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The spinal cord is the first relay site in the transmission of nociceptive information from the

periphery to the brain. Sensory signals are transmitted from the periphery by primary afferent

fibres into the dorsal horn of the spinal cord, where these afferents synapse with intrinsic

spinal dorsal horn neurones. Spinal projection neurones then convey this information to higher

centres in the brain, where non-noxious and noxious signals can be perceived. During nocicep-

tive transmission, the output of the spinal cord is dependent on various spinal mechanisms

which can either increase or decrease the activity of dorsal horn neurones. Such mechanisms

include local excitatory and inhibitory interneurones, N-methyl-D-aspartate receptor activation,

and descending influences from the brainstem, which can be both inhibitory and excitatory in

nature. After nerve injury or conditions of inflammation, shifts can occur in these excitatory

and inhibitory mechanisms which modulate spinal excitability, often resulting in the heightened

response of dorsal neurones to incoming afferent signals, and increased output to the brain, a

phenomenon known as central sensitization. In this review, we consider the ways in which

spinal cord activity may be altered in chronic pain states. In addition, we discuss the spinal

mechanisms which are targeted by current analgesics used in the management of chronic pain.
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According to the International Association for the Study of

Pain (IASP), pain is defined as ‘an unpleasant sensory and

emotional experience associated with actual or potential

tissue damage, or described in terms of such damage’. This

definition reminds us that pain involves a significant

psychological component which can alter its perception

and therefore, undergoes extensive processing through the

nervous system, and particularly in the brain. This account

considers the ways in which the spinal cord, the first relay

in the pathways from the periphery to the brain, can be sen-

sitized by noxious stimuli, and thus allows a minor periph-

eral input to now be amplified. In addition, we will explore

the ways in which current and future drugs may target

spinal mechanisms in the treatment of chronic pain states.

Peripheral mechanisms of sensory
transmission

The sensory experience begins in the periphery, where the

peripheral terminals of primary afferent fibres respond to a

myriad of stimuli and translate this information into the

dorsal horn of the spinal cord, where the central ends of

these fibres terminate (Fig. 1). There are three main types of

sensory fibre in the peripheral nervous system, Ab-fibres,

Ad-fibres, and C-fibres. Each has different properties allow-

ing them to respond to and transmit different types of

sensory information. Ab-fibres are large in diameter and

highly myelinated, thus allowing them to quickly conduct

action potentials from their peripheral to central terminals.

These fibres have low activation thresholds and normally

respond to light touch and are responsible for conveying

tactile information. Ad-fibres are smaller in diameter and

thinly myelinated, making them slower-conducting than

Ab-fibres, and they also possess higher activation

thresholds. They respond to both thermal and mechanical

stimuli. C-fibres are the smallest type of primary afferents

and are unmyelinated, thus making them the slowest con-

ducting. They have the highest thresholds for activation and

therefore detect selectively nociceptive or ‘painful’ stimuli.

Collectively, both Ad- and C-fibres can be termed as

nociceptors or ‘pain fibres’, responding to noxious stimuli

which may be mechanical, thermal, or chemical.

A number of polymodal receptors on C-fibres can be

selectively activated by noxious thermal and mechanical

stimuli. In the case of noxious heat for example, it is widely

believed that the transient receptor potential vanilloid

receptor-1 (TRPV1)13 receptor-channel, which responds to

capsaicin, the extract of chilli peppers, may also be respon-

sible for the generation of action potentials after application

of heat. The endogenous ligand for this receptor is unclear,

although the cannabinoid, anandamide, is one potential can-

didate.44 89 The peripheral terminals of small diameter

neurones are excited by a number of endogenous chemical
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Fig 1 Pain pathways from periphery to brain. Primary afferent fibres (Ab-, Ad-, and C-fibres) transmit impulses from the periphery, through the dorsal

root ganglion (DRG) and into the dorsal horn of the spinal cord. Nociceptive specific (NS) cells are mainly found in the superficial dorsal horn

(laminae I–II), whereas most wide dynamic ranges (WDRs) are located deeper (lamina V). Projection neurones from lamina I innervate areas such as

the parabrachial area (PB) and periaqueductal grey (PAG) and such pathways are affected by limbic areas. From here descending pathways (yellow

arrows) from brainstem nuclei such as the rostral ventromedial medulla (RVM) are activated and modulate spinal processing. Lamina V neurones

mainly project to the thalamus (spinothalamic tract), and from here the various cortical regions forming the ‘pain matrix’ (primary and secondary

somatosensory, insular, anterior cingulate, and prefrontal cortices) are activated.
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mediators, especially in conditions of tissue inflammation.

