes into the circulation from a site of injury must

be controlled to prevent it from clotting fibrinogen in the systemic

circulation. It is either inhibited by ATIII in the plasma or binds to

thrombomodulin (TM) on intact endothelial cells (54). TM is a receptor for thrombin. TM is expressed at high levels on endothelial cells, especially in the microvasculature. Upon binding to TM, the specificity of thrombin is changed (55). It no longer clots fibrinogen or activates platelets, but becomes much more effective at activating

Protein C.

Thrombin in complex with TM serves to activate Protein C on the

endothelial surface. Protein C is localized to endothelial surfaces by an endothelial Protein C receptor (EPCR-I), that facilitates its activation by thrombin/TM (56). Activated Protein C (APC) forms a complex with Protein S. The APC/Protein S complex cleaves and inactivates any f.Va and F.Vllla that has been activated on endothelial cell surfaces.

This prevents the formation of additional procoagulant enzymes at sites where a healthy, intact endothelial lining layer is present. This process is illustrated in Fig. 6. Thus, thrombin is effectively changed from a pro-coagulant to an anti-thrombotic when it is localized to an endothelial cell surface that expresses TM.

In addition to TM, endothelial cells also express other important anti-thrombotic surface features. Endothelial cells enhance inactivation of coagulation factors by ATIII and TFPI, presumably due to the presence of heparin like glycosaminoglycans on their surface. Endothelial cells also express cell surface ADP-ase activity. This enzyme metabolizes ADP released from activated platelets, resulting in blockade of the aggregation response when the platelets are in close proximity to healthy endothelium.

Under normal conditions vascular endothelial cells are highly specialized to be actively anti-thrombotic. However, they can respond to injury or inflammation by altering expression of receptors and, thereby, becoming less anti-thrombotic (59). Injury or inflammatory cytokines can induce endothelial cells to decrease expression of TM,

and increase expression of TF and surface adhesion molecules. This is probably an adaptive defense mechanism that facilitates hemostasis at sites of injury. However, these mechanisms can contribute to thrombosis in a number of disease states, such as atherosclerosis, thrombophlebitis and vasculitis.

Localization Determines the Fate ot Coagulation

Factors
Receptors and binding sites play an important role in localizing

coagulation proteins to specific cell surfaces. However, the plasma

protease inhibitors also play a major role in localizing the coagulation

activity. Only a portion of the total amount of an activated factor will be bound to cell surfaces. The activated factors that are surface-bound are relatively protected from plasma protease inhibitors, while proteases in the solution phase are more rapidly inactivated. Thus, under usual conditions, activated factors tend to express their activity on or very near the surface on which they are activated. Those that do not remain localized on a cell surface are inhibited and prevented from catalyzing coagulation reactions in the systemic circulation. When this control mechanism is overwhelmed, disseminated intravascular coagulation ensues.

An Emphasis on Localization Might Explain Some

Clinical Problems that a Purely Enzymatic Approach

Does Not
An emphasis on the primary role of the coagulation proteins in

controlling coagulation suggests that one should be able to understand

the physiology and pathophysiology of hemostasis if only one had a

sufficiently good understanding of the enzymology and kinetics of the

individual reactions. So far this has not proven to be true. We feel that

there are several important clinical problems that an emphasis on the

cellular control of coagulation has let us understand.

Why Do Hemophiliacs Bleed?

As introduced earlier in this review, the cascade model of coagula-

tion does not explain why the "extrinsic" pathway can not produce

enough f.Xa to (at least partially) compensate for a lack of factor Vlll

or IX, i.e. why can't f.Xa generated by f.Vlla/TF substitute for f.Xa

generated by f.lXa/Vllla? It has been hypothesized that this is because TFPI shuts off the f.Vlla/TF pathway before it can make enough f.Xa to support generation of hemostatic amounts of thrombin.

While inhibition of the TF pathway by TFPI might contribute to the

bleeding tendency in hemophilia, we believe the problem in hemo-

philia can be better understood by looking elsewhere. We hypothesize that the problem in hemophilia is not that enough f.Xa isn't made, but that it is made ON THE WRONG CELL SURFACE. Factor Xa made on a TF-bearing cell has a very hard time making its way to the platelet surface without being inhibited by either ATIII or TFPI. These two inhibitors, at their normal plasma levels, inhibit f.Xa so efficiently that it has a half life of a minute or less in the solution phase. By contrast, factor IXa is inhibited much less rapidly by ATIII and not at all by TFPI. Therefore, f.IXa can move from the TF-bearing cell to the

activated platelet surface to form the platelet tenase complex. In order

for f.Xa to be incorporated efficiently into prothrombinase complexes,

it must be formed on the platelet surface (i.e. by f.IXa/VIIIa) in close

proximity to f.Va. Thus, we propose that in hemophilia there is a

failure specifically of platelet-surface f.X activation leading to a failure

of platelet-surface thrombin generation.