These can be released from local non-neuronal cells, the

afferent fibres themselves, and from products triggered

by activation of the body’s defence mechanisms. These

chemical mediators then act to sensitize nociceptors so

that afferent activity to a given stimulus is increased. This

is known as primary hyperalgesia. Pain hypersensitivity

due to peripheral sensitization has been shown to occur

after inflammation, via activation of intracellular signalling

pathways such as protein kinase A (PKA)6 and protein

kinase C (PKC).5 Activated kinases bring about sensitization

through phosphorylation and activation of receptors such as

TRPV1. It has been shown that phosphatidylinositol-3

kinase (PI3K) is also activated by inflammation and is able

to mediate heat hyperalgesia through sensitization of

TRPV1 in an extracellular signal-regulated kinase (ERK)-

dependent manner.88

Neuropathy elicits a number of changes in nerves in

terms of activity, properties, and transmitter content. The

recent advent of a number of animal models of neuro-

pathic pain states has facilitated our understanding of the

peripheral mechanisms involved. Damaged nerves may

start to generate ongoing ectopic activity due to the

accumulation and clustering of sodium (Naþ) channels

around the damaged axons and there is also evidence that

mechanoreceptors become highly sensitive to applied

stimuli.55 This aberrant activity can then start to spread

rapidly to the cell bodies in the dorsal root ganglia. Nerve

fibres can start to cross-excite each other (ephaptic trans-

mission) and the same occurs in the cell bodies. In

addition to changes within sensory nerves, sympathetic

efferents become able to activate sensory afferents via, as

yet, poorly characterized a-adrenoceptors. These inter-

actions between adjacent sensory and autonomic nerve

axons and between ganglion cells results in excitation

spreading between different nerve fibres. These peripheral

ectopic impulses can cause spontaneous pain and prime

the spinal cord to exhibit enhanced evoked responses to

stimuli, which themselves have greater effects due to

increased sensitivity of the peripheral nerves.

Sensory transmission in the dorsal horn

The central terminals of primary afferent fibres terminate

in the dorsal horn of the spinal cord, which is organized

into different laminae, extending from the superficial to

the deep dorsal horn. Most nociceptive Ad- and C-fibres

terminate superficially in laminae I–II, with a smaller

number reaching deeper laminae, whereas Ab-fibres pre-

dominantly innervate laminae III–VI.70 The spinal cord

itself contains various neuronal cell types which make

connections with primary afferents, and depending on

their specific synaptic inputs, have different properties,

and respond to different types of sensory information

(Fig. 1). Nociceptive-specific (NS) cells are mostly found

superficially and synapse with Ad- and C-fibres only.

These cells fire action potentials when a painful stimulus

is detected at the periphery. Cells which receive input

exclusively from Ab-fibres are proprioceptive and only

respond to touch. A third type of neurone, termed wide

dynamic range (WDRs), receive input from all three types

of sensory fibre, and therefore respond to the full range of

stimulation, from light touch to noxious pinch, heat, and

chemicals. WDRs fire action potentials in a graded fashion

depending on stimulus intensity, and also exhibit

‘wind-up’, a short-lasting form of synaptic plasticity.

During wind-up, repetitive stimulation of WDR neurones

induces an increase of their evoked response and post-

discharge with each stimulus.18 There are also excitatory,

glutamatergic, and inhibitory, GABAergic interneurones

within the spinal cord and these can increase or decrease

the response of NS cells and WDRs, thus influencing the

output of the dorsal horn. Recent evidence has shown that

non-neuronal cell types within the spinal cord, namely

astrocytes and microglia, are also able to influence pain

transmission through the dorsal horn, particularly under

pathological conditions.16 45 79 In this review, we focus

specifically on neuronal mechanisms. However, the role of

non-neuronal cells and their interactions with neurones

should not be underestimated, and have recently been

reviewed elsewhere.29 58 80

Glutamatergic mechanisms of spinal
excitability modulate nociceptive transmission

The spinal cord is an important site at which the various

incoming sensory and nociceptive signals undergo conver-

gence and modulation. Spinal neurones, which respond to

these peripherally generated signals, are under ongoing

control by peripheral inputs, interneurones, and descending

controls. One consequence of this modulation is that the

relationship between stimulus and response to pain is not

always straightforward. The response of output cells could

be greatly altered via the interaction of various neurotrans-

mitter systems in the spinal cord, all of which are subject

to plasticity and alterations, particularly during pathologi-

cal conditions.

Glutamate is an excitatory amino acid and is the major

excitatory neurotransmitter found throughout the whole of

the nervous system, and is therefore essential for pain sig-

nalling at every anatomical level. Thus, as expected, the

vast majority of primary afferents synapsing in the dorsal

horn of the spinal cord, regardless of whether they are

small or large diameter, utilize this transmitter. Glutamate

exerts an excitatory effect on a number of receptors found

on post-synaptic spinal neurones,8 71 leading to membrane

depolarization via three distinct receptor subclasses, the

a-amino-3-hydroxy 5-methyl-4-isoxazeloproprionic acid

(AMPA) receptor,32 50 72 the N-methyl-D-aspartate

(NMDA) receptors,48 71 and the G-protein coupled
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metabotropic (mGluR) family of receptors.77 85 86 In

addition, pre-synaptic kainate receptors for glutamate have

been described in the spinal cord.26 30 31 37 Most is known

about the role of ionotropic AMPA and NMDA receptors

in pain, both of which are named after chemical analogues

of glutamate with selective actions at these sites.

Glutamate is released from sensory afferents in response

to acute and more persistent noxious stimuli, and it is fast

AMPA receptor activation that is responsible for setting

the initial baseline response of spinal dorsal horn neurones

to both noxious and tactile stimuli. However, if a repetitive

and high-frequency stimulation of C-fibres occurs, there is

then an amplification and prolongation of the response of

spinal dorsal horn neurones to subsequent inputs, so-called

wind-up.18 This enhanced activity results from the acti-

vation of the NMDA receptor. If there are only acute or

low-frequency noxious or tactile inputs to the spinal cord,

then activation of the NMDA receptor is not possible,

since under normal physiological conditions the ion

channel of this receptor is blocked by the normal levels of

magnesium ions (Mg2þ) found in nervous tissues. This

unique Mg2þ plug of the channel requires a sustained

depolarization of the membrane in order to be removed

and allow the NMDA receptor-channel to be activated and

opened. Here, it is likely that the co-release of peptidergic

transmitters, such as substance P and CGRP, which are

found in C-fibres along with glutamate, is responsible for

a prolonged slow depolarization of the neurone and sub-

sequent removal of the NMDA block, thus permitting

wind-up to occur.10 33 66 AMPA receptor antagonists have

little effect on wind-up,59 63 and the brief depolarization

produced by this receptor would not be expected to

produce any prolonged removal of the NMDA block,

unlike the long-lasting, slow (several seconds) activations

caused by peptides. The lack of peptides in large Ab affer-

ent fibres explains the lack of wind-up after low-threshold

stimuli. NMDA receptor activation has been clearly shown

to play a key role in the hyperalgesia and enhancement of

pain signalling seen in more persistent pain states includ-

ing inflammation and neuropathic conditions.17 51 61

The major mechanism by which the NMDA receptor

acts is through the large influx of calcium ions (Ca2þ)

occurring when the channel is activated. Once inside the

cell, Ca2þ can activate various effectors and promote

downstream changes. Such effectors include neuronal

nitric oxide synthase,11 35 calcium/calmodulin-dependent

kinases (CaMKI/II),39 40 and ERK28 84 which can promote

mechanisms of plasticity such as long-term potentiation

(LTP). Similar plastic mechanisms occur after acute high-

intensity C-fibre stimulation, peripheral nerve damage, and

inflammation, and can result in the elevated responsiveness

and activity of dorsal horn neurones.18 83 This phenom-

enon, termed central sensitization, manifests in the patient

as an increased response to painful stimuli (hyperalgesia),

and pain resulting from normally non-painful tactile

stimuli (allodynia). Therefore, the targeting of NMDA

signalling with pharmacological interventions has been

explored as an analgesic strategy in great depth.