Why Does F. VIIA Provide Hemostasis in Hemophilia?

We believe that thinking of hemophilia as a failure of platelet-

surface f.Xa generation also allows us to understand the efficacy of

high-dose f.Vlla in promoting hemostasis in hemophiliacs. It has been

well documented that f.Vlla can lead to hemostasis in hemophiliacs,

however, the mechanism by which it acts has been a matter of ongoing debate. The doses of f.Vlla required for efficacy produce plasma levels that are several orders of magnitude greater than the Kd for binding of f.Vlla to TF. This led many to conclude that it is unlikely that f.Vlla works via TF. However, it is also well recognized that f.Vlla has very little proteolytic activity in the absence of its cofactor. We have worked hard to convince the reader that cells do much more than provide phospholipid for hemostasis. However, in this case we believe that the platelet surface behaves as a PS-containing lipid surface in supporting the activity of f.Vlla. We have shown that f.Vlla can bind to activated platelets (but not unactivated platelets) with an affinity similar to its affinity for synthetic PS-containing lipid vesicles (50). Once bound to the activated platelet surface, f.Vlla can activate f.X (50). The amount

of f.Xa generated by this mechanism is sufficient to support near

normal levels of thrombin generation in a experimental model of factor IX and Vlll deficiency (49, 60). This finding is consistent with our

model of coagulation in which platelet surface f.Xa generation is

necessary to support platelet surface thrombinase assembly. Since we believe that platelet surface thrombin generation fails in hemophilia, restoration of platelet surface thrombin generation by high levels of of f.VIIa is a plausible mechanism of action. In further support of a platelet surface mechanism of action for high fose f.VIIa is our finding that the levels of f.VIIa that must be attained for efficiency in vivo correlat very well with the levels needed for restoration of platelet surface thrombin generation in vivo. A platelet surface mechanism would also explain why high dose f.VIIa is effective in establishing hemostasis in patients with thrombocytopenia and platelet function defects. We have found that in models of these conditions, the addition of high levels of f.VIIa enhances the amount of thrombin generated on each platelet.

Recently, the activity of f.VIIa was studied in a coagulation model

using plasma concentrations of purified coagulation factors with

reactions initiated by TF relipidated into synthetic phospholipid

vesicles. These workers showed that, in the presence of plasma levels of zymogen f.VII, the lag before initiation of coagulation was shortened by the addition of recombinant f.VIIa (61). The authors hypothesized that this mechanism could account for the clinical efficacy of high dose

f.VIIa in hemophilia. However, we find that when cell-associated TF

is used to initiate coagulation, the presence of zymogen f.VII does not extend the lag period, nor does f.VIIa shorten the lag before initiation of coagulation. Therefore, it seems unlikely that this mechanism can account for the efficacy of f.VIIa in vivo.

Our findings do not preclude any contribution from a TF-mediated

mechanism of action for high dose f.VIIa therapy. However, a platelet

surface mechanism is better able to explain the clinical efficacy of high dose f.Vlla therapy. In addition, localization of f.Vlla to activated

platelets also accounts for the lack of significant thrombotic complica-

tions to high dose f.Vlla therapy. Localization to the activated platelet

surface would tend to localize procoagulant activity to the site where it is appropriate.

Is Thrombosis Mechanistically Different than Hemostasis ?

This is an important question in the development of antithrombotic

strategies. In general, every antithrombotic therapy is also anticoagu-

lant and has a significant risk of bleeding associated with it. We tend to think of thrombosis as hemostasis occurring at the wrong place - the implication being that the two processes are mechanistically identical.

However, if thrombosis is coagulation on the "wrong" cell surface, it

implies that different cellular components may be involved than when

hemostatic coagulation takes place. This possibility leads us to

hypothesize that there are mechanistic differences inherent in throm-

bosis occurring on endothelial surfaces that might be exploited in

developing antithrombotic strategies. Targeting therapeutics to endo-

thelial surfaces or away from platelet surfaces might prove to be a

clinically useful strategy.

It is worthwhile to keep in mind that the endothelial cells from

different vascular beds have different coagulant properties. Thus, it is

possible that therapeutics could be targeted to a vascular bed that had a higher risk of thrombosis is a given patient population. For example, patients with activated Protein C resistance have a much greater risk of venous that arterial thrombosis. If it were possible to target anti-thrombotic agents to the venous circulation, it might lead to better efficacy in those patients with less risk of bleeding. In addition to different vascular beds having different properties, inflammation can alter the properties of endothelial cells by changing expression of pro- and anti-coagulant molecules as well as adhesive receptors.

Thus it might be possible to target therapeutics to sites of inflammation-which are also more likely to be sites of thrombosis.

In summary we believe that thinking of coagulation as occurring on specific cell surfaces can help us understand better the mechanism of normal hemostasis as well as understanding the mechanisms by which hemostasis fails in pathologic conditions.