There are a number of antagonists to the multiple regu-

latory sites found on the NMDA receptor and its channel,

including the licensed drugs, ketamine, a potent channel

blocker, and the weaker agents, dextromethorphan and

memantine. These drugs have been shown to be antinoci-

ceptive in a number of animal models of inflammation and

nerve damage and there is also evidence from human vol-

unteer and clinical studies to support this.17 51 61 Overall,

these studies indicate that it is likely that aberrant periph-

eral activity is amplified and enhanced by NMDA

receptor-mediated spinal mechanisms in tissue damage

and neuropathic pain and that the receptor is critical for

both the induction and the maintenance of the pain. Thus,

therapy after the initiating damage can still be effective.

Despite there being good clinical evidence for effective-

ness of agents acting as antagonists at the NMDA receptor

complex, especially ketamine, and although some individ-

ual patients do get good pain relief in nerve injury situ-

ations, the majority cannot achieve complete pain control.

This is partly because adequate dosing is prevented by the

narrow therapeutic window of the existing drugs. This is

largely due to the widespread distribution and functional-

ity of NMDA receptors, meaning that the introduction of

an antagonist will not only target the pathology, but will

also disrupt normal essential NMDA signalling within the

central nervous system, and this explains why such drugs

are commonly associated with numerous unavoidable and

unacceptable side-effects. Ultimately, the broad use of

NMDA antagonists in the treatment of chronic pain will

therefore depend on strategies that increase their thera-

peutic window over existing drugs. These may include

drugs acting on specific sub-types of the receptor (NR2B

receptor antagonists are analgesic with a better side-effect

profile),9 14 drugs with different use-dependent block of

the channel, or more practically, the use of low-dose

NMDA blockers in combination with another agent.

Spinal projections to higher centres in the
brain

The output from the dorsal horn to higher centres in the

brain is carried by spinal projection neurones along

ascending pathways (Fig. 1). A large population of projec-

tion neurones is found superficially in lamina I. It is esti-

mated that 80% of these cells express the neurokinin 1

(NK1) receptor for substance P,70 a neuropeptide which is

released by nociceptive afferents, meaning that these cells

respond to noxious stimulation.19 42 NK1-positive cells in

lamina I have been shown to project to areas in the brain

such as the thalamus, the periaqueductal grey (PAG), and

in particular the parabrachial area (PB).70 In addition to

transmitting pain signals up to higher centres in the brain,

these cells also project into brainstem areas such as the
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rostral ventromedial medulla (RVM), a region which has

descending projections back to the dorsal horn. Therefore,

lamina I NK1-expressing cells can modulate spinal proces-

sing by activation of descending pathways from the brain-

stem.42 67 These descending pathways can be influenced

by limbic regions in the brain and so incorporate the

emotional, affective component of the pain experience. A

large number of projection neurones are also found deeper

in the dorsal horn from lamina III–VI and these project

predominantly to the thalamus, thereby making up a sig-

nificant proportion of the spinothalamic tract. This ascend-

ing pathway carries primarily sensory information and so

provides the sensory component of the pain experience.

From the thalamus, nociceptive information is trans-

mitted to cortical regions. There does not exist a single

pain centre within the cortex, but rather there are various

cortical regions which may or may not be activated during

a particular painful experience. These regions make up

what is commonly referred to as a ‘pain matrix’ and

include primary and secondary somatosensory, insular,

anterior cingulate, and prefrontal cortices.73

Brainstem modulation of dorsal horn
excitability via descending monoaminergic
pathways and implications for therapy

Descending pathways from brainstem structures are able to

influence nociceptive signalling in the dorsal horn of the

spinal cord. Such descending influences are both facilita-

tory and inhibitory in nature (Fig. 1). Descending facilita-

tory pathways from the RVM in the brainstem have been

shown to be involved in the maintenance, but not the

initiation, of nerve injury-induced pain.12 36 78 Injection of

the local anaesthetic lidocaine, into the RVM reverses

established behavioural hypersensitivity in nerve-injured

animals, but does not prevent the expression of this hyper-

sensitivity.12 In an electrophysiological study, injection of

lidocaine into the RVM reduced dorsal horn neuronal

responses to noxious stimuli in normal animals. This effect

of lidocaine was greater in nerve-injured animals, and in

these animals, it was observed that descending facilitation

from the RVM now influenced neuronal responses to non-

noxious tactile stimulation, thus suggesting a possible

mechanism for mechanical allodynia.4 The origin of

such modulation from nuclei in the brainstem is in fact

located in the superficial dorsal horn itself, thus forming

a spino-bulbo-spinal loop which can modulate spinal

nociceptive transmission. Suzuki and colleagues67 showed

that the ablation of lamina I/III NK1-expressing neurones

with a substance P and saporin conjugate (SP–SAP)

reduces the excitability of deep dorsal horn WDRs,

indicating that descending influences are predominantly

facilitatory, and act via spinal 5-HT3 receptors, since

the effect of SP–SAP could be mimicked by spinally

administered ondansetron, a selective 5-HT3 antagonist.

Pharmacological block of spinal 5-HT3 receptors reveals a

role for a serotonergic descending facilitatory influence in

the modulation of spinal nociceptive transmission. These

5-HT3 receptors are predominantly expressed on nerve

terminals of small diameter afferents87 and exert pronoci-

ceptive effects at the spinal level.1 25 49 The contribution

of such descending serotonergic facilitation to neuropathic

pain was further confirmed by the fact that the efficacy of

ondansetron to suppress spinal responses to mechanical

punctuate stimuli was significantly enhanced after spinal

nerve ligation, suggesting an increase in descending

serotonergic facilitatory drive to the spinal cord.68 In

accordance, depletion of spinal 5-HT attenuates signs

of behavioural hypersensitivity after nerve ligation.53

Additionally, it has been shown that spinal SP–SAP

treatment attenuates behavioural hypersensitivity and also

abnormal neuronal coding exhibited after both nerve

ligation69 and intraplantar injection of capsaicin.33 42

Interestingly, although the spinal administration of SP–SAP

can both block wind-up and prevent spinal LTP in deep

WDRs, a phenomenon related to central sensitization,

ondansetron does not reduce these events.56 However,

it does mimic all other effects of SP–SAP in terms of redu-

cing neuronal coding to mechanical and thermal stimuli in

both normal and neuropathic animals and also attenuates

chemical coding. This indicates that wind-up and LTP are

intrinsic spinal events using spinal mechanisms but that the

brain can further facilitate responses of dorsal horn neur-

ones. Thus targeting of this facilitatory spino-bulbo-spinal

loop may provide novel therapeutics for analgesia. A small

double-blinded, placebo-controlled, crossover study has

suggested an antinociceptive effect of ondansetron in

humans which merits further investigation,43 whereas

SP–SAP, although not tested in humans, has been found to

be without toxic effects when administered in dogs.2

Gabapentin is used as a first line treatment for neuro-

pathic pain.3 54 60 Although originally designed as a GABA

analogue, it has no significant interaction with GABA

mechanisms, but binding data have revealed possible inter-

actions with the auxiliary a2d subunit of voltage-dependent

Ca2þ channels (VDCCs).23 Interestingly, gabapentin is

effective in one in three patients suggesting that there are

yet unknown factors that govern its effectiveness. Given the

similar presynaptic localization of the gabapentin binding

site on calcium channels and the spinal 5-HT3 receptor,34 47

we have employed in vivo electrophysiological approaches

to study whether disruption of the spino-bulbo-spinal loop,

through ablation of lamina I/III NK1 positive neurones,

induces alterations in neuronal sensitivity to gabapentin

after peripheral nerve injury. Spinal SP–SAP was able to

block the antinociceptive actions of gabapentin after nerve

injury.69 Furthermore, the responses of deep dorsal horn

neurones were characterized to a wide range of natural and

electrical stimuli to reveal the role of NK-1 expressing neur-

ones in the development of neuropathic pain and associated

plasticity in the spinal cord. We then manipulated the
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5-HT3 receptor to show that the actions of gabapentin are

dependent on activation of this receptor. Blocking the

receptor prevented the actions of gabapentin after nerve

injury and even more remarkably, activation allowed the

drug to now work in normal animals. Thus, activation of

the excitatory 5-HT3 receptor enhances pain processing, but

at the same time produces a state-dependent or permissive

interaction that allows treatment.69 These results further

support a role for descending serotonergic (5-HT3 receptor-

mediated) pathways in the development of injury-related

hypersensitivity. Superficial NK1 positive neurones can

trigger descending facilitation mediated through parabra-

chial–RVM connections and regulate the sensitivity of

deeper lying neurones to gabapentin through activation of

spinal 5-HT3 receptors. These excitatory influences promote

spinal central sensitization and facilitating nociceptive

reflexes and their inappropriate tonic activation contributes

to the pathology of neuropathic pain. These supraspinal des-

cending facilitatory systems are likely to represent a central

mechanism by which the loss of sensory input resulting

from the nerve damage is compensated.17

Descending inhibition largely involves the release of

norepinephrine (NE) in the spinal cord from brainstem

nuclei such as the locus coeruleus (LC), acting predomi-

nantly at the a2-adrenoceptor subclass, and inhibiting

transmitter release from primary afferent terminals and

suppressing firing of projection neurones in the dorsal

horn.46 Clonidine, which has been clinically successful in

the alleviation of neuropathic pain21 and which is licensed

for the treatment of cancer pain in the USA,22 acts by

partial agonism at spinal a2-adrenoceptors. Again, it has

recently been shown that NK1-expressing cells project to

the brainstem and initiate inhibitory descending noradren-

ergic projections, although descending facilitation via

5-HT3 receptors seems to predominate.67 Like descending

facilitation, inhibitory noradrenergic pathways from the

brainstem to the dorsal horn may also undergo plastic

changes in chronic pain states. Several studies after

peripheral inflammation indicate an increase in descending

noradrenergic inhibition,24 62 74 – 76 81 coupled with an

enhanced efficacy of spinally administered a2-adrenoceptor

agonists.27 41 65 This increased inhibitory drive is presum-

ably a homeostatic mechanism initiated in an attempt to

counteract an enhanced facilitatory drive and increased

spinal hyperexcitability. It has also been suggested that

there is increased noradrenergic innervation to the dorsal

horn after nerve injury,38 again analogous to the enhanced

facilitatory drive to the dorsal horn mediated by spinal

5-HT3 receptors. Studies have shown nerve injury-induced

changes in noradrenergic pathways, including up-regulation

of spinal a2A-adrenoceptors7 15 64 and increased spinal NE

content.57 Again, the enhanced potency of a2-adrenergic

agonists after nerve injury points to an enhancement of des-

cending inhibition, or at least to an increased noradrenergic

innervation and sensitivity of the dorsal horn, but these two

mechanisms are not necessarily the same thing. The use of

agonists shows that a system or pathway can be activated.

However, in order to show that a particular system or

pathway is in fact active during a particular physiological

function, the use of antagonists is required. It is plausible

that the increased noradrenergic receptor density and

innervation of the dorsal horn observed after nerve injury is

the result of compensatory mechanisms which occur to

counteract the actual loss of a tonic descending noradren-

ergic inhibitory drive. Therefore, it would be expected

that a2-adrenoceptor agonists would increase in potency

and efficacy after nerve injury. In support of this, a recent

study from our laboratory has utilized the selective a2-

adrenoceptor agonist atipamezole, to show that there is an

apparent loss of descending noradrenergic influences after

spinal nerve ligation, but only in specific sensory modal-

ities.52 Atipamezole enhanced evoked responses of dorsal

horn neurones to low-intensity mechanical stimulation.

This observation only occurred in control sham-operated

animals, and was absent in nerve-ligated animals,

suggesting a selective control of descending inhibition, via

spinal a2-adrenoceptors, on low-intensity mechanical neur-

onal responses. No effects of atipamezole were seen after

noxious mechanical or both non-noxious and noxious

thermal stimulation, in either sham-operated or nerve-

injured animals. Further evidence for this differential

control of stimulus modalities was shown previously with

the use of a selective and potent a2-adrenoceptor agonist

S18616.65 This compound suppressed dorsal horn neuronal

responses to thermal and high-intensity mechanical stimu-

lation equally in both sham-operated and nerve-ligated rats.

However, the suppression of low-intensity mechanically

evoked responses was greatly enhanced after nerve

injury, supporting the loss of descending controls of this

sensory modality, but also supporting the up-regulation

of adrenergic receptor density and enhanced sensitivity to

a2-adrenoceptor agonists. Interestingly, atipamezole also

enhanced spontaneous activity of dorsal horn neurones,

again exclusively in sham-operated rats.52 Overall, these

results suggest that there is a loss of tonic descending

inhibitory control of neuronal responses to low-intensity

mechanical stimulation and also of spontaneous neuronal

activity in the dorsal horn. Coupled with the enhancement

of descending serotonergic facilitation, this decrease in des-

cending noradrenergic inhibition would result in an overall

enhancement of dorsal horn excitability, which manifests as

mechanical hypersensitivity and allodynia, and spontaneous

pain, common complaints of neuropathic pain patients.

This dual control of the spinal cord by monoamine

systems in the brain, whereby 5-HT appears to enhance

spinal processing and NE acts to inhibit activity may be

one way in which the brain can alter pain processing, and

may be the route by which sleep, anxiety, coping, and cat-

astrophizing can impact upon the level of pain perceived.

In this context, the use of antidepressants to control pain

relates to activity in these systems. Agents that block the

reuptake of either or both of these neurotransmitters, such
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as tricyclic antidepressants (TCAs), selective-serotonin

reuptake inhibitors (SSRIs), and serotonin-NE reuptake

inhibitors (SNRIs) provide benefit in the treatment of

pain.20 Antidepressants are used to increase either 5-HT-

or NE-mediated neurotransmission, or both. Studies

have also shown that inhibiting both these monoamines

is more effective than inhibiting just 5-HT alone, and

in this regard, the ability of NE to inhibit pain through

a2-adrenoceptor activation, whereas 5-HT can enhance

pain, is a basis for the need for increased NE levels as a

determinant of efficacy of antidepressant drugs in pain.20

Conclusions

In this review, we have discussed mechanisms of pain

transmission centred around the spinal cord, the first relay

site in pain pathways from periphery to brain, with respect

to mechanisms of pain processing and how intrinsic events

at spinal levels have the ability to enhance pain. We have

aimed to explain how current drugs employed in the treat-

ment of chronic pain states interact with these systems

including the use of NMDA receptor blockers such as

ketamine. TCAs, such as amytryptiline, and SNRIs are

often part of the pharmacotherapy for neuropathic pain,

and we describe how these agents can interact with des-

cending pathways that link the brain with the modulation

and enhancement of pain. The ability of drugs such as

gabapentin/pregabalin to alter excitability is also dis-

cussed. It should also be remembered that these drugs may

also have a significant supraspinal mechanism of action, in

particular antidepressants, which may act on the significant

psychological component of pain perception, and thus

allow patients to better cope with their pain.

Drugs that may have a more local, peripheral mechan-

ism of action are also used in the pain clinic. For example,

carbamazepine, an anti-epileptic which is effective in tri-

geminal neuralgia, targets Naþ channels, which have been

shown to have an extensive role in peripheral pain trans-

mission.82 The local anaesthetic lidocaine can be applied

directly to the surface of the skin in patches (Lidodermw).

Capsacin can be applied in a similar way by the use of a

topical cream (Zostrixw) and acts to desensitize peripheral

nociceptors which express TRPV1 channels.

The extensive pain literature now contains details of

numerous peripheral and central mechanisms, including

various receptors, channels, and also intracellular signalling

pathways, which may provide novel, future drug targets for

the clinical management of chronic pain. We envisage that

a large proportion of targets will employ spinal mechanisms

to combat the as yet, unsolved problem of chronic pain.
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